1
|
Dunn CM, Foust DJ, Gao Y, Biteen JS, Shaw SL, Kearns DB. Nascent flagellar basal bodies are immobilized by rod assembly in Bacillus subtilis. mBio 2025:e0053025. [PMID: 40396775 DOI: 10.1128/mbio.00530-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Flagella are complex, trans-envelope nanomachines that localize in species-specific patterns on the cell surface. Here, we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan (PG). However, rare mobile basal bodies were observed, and the prevalence of mobile basal bodies is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning, and we propose that rod polymerization probes the PG superstructure for pores of sufficient diameter to permit rod transit. Furthermore, mutation of the rod disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that rod synthesis and the cytoplasmic regulators coordinate flagellar assembly by interpreting a grid-like pattern of pores, pre-existent in the PG. IMPORTANCE Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ~25 basal bodies over the length of the cell in a grid-like pattern and lacks proteins required for their polar targeting. Here, we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan (PG) wall. Moreover, defects in the flagellar rod lead to a more-random distribution of flagella and an increase in polar basal bodies. We conclude that the peritrichous patterning of flagella of B. subtilis is different from the polar patterning of other bacteria, and we infer that the B. subtilis rod probes the PG for holes that can accommodate the machine.
Collapse
Affiliation(s)
- Caroline M Dunn
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel J Foust
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Nakamura S, Minamino T. Structure and Dynamics of the Bacterial Flagellar Motor Complex. Biomolecules 2024; 14:1488. [PMID: 39766194 PMCID: PMC11673145 DOI: 10.3390/biom14121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface. The flagellar motor consists of a rotor and several stator units, each of which acts as a transmembrane ion channel complex that converts the ion flux through the channel into the mechanical work required for force generation. The rotor ring complex is equipped with a reversible gear that is regulated by chemotactic signal transduction pathways. As a result, bacteria can move to more desirable locations in response to environmental changes. Recent high-resolution structural analyses of flagella using cryo-electron microscopy have provided deep insights into the assembly, rotation, and directional switching mechanisms of the flagellar motor complex. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan;
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan
| |
Collapse
|
3
|
Dunn CM, Foust D, Gao Y, Biteen JS, Shaw SL, Kearns DB. Nascent flagellar basal bodies are immobilized by rod assembly in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606393. [PMID: 39211283 PMCID: PMC11360914 DOI: 10.1101/2024.08.02.606393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan. Rare basal bodies were observed to be mobile however, and the frequency of basal body mobility is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning and we propose that rod polymerization probes the peptidoglycan superstructure for pores of sufficient diameter that permit rod completion. Furthermore, mutation of the rod also disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that conformational changes in the basal body exchange information between rod synthesis and the cytoplasmic patterning proteins to restrict assembly at certain pores established by a grid-like pattern pre-existent in the peptidoglycan itself. IMPORTANCE Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ∼15 flagella over the length of the cell body in a grid-like pattern and lacks all proteins associated with targeted assembly in polarly flagellated bacteria. Here we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan wall. Moreover, defects in the flagellar rod lead to an asymmetric distribution of flagella with respect to the midcell. We conclude that the patterning of flagella is different in B. subtilis , and we infer that the B. subtilis rod probes the peptidoglycan for holes that can accommodate the machine.
Collapse
|
4
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
5
|
Minamino T, Kinoshita M. Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion. EcoSal Plus 2023; 11:eesp00112023. [PMID: 37260402 PMCID: PMC10729930 DOI: 10.1128/ecosalplus.esp-0011-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 01/28/2024]
Abstract
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Tao A, Liu G, Zhang R, Yuan J. Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch. mBio 2023; 14:e0018923. [PMID: 36946730 PMCID: PMC10128058 DOI: 10.1128/mbio.00189-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The cytoplasmic ring (C-ring) of the bacterial flagellar motor controls the motor rotation direction, thereby controlling bacterial run-and-tumble behavior. The C-ring has been shown to undergo adaptive remodeling in response to changes in motor directional bias. However, the stoichiometry and arrangement of the C-ring is still unclear due to contradiction between the results from fluorescence studies and cryo-electron microscopy (cryo-EM) structural analysis. Here, by using the copy number of FliG molecules (34) in the C-ring as a reference, we precisely measured the copy numbers of FliM molecules in motors rotating exclusively counterclockwise (CCW) and clockwise (CW). We surprisingly found that there are on average 45 and 58 FliM molecules in CW and CCW rotating motors, respectively, which are much higher than previous estimates. Our results suggested a new mechanism of C-ring adaptation, that is, extra FliM molecules could be bound to the primary C-ring with probability depending on the motor rotational direction. We further confirmed that all of the FliM molecules in the C-ring function in chemotaxis signaling transduction because all of them could be bound by the chemotactic response regulator CheY-P. Our measurements provided new insights into the structure and arrangement of the flagellar switch. IMPORTANCE The bacterial flagellar switch can undergo adaptive remodeling in response to changes in motor rotation direction, thereby shifting its operating point to match the output of the chemotaxis signaling pathway. However, it remains unclear how the flagellar switch accomplishes this adaptive remodeling. Here, via precise fluorescence studies, we measured the absolute copy numbers of the critical component in the switch for motors rotating counterclockwise and clockwise, obtaining much larger numbers than previous relative estimates. Our results suggested a new mechanism of adaptive remodeling of the flagellar switch and provided new insights for updating the conformation spread model of the switch.
Collapse
Affiliation(s)
- Antai Tao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangzhe Liu
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, P.R. China
- School of Engineering and Science, University of Chinese Academy of Science, Beijing, P.R. China
| | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Wang J, Lei Y, Yu Y, Yin L, Zhang Y. Use of Acetic Acid to Partially Replace Lactic Acid for Decontamination against Escherichia coli O157:H7 in Fresh Produce and Mechanism of Action. Foods 2021; 10:2406. [PMID: 34681456 PMCID: PMC8535275 DOI: 10.3390/foods10102406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli O157:H7 is frequently detected in ready-to-eat produce and causes serious food-borne diseases. The decontamination efficacy of lactic acid (LA) is clearly established. In this study, LA was mixed with acetic acid (AA) to reduce costs while achieving consistent or better inhibitory effects. Time-kill curves and inoculation experiments using fresh-cut spinach and arugula indicated that 0.8%LA+0.2%AA shows similar antibacterial effects to those of 1%LA. To determine whether 1%LA and 0.8%LA+0.2%AA exert antibacterial effects by similar mechanisms, proteomics analysis was used. The proteins related to macromolecule localization, cellular localization, and protein unfolding were uniquely altered after the treatment with 1%LA, and the proteins related to taxis, response to stress, catabolic process, and the regulation of molecular function were uniquely altered after the treatment with 0.8%LA+0.2%AA. Based on these findings, combined with the results of a network clustering analysis, we speculate that cell membrane damage is greater in response to LA than to 0.8%LA+0.2%AA. This prediction was supported by cell membrane permeability experiments (analyses of protein, nucleotide, ATP, and alkaline phosphatase leakage), which showed that LA causes greater membrane damage than 0.8%LA+0.2%AA. These results provide a theoretical basis for the application of an acid mixture to replace LA for produce decontamination.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yue Lei
- Institute of Rice Research, Guizhou Academy of Agricultural, Guiyang 550009, China;
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Lebin Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| |
Collapse
|
8
|
Yin L, Shen X, Zhang D, Zhao R, Dai Y, Hu X, Zhou X, Hou H, Pan X, Qi K. Flagellar rotor protein FliG is involved in the virulence of avian pathogenic Escherichia coli. Microb Pathog 2021; 160:105198. [PMID: 34537273 DOI: 10.1016/j.micpath.2021.105198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 10/25/2022]
Abstract
Avian pathogenic Escherichia coli (APEC), a type of extraintestinal pathogenic E. coli, causes avian colibacillosis, a disease of significant economic importance to poultry producers worldwide, which is characterized by systemic infection. However, the pathogenesis of avian pathogenic E. coli strains is not well defined. Here, the role of a flagellar rotor protein encoded by the fliG gene of avian pathogenic E. coli strain AE17 was investigated. To study the role of FliG in the pathogenicity of APEC, fliG mutant and complemented strains were constructed and characterized. The inactivation of fliG had no effect on APEC growth, but significantly reduced bacterial motility. Compared with the wild type, the fliG mutant was highly attenuated in a chick infection model and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. The fliG mutant also showed reduced resistance to serum in chicks. The expression of the inflammatory cytokines interleukin 1β (IL1β), IL6, and IL8 was reduced in HD-11 macrophages infected with the fliG mutant strain compared with their expression in the wild-type strain. These results demonstrate that the FliG contributes to the virulence of APEC.
Collapse
Affiliation(s)
- Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xueli Zhou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
9
|
Morimoto YV, Minamino T. Architecture and Assembly of the Bacterial Flagellar Motor Complex. Subcell Biochem 2021; 96:297-321. [PMID: 33252734 DOI: 10.1007/978-3-030-58971-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the central systems responsible for bacterial motility is the flagellum. The bacterial flagellum is a macromolecular protein complex that is more than five times the cell length. Flagella-driven motility is coordinated via a chemosensory signal transduction pathway, and so bacterial cells sense changes in the environment and migrate towards more desirable locations. The flagellum of Salmonella enterica serovar Typhimurium is composed of a bi-directional rotary motor, a universal joint and a helical propeller. The flagellar motor, which structurally resembles an artificial motor, is embedded within the cell envelop and spins at several hundred revolutions per second. In contrast to an artificial motor, the energy utilized for high-speed flagellar motor rotation is the inward-directed proton flow through a transmembrane proton channel of the stator unit of the flagellar motor. The flagellar motor realizes efficient chemotaxis while performing high-speed movement by an ingenious directional switching mechanism of the motor rotation. To build the universal joint and helical propeller structures outside the cell body, the flagellar motor contains its own protein transporter called a type III protein export apparatus. In this chapter we summarize the structure and assembly of the Salmonella flagellar motor complex.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Abstract
The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45–50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.
Collapse
Affiliation(s)
- Judith P. Armitage
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Richard M. Berry
- Department of Physics, University of Oxford, OX1 3PU, United Kingdom
| |
Collapse
|
11
|
Johnson S, Fong YH, Deme JC, Furlong EJ, Kuhlen L, Lea SM. Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation. Nat Microbiol 2020; 5:966-975. [PMID: 32284565 PMCID: PMC7320910 DOI: 10.1038/s41564-020-0703-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 11/14/2022]
Abstract
The bacterial flagellum is a complex self-assembling nanomachine that confers motility to the cell. Despite great variation across species, all flagella are ultimately constructed from a helical propeller that is attached to a motor embedded in the inner membrane. The motor consists of a series of stator units surrounding a central rotor made up of two ring complexes, the MS-ring and the C-ring. Despite many studies, high-resolution structural information is still lacking for the MS-ring of the rotor, and proposed mismatches in stoichiometry between the two rings have long provided a source of confusion for the field. Here, we present structures of the Salmonella MS-ring, revealing a high level of variation in inter- and intrachain symmetry that provides a structural explanation for the ability of the MS-ring to function as a complex and elegant interface between the two main functions of the flagellum-protein secretion and rotation.
Collapse
Affiliation(s)
- Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yu Hang Fong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucas Kuhlen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wang R, Chen Q, Zhang R, Yuan J. Measurement of the Internal Frictional Drag of the Bacterial Flagellar Motor by Fluctuation Analysis. Biophys J 2020; 118:2718-2725. [PMID: 32392462 DOI: 10.1016/j.bpj.2020.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor generates the torque that drives the rotation of bacterial flagellar filaments. The torque it generates depends sensitively on the frictional viscous drag on the motor, which includes the frictional viscous drag on the filaments (external load) and the internal frictional viscous drag on the rotor (internal load). The internal load was roughly estimated previously by modeling it as a sphere of a radius of 20 nm rotating in a lipid of viscosity of 100 cp but was never measured experimentally. Here, we measured the internal load by fluctuation analysis of the motor velocity traces. A similar approach should be applicable to other molecular motors.
Collapse
Affiliation(s)
- Renjie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiaopeng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
13
|
Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species. J Bacteriol 2020; 202:JB.00236-20. [PMID: 32482724 PMCID: PMC8404704 DOI: 10.1128/jb.00236-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Erika Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamic Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Khan S. The Architectural Dynamics of the Bacterial Flagellar Motor Switch. Biomolecules 2020; 10:E833. [PMID: 32486003 PMCID: PMC7355467 DOI: 10.3390/biom10060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Ma GL, Chandra H, Liang ZX. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ Microbiol 2020; 22:2496-2513. [PMID: 32329141 DOI: 10.1111/1462-2920.15036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023]
Abstract
Pseudomonads rely on the flagellar motor to rotate a polar flagellum for swimming and swarming, and to sense surfaces for initiating the motile-to-sessile transition to adopt a surface-dwelling lifestyle. Deciphering the function and regulation of the flagellar motor is of paramount importance for understanding the behaviours of environmental and pathogenic pseudomonads. Recent studies disclosed the preeminent role played by the messenger c-di-GMP in controlling the real-time performance of the flagellar motor in pseudomonads. The studies revealed that c-di-GMP controls the dynamic exchange of flagellar stator units to regulate motor torque/speed and modulates the frequency of flagellar motor switching via the chemosensory signalling pathways. Apart from being a rotary motor, the flagellar motor is emerging as a mechanosensor that transduces surface-induced mechanical signals into an increase of cellular c-di-GMP concentration to initiate the cellular programs required for long-term colonization. Collectively, the studies generate long-awaited mechanistic insights into how c-di-GMP regulates bacterial motility and the motile-to-sessile transition. The new findings also raise the fundamental questions of how cellular c-di-GMP concentrations are dynamically coupled to flagellar output and the proton-motive force, and how c-di-GMP signalling is coordinated spatiotemporally to fine-tune flagellar response and the behaviour of pseudomonads in solutions and on surfaces.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Hartono Chandra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| |
Collapse
|
16
|
Abstract
In Escherichia coli, the chemotaxis response regulator CheY-P binds to FliM, a component of the switch complex at the base of the bacterial flagellar motor, to modulate the direction of motor rotation. The bacterial flagellar motor is ultrasensitive to the concentration of unbound CheY-P in the cytoplasm. CheY-P binds to FliM molecules both in the cytoplasm and on the motor. As the concentration of FliM unavoidably varies from cell to cell, leading to a variation of unbound CheY-P concentration in the cytoplasm, this raises the question whether the flagellar motor is robust against this variation, that is, whether the rotational bias of the motor is more or less constant as the concentration of FliM varies. Here, we showed that the motor is robust against variations of the concentration of FliM. We identified adaptive remodeling of the motor as the mechanism for this robustness. As the level of FliM molecules changes, resulting in different amounts of the unbound CheY-P molecules, the motor adaptively changes the composition of its switch complex to compensate for this effect.IMPORTANCE The bacterial flagellar motor is an ultrasensitive motor. Its output, the probability of the motor turning clockwise, depends sensitively on the occupancy of the protein FliM (a component on the switch complex of the motor) by the input CheY-P molecules. With a limited cellular pool of CheY-P molecules, cell-to-cell variation of the FliM level would lead to large unwanted variation of the motor output if not compensated. Here, we showed that the motor output is robust against the variation of FliM level and identified the adaptive remodeling of the motor switch complex as the mechanism for this robustness.
Collapse
|
17
|
Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio 2020; 11:e02286-19. [PMID: 31911488 PMCID: PMC6946799 DOI: 10.1128/mbio.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.
Collapse
Affiliation(s)
- Louie D Henderson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
19
|
Koganitsky A, Tworowski D, Dadosh T, Cecchini G, Eisenbach M. A Mechanism of Modulating the Direction of Flagellar Rotation in Bacteria by Fumarate and Fumarate Reductase. J Mol Biol 2019; 431:3662-3676. [PMID: 31412261 DOI: 10.1016/j.jmb.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023]
Abstract
Fumarate, an electron acceptor in anaerobic respiration of Escherichia coli, has an additional function of assisting the flagellar motor to shift from counterclockwise to clockwise rotation, with a consequent modulation of the bacterial swimming behavior. Fumarate transmits its effect to the motor via the fumarate reductase complex (FrdABCD), shown to bind to FliG-one of the motor's switch proteins. How binding of the FrdABCD respiratory enzyme to FliG enhances clockwise rotation and how fumarate is involved in this activity have remained puzzling. Here we show that the FrdA subunit in the presence of fumarate is sufficient for binding to FliG and for clockwise enhancement. We further demonstrate by in vitro binding assays and super-resolution microscopy in vivo that the mechanism by which fumarate-occupied FrdA enhances clockwise rotation involves its preferential binding to the clockwise state of FliG (FliGcw). Continuum electrostatics combined with docking analysis and conformational sampling endorsed the experimental conclusions and suggested that the FrdA-FliGcw interaction is driven by the positive electrostatic potential generated by FrdA and the negatively charged areas of FliG. They further demonstrated that fumarate changes FrdA's conformation to one that can bind to FliGcw. These findings also show that the reason for the failure of the succinate dehydrogenase flavoprotein SdhA (an almost-identical analog of FrdA shown to bind to FliG equally well) to enhance clockwise rotation is that it has no binding preference for FliGcw. We suggest that this mechanism is physiologically important as it can modulate the magnitude of ΔG0 between the clockwise and counterclockwise states of the motor to tune the motor to the growth conditions of the bacteria.
Collapse
Affiliation(s)
- Anna Koganitsky
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dmitry Tworowski
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
20
|
Minamino T, Kinoshita M, Namba K. Directional Switching Mechanism of the Bacterial Flagellar Motor. Comput Struct Biotechnol J 2019; 17:1075-1081. [PMID: 31452860 PMCID: PMC6700473 DOI: 10.1016/j.csbj.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022] Open
Abstract
Bacteria sense temporal changes in extracellular stimuli via sensory signal transducers and move by rotating flagella towards into a favorable environment for their survival. Each flagellum is a supramolecular motility machine consisting of a bi-directional rotary motor, a universal joint and a helical propeller. The signal transducers transmit environmental signals to the flagellar motor through a cytoplasmic chemotactic signaling pathway. The flagellar motor is composed of a rotor and multiple stator units, each of which acts as a transmembrane proton channel to conduct protons and exert force on the rotor. FliG, FliM and FliN form the C ring on the cytoplasmic face of the basal body MS ring made of the transmembrane protein FliF and act as the rotor. The C ring also serves as a switching device that enables the motor to spin in both counterclockwise (CCW) and clockwise (CW) directions. The phosphorylated form of the chemotactic signaling protein CheY binds to FliM and FliN to induce conformational changes of the C ring responsible for switching the direction of flagellar motor rotation from CCW to CW. In this mini-review, we will describe current understanding of the switching mechanism of the bacterial flagellar motor.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
- RIKEN Center for Biosystems Dynamic Research & Spring-8 Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Abstract
The cytoplasmic C ring of the bacterial flagellum is known as the switch complex. It binds the response regulator phospho-CheY to control the direction of flagellar rotation. The C ring of enteric bacteria is well characterized. However, no Gram-positive switch complex had been modeled. Ward et al. (E. Ward, E. A. Kim, J. Panushka, T. Botelho, et al., J Bacteriol 201:e00626-18, 2019, https://doi.org/10.1128/JB.00626-18) propose a structure for the Bacillus subtilis switch complex based on extensive biochemical studies. The work demonstrates that a similar architecture can accommodate different proteins and a reversed signaling logic.
Collapse
|
22
|
Sakai T, Miyata T, Terahara N, Mori K, Inoue Y, Morimoto YV, Kato T, Namba K, Minamino T. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex. mBio 2019; 10:e00079-19. [PMID: 30940700 PMCID: PMC6445934 DOI: 10.1128/mbio.00079-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
The flagellar motor can spin in both counterclockwise (CCW) and clockwise (CW) directions. The flagellar motor consists of a rotor and multiple stator units, which act as a proton channel. The rotor is composed of the transmembrane MS ring made of FliF and the cytoplasmic C ring consisting of FliG, FliM, and FliN. The C ring is directly involved in rotation and directional switching. The Salmonella FliF-FliG deletion fusion motor missing 56 residues from the C terminus of FliF and 94 residues from the N terminus of FliG keeps a domain responsible for the interaction with the stator intact, but its motor function is reduced significantly. Here, we report the structure and function of the FliF-FliG deletion fusion motor. The FliF-FliG deletion fusion not only resulted in a strong CW switch bias but also affected rotor-stator interactions coupled with proton translocation through the proton channel of the stator unit. The energy coupling efficiency of the deletion fusion motor was the same as that of the wild-type motor. Extragenic suppressor mutations in FliG, FliM, or FliN not only relieved the strong CW switch bias but also increased the motor speed at low load. The FliF-FliG deletion fusion made intersubunit interactions between C ring proteins tighter compared to the wild-type motor, whereas the suppressor mutations affect such tighter intersubunit interactions. We propose that a change of intersubunit interactions between the C ring proteins may be required for high-speed motor rotation as well as direction switching.IMPORTANCE The bacterial flagellar motor is a bidirectional rotary motor for motility and chemotaxis, which often plays an important role in infection. The motor is a large transmembrane protein complex composed of a rotor and multiple stator units, which also act as a proton channel. Motor torque is generated through their cyclic association and dissociation coupled with proton translocation through the proton channel. A large cytoplasmic ring of the motor, called C ring, is responsible for rotation and switching by interacting with the stator, but the mechanism remains unknown. By analyzing the structure and function of the wild-type motor and a mutant motor missing part of the C ring connecting itself with the transmembrane rotor ring while keeping a stator-interacting domain for bidirectional torque generation intact, we found interesting clues to the change in the C ring conformation for the switching and rotation involving loose and tight intersubunit interactions.
Collapse
Affiliation(s)
- Tomofumi Sakai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichiro Mori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- RIKEN SPring-8 Center, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Organization of the Flagellar Switch Complex of Bacillus subtilis. J Bacteriol 2019; 201:JB.00626-18. [PMID: 30455280 DOI: 10.1128/jb.00626-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
While the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied in Escherichia coli and Salmonella, less is known about the switch complex in Bacillus subtilis or other Gram-positive species. Two component proteins (FliG and FliM) are shared between E. coli and B. subtilis, but in place of the protein FliN found in E. coli, the B. subtilis complex contains the larger protein FliY. Notably, in B. subtilis the signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action in E. coli Here, we have examined the architecture and function of the switch complex in B. subtilis using targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, the B. subtilis switch complex appears to be organized similarly to that in E. coli The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that of E. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences from E. coli involve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCE Flagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex in Bacillus subtilis or other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas in E. coli or Salmonella CheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of the B. subtilis switch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control in B. subtilis and other Gram-positive species.
Collapse
|
24
|
Tusk SE, Delalez NJ, Berry RM. Subunit Exchange in Protein Complexes. J Mol Biol 2018; 430:4557-4579. [DOI: 10.1016/j.jmb.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
|
25
|
Dahlquist FW. The Bacterial Flagellar Motor Continues to Amaze. Biophys J 2018; 114:505-506. [PMID: 29414695 DOI: 10.1016/j.bpj.2017.11.3786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Frederick W Dahlquist
- Department of Chemistry and Biochemistry and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.
| |
Collapse
|
26
|
Kinoshita M, Namba K, Minamino T. Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor. Genes Cells 2018; 23:241-247. [PMID: 29405551 DOI: 10.1111/gtc.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
FliG is a rotor protein of the bacterial flagellar motor. FliG consists of FliGN , FliGM and FliGC domains. Intermolecular FliGM -FliGC interactions promote FliG ring formation on the cytoplasmic face of the MS ring. A conformational change in HelixMC connecting FliGM and FliGC is responsible for the switching between the counterclockwise (CCW) and clockwise (CW) rotational states of the FliG ring. However, it remains unknown how it occurs. Here, we carried out in vivo disulfide cross-linking experiments to see the effect of a CW-locked deletion (∆PAA) in FliG on the FliG ring structure in Salmonella enterica. Higher-order oligomers were observed in the membrane fraction of the fliG(∆PAA + G166C/G194C) strain upon oxidation with iodine in a way similar to FliG(G166C/G194C), indicating that the PAA deletion does not inhibit domain-swap polymerization of FliG. FliG(∆PAA + E174C) formed a cross-linked homodimer whereas FliG(E174C) did not, indicating that Glu174 in HelixMC of one FliG protomer is located much closer to that of its neighboring subunit in the CW motor than in the CCW motor. We will discuss possible helical rearrangements of HelixMC that induce a structural remodeling of the FliG ring upon flagellar motor switching.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Quantitative Biology Center, RIKEN, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Kinoshita M, Furukawa Y, Uchiyama S, Imada K, Namba K, Minamino T. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor. Biochem Biophys Res Commun 2017; 496:12-17. [PMID: 29294326 DOI: 10.1016/j.bbrc.2017.12.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022]
Abstract
The bacterial flagellar motor rotates in both counterclockwise (CCW) and clockwise (CW) directions. FliG, FliM and FliN form the C ring on the cytoplasmic face of the MS ring made of a transmembrane protein, FliF. The C ring acts not only as a rotor but also as a switch of the direction of motor rotation. FliG consists of three domains: FliGN, FliGM and FliGC. FliGN directly binds to FliF. Intermolecular interactions between FliGM and FliGC drive FliG ring formation. FliGM is responsible for the interaction with FliM. FliGC is involved in the interaction with the stator protein MotA. Adaptive remodeling of the C ring occurs when the motor switches between the CCW and CW states. However, it remained unknown how. Here, we report the effects of a CW-locked deletion mutation (ΔPEV) in FliG of Thermotaoga maritia (Tm-FliG) on FliG-FliG and FliG-FliM interactions. The PEV deletion stabilized the intramolecular interaction between FliGM and FliGC, thereby suppressing the oligomerization of Tm-FliGMC in solution. This deletion also induced a conformational change of HelixMC connecting FliGM and FliGC to reduce the binding affinity of Tm-FliGMC for FliM. We will discuss adaptive remodeling of the C ring responsible for flagellar motor switching.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan; Quantitative Biology Center, RIKEN, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Xue C, Lam KH, Zhang H, Sun K, Lee SH, Chen X, Au SWN. Crystal structure of the FliF-FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum. J Biol Chem 2017; 293:2066-2078. [PMID: 29229777 DOI: 10.1074/jbc.m117.797936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial flagellar motor is a self-assembling supramolecular nanodevice. Its spontaneous biosynthesis is initiated by the insertion of the MS ring protein FliF into the inner membrane, followed by attachment of the switch protein FliG. Assembly of this multiprotein complex is tightly regulated to avoid nonspecific aggregation, but the molecular mechanisms governing flagellar assembly are unclear. Here, we present the crystal structure of the cytoplasmic domain of FliF complexed with the N-terminal domain of FliG (FliF C -FliG N ) from the bacterium Helicobacter pylori Within this complex, FliF C interacted with FliG N through extensive hydrophobic contacts similar to those observed in the FliF C -FliG N structure from the thermophile Thermotoga maritima, indicating conservation of the FliF C -FliG N interaction across bacterial species. Analysis of the crystal lattice revealed that the heterodimeric complex packs as a linear superhelix via stacking of the armadillo repeat-like motifs (ARM) of FliG N Notably, this linear helix was similar to that observed for the assembly of the FliG middle domain. We validated the in vivo relevance of the FliG N stacking by complementation studies in Escherichia coli Furthermore, structural comparison with apo FliG from the thermophile Aquifex aeolicus indicated that FliF regulates the conformational transition of FliG and exposes the complementary ARM-like motifs of FliG N , containing conserved hydrophobic residues. FliF apparently both provides a template for FliG polymerization and spatiotemporally controls subunit interactions within FliG. Our findings reveal that a small protein fold can serve as a versatile building block to assemble into a multiprotein machinery of distinct shapes for specific functions.
Collapse
Affiliation(s)
- Chaolun Xue
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kwok Ho Lam
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Huawei Zhang
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kailei Sun
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Sai Hang Lee
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xin Chen
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shannon Wing Ngor Au
- From the Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
29
|
Chelliah R, Wei S, Park BJ, Kim SH, Park DS, Kim SH, Hwan KS, Oh DH. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microb Pathog 2017; 111:22-27. [PMID: 28778821 DOI: 10.1016/j.micpath.2017.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Quantitative triplex real-time PCR (qPCR) offers an alternative method for detection of bacterial contamination. It provides quantitation of the number of gene copies. In our study, we established a qPCR assay to detect and quantify the specificity towards Bacillus cereus and B. thuringiensis. The assay was designed to detect a 280 bp fragment of motB gene encoding the flagellar motor protein, specific for detection of B. cereus and B. thuringiensis, excluding other group species B. pseudomycoides, B. mycoides and B. weihenstephanensis. Specificity of the assay was confirmed with 111 strains belonging to Bacillus cereus group and performed against 58 B. cereus, 50 B. thuringiensis, 3 other Bacillus bacteria and 9 non-Bacillus bacteria. Detection limit was determined for each assay. Direct analysis of samples revealed the specificity towards identification and characterization of B. cereus group cultured in nutrient media. Based on results, it was observed that motB showed 97% specificity towards B. cereus strains, 98% for B. thuringiensis but other B. cereus group showed less sensitivity (0%), thus, provides an efficient tool to identify B. cereus and B. thuringiensis. Further, environmental and food samples do not require band isolation, re-amplification or sequence identification. Thus, reducing the time and cost of analysis.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Shuai Wei
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Byung-Jae Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong-Suk Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Kim Seok Hwan
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
30
|
Kim EA, Panushka J, Meyer T, Ide N, Carlisle R, Baker S, Blair DF. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring. J Mol Biol 2017. [PMID: 28625846 DOI: 10.1016/j.jmb.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Direction switching in the flagellar motor of Escherichia coli is under the control of a complex on the rotor formed from the proteins FliG, FliM, and FliN. FliG lies at the top of the switch complex (i.e., nearest the membrane) and is arranged with its C-terminal domain (FliGC) resting on the middle domain (FliGM) of the neighboring subunit. This organization requires the protein to adopt an open conformation that exposes the surfaces engaging in intersubunit FliGC/FliGM contacts. In a recent study, Baker and coworkers [13] obtained evidence that FliG in the cytosol is monomeric and takes on a more compact conformation, with FliGC making intramolecular contact with FliGM of the same subunit. In the present work, we examine the conformational preferences and interactions of FliG through in vivo crosslinking experiments in cells that lack either all other flagellar proteins or just the MS-ring protein FliF. The results indicate that FliG has a significant tendency to form multimers independently of other flagellar components. The multimerization of FliG is promoted by FliF and also by FliM. FliM does not multimerize efficiently by itself but does so in the presence of FliG. Thus, pre-assemblies of the switch-complex proteins can form in the cytosol and might function as intermediates in assembly.
Collapse
Affiliation(s)
- Eun A Kim
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Panushka
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Trevor Meyer
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicholas Ide
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Carlisle
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Samantha Baker
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - David F Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|