1
|
Kleinehr J, Schöfbänker M, Daniel K, Günl F, Mohamed FF, Janowski J, Brunotte L, Boergeling Y, Liebmann M, Behrens M, Gerdemann A, Klotz L, Esselen M, Humpf HU, Ludwig S, Hrincius ER. Glycolytic interference blocks influenza A virus propagation by impairing viral polymerase-driven synthesis of genomic vRNA. PLoS Pathog 2023; 19:e1010986. [PMID: 37440521 DOI: 10.1371/journal.ppat.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Michael Schöfbänker
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Katharina Daniel
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Fakry Fahmy Mohamed
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Josua Janowski
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
2
|
Cruz A, Joseph S. Interaction of the Influenza A Virus NS1 Protein with the 5'-m7G-mRNA·eIF4E·eIF4G1 Complex. Biochemistry 2022; 61:1485-1494. [PMID: 35797022 PMCID: PMC10164398 DOI: 10.1021/acs.biochem.2c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influenza A virus (IAV) is responsible for seasonal epidemics that result in hundreds of thousands of deaths worldwide annually. The non-structural protein 1 (NS1) of the IAV inflicts various antagonistic processes on the host during infection. These processes include inhibition of the host interferon system, inhibition of the apoptotic response, and enhancement of viral mRNA translation, all of which contribute to the overall virulence of the IAV. Although the mechanism by which NS1 stimulates translation is unknown, NS1 has been shown to bind both poly-A binding Protein 1 and eukaryotic initiation factor 4 gamma 1 (eIF4G1), two proteins necessary for cap-dependent translation. We directly analyzed the interaction between NS1 and eIF4G1 within the context of the 5'-m7G-mRNA·eIF4E·eIF4G1 complex. Interestingly, our studies show that NS1 can bind this complex in the presence or absence of 5'-m7G-mRNA. Additionally, we were interested in investigating whether NS1 interacts with eIF4E directly. Our results indicate that NS1 can bind to eIF4E only in the absence of 5'-m7G-mRNA. Considering previous data, we propose that NS1 stimulates translation by binding to eIF4G1 and recruiting the 43S pre-translation initiation complex to the mRNA.
Collapse
Affiliation(s)
- Alejandro Cruz
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| |
Collapse
|
3
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
4
|
O'Neill MB, Quach H, Pothlichet J, Aquino Y, Bisiaux A, Zidane N, Deschamps M, Libri V, Hasan M, Zhang SY, Zhang Q, Matuozzo D, Cobat A, Abel L, Casanova JL, Naffakh N, Rotival M, Quintana-Murci L. Single-Cell and Bulk RNA-Sequencing Reveal Differences in Monocyte Susceptibility to Influenza A Virus Infection Between Africans and Europeans. Front Immunol 2021; 12:768189. [PMID: 34912340 PMCID: PMC8667309 DOI: 10.3389/fimmu.2021.768189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
There is considerable inter-individual and inter-population variability in response to viruses. The potential of monocytes to elicit type-I interferon responses has attracted attention to their role in viral infections. Here, we use single-cell RNA-sequencing to characterize the role of cellular heterogeneity in human variation of monocyte responses to influenza A virus (IAV) exposure. We show widespread inter-individual variability in the percentage of IAV-infected monocytes. Notably, individuals with high cellular susceptibility to IAV are characterized by a lower activation at basal state of an IRF/STAT-induced transcriptional network, which includes antiviral genes such as IFITM3, MX1 and OAS3. Upon IAV challenge, we find that cells escaping viral infection display increased mRNA expression of type-I interferon stimulated genes and decreased expression of ribosomal genes, relative to both infected cells and those never exposed to IAV. We also uncover a stronger resistance of CD16+ monocytes to IAV infection, together with CD16+ -specific mRNA expression of IL6 and TNF in response to IAV. Finally, using flow cytometry and bulk RNA-sequencing across 200 individuals of African and European ancestry, we observe a higher number of CD16 + monocytes and lower susceptibility to IAV infection among monocytes from individuals of African-descent. Based on these data, we hypothesize that higher basal monocyte activation, driven by environmental factors and/or weak-effect genetic variants, underlies the lower cellular susceptibility to IAV infection of individuals of African ancestry relative to those of European ancestry. Further studies are now required to investigate how such cellular differences in IAV susceptibility translate into population differences in clinical outcomes and susceptibility to severe influenza.
Collapse
Affiliation(s)
- Mary B O'Neill
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Hélène Quach
- Muséum National d'Histoire Naturelle, UMR7206, Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | | | - Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Aurélie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Nora Zidane
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
| | - Matthieu Deschamps
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris University, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Nadia Naffakh
- RNA Biology of Influenza Virus Unit, Institut Pasteur, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique (CNRS), Paris, France.,Chair of Human Genomics and Evolution, Collège de France, Paris, France
| |
Collapse
|
5
|
de Rozières CM, Joseph S. Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex. Biochemistry 2020; 59:4439-4448. [PMID: 33172261 DOI: 10.1021/acs.biochem.0c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
6
|
Wacquiez A, Coste F, Kut E, Gaudon V, Trapp S, Castaing B, Marc D. Structure and Sequence Determinants Governing the Interactions of RNAs with Influenza A Virus Non-Structural Protein NS1. Viruses 2020; 12:E947. [PMID: 32867106 PMCID: PMC7552008 DOI: 10.3390/v12090947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
The non-structural protein NS1 of influenza A viruses is an RNA-binding protein of which its activities in the infected cell contribute to the success of the viral cycle, notably through interferon antagonism. We have previously shown that NS1 strongly binds RNA aptamers harbouring virus-specific sequence motifs (Marc et al., Nucleic Acids Res. 41, 434-449). Here, we started out investigating the putative role of one particular virus-specific motif through the phenotypic characterization of mutant viruses that were genetically engineered from the parental strain WSN. Unexpectedly, our data did not evidence biological importance of the putative binding of NS1 to this specific motif (UGAUUGAAG) in the 3'-untranslated region of its own mRNA. Next, we sought to identify specificity determinants in the NS1-RNA interaction through interaction assays in vitro with several RNA ligands and through solving by X-ray diffraction the 3D structure of several complexes associating NS1's RBD with RNAs of various affinities. Our data show that the RBD binds the GUAAC motif within double-stranded RNA helices with an apparent specificity that may rely on the sequence-encoded ability of the RNA to bend its axis. On the other hand, we showed that the RBD binds to the virus-specific AGCAAAAG motif when it is exposed in the apical loop of a high-affinity RNA aptamer, probably through a distinct mode of interaction that still requires structural characterization. Our data are consistent with more than one mode of interaction of NS1's RBD with RNAs, recognizing both structure and sequence determinants.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Cell Line
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H7N1 Subtype/chemistry
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Domains
- RNA/chemistry
- RNA/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- SELEX Aptamer Technique
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Alan Wacquiez
- Equipe 3IMo, UMR1282 Infectiologie et Santé Publique, INRAE, F-37380 Nouzilly, France; (A.W.); (E.K.); (S.T.)
- UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000 Tours, France
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 02, 45071 Orléans, France; (F.C.); (V.G.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 02, 45071 Orléans, France; (F.C.); (V.G.)
| | - Emmanuel Kut
- Equipe 3IMo, UMR1282 Infectiologie et Santé Publique, INRAE, F-37380 Nouzilly, France; (A.W.); (E.K.); (S.T.)
- UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000 Tours, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 02, 45071 Orléans, France; (F.C.); (V.G.)
| | - Sascha Trapp
- Equipe 3IMo, UMR1282 Infectiologie et Santé Publique, INRAE, F-37380 Nouzilly, France; (A.W.); (E.K.); (S.T.)
- UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000 Tours, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 02, 45071 Orléans, France; (F.C.); (V.G.)
| | - Daniel Marc
- Equipe 3IMo, UMR1282 Infectiologie et Santé Publique, INRAE, F-37380 Nouzilly, France; (A.W.); (E.K.); (S.T.)
- UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000 Tours, France
| |
Collapse
|
7
|
Palavecino CE, Carrasco-Véliz N, Quest AFG, Garrido MP, Valenzuela-Valderrama M. The 5' untranslated region of the anti-apoptotic protein Survivin contains an inhibitory upstream AUG codon. Biochem Biophys Res Commun 2020; 526:898-905. [PMID: 32279998 DOI: 10.1016/j.bbrc.2020.03.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
Survivin (BIRC5) is an anti-apoptotic protein that is important in cancer. Mechanisms responsible for controlling Survivin levels in cells include transcriptional regulation and modulation of protein stability via post-translational modifications; however to date, translational control has been poorly studied. Here, we focused particularly on the primary control elements present in the Survivin 5' untranslated region (5'UTR). Bioinformatic analysis of ribosome occupancy on the Survivin 5'UTR revealed the presence of elongating ribosomes upstream of the canonical initiator AUG, suggesting an alternative upstream initiator AUG (uAUG) might exist. This uAUG was found out-of-frame at position -71 and appeared as a conserved element in mammals. RACE analysis revealed different transcriptional start sites for BIRC5, which indicated that translational control by this uAUG is restricted to longer 5'UTR variants. We studied the activity of the uAUG in different cell types by cloning the Survivin 5'UTR DNA sequence (wild-type and mutated variants) upstream of renilla luciferase (RLuc) into a pcDNA3 plasmid. Changes in RLuc activity were determined by luminescence assays and Western blotting. Results showed that when this uAUG was mutated to AUU or AGG in the cloned Survivin 5'UTR, RLuc activity was significantly increased. Similar results were obtained when uAUG was positioned inframe with the RLuc initiator AUG. Immunodetection of Renilla (35 kDa) by Western blotting revealed the presence of a second band (37 kDa approximately) in cells transfected with the Inframe reporter constructs, indicating that the uAUG was functional in our experimental conditions. In conclusion, our experimental data demonstrate the presence of an alternative and inhibitory initiator uAUG in the Survivin 5' UTR. This inhibitory uAUG may help understanding how Survivin expression is downregulated under physiological or pathological conditions.
Collapse
Affiliation(s)
- Christian E Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago, 8320000, Chile
| | - Nicolás Carrasco-Véliz
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago, 8320000, Chile
| | - Andrew F G Quest
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Sergio Livingstone 1007, Independencia, 8380492, Santiago, Chile; Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avenida Independencia 1027, Independencia, 8380453, Chile
| | - Maritza P Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Departamento de Obstetricia y Ginecología, Hospital Clínico Universidad de Chile, Avenida Santos Dumont 999, Independencia, 8380456, Chile
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago, 8320000, Chile; Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Sergio Livingstone 1007, Independencia, 8380492, Santiago, Chile.
| |
Collapse
|
8
|
Zhirnov OP, Isaeva EI. NSP Protein Encoded in Negative NS RNA Strand of Influenza A Virus Induces Cellular Immune Response in Infected Animals. DOKL BIOCHEM BIOPHYS 2019; 486:201-205. [PMID: 31367821 DOI: 10.1134/s1607672919030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/23/2022]
Abstract
Infection of mice with influenza A viruses led to the formation of clones of lymphocytes that specifically recognizes viral domains in the central zone of the NSP protein (amino acid positions 83-119). Computer analysis of the primary structure of the NSP protein showed the presence of T-cell epitopes in the central part of the NSP molecule. The findings indicate that the viral NSP gene is expressed in the infected animals and verify the concept of the bipolar strategy (ambisense strategy) of the influenza A virus genome.
Collapse
Affiliation(s)
- O P Zhirnov
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Russia. .,Russian-German Academy of Medical and Biotechnological Sciences, 142782, Moscow, Russia.
| | - E I Isaeva
- Ivanovsky Institute of Virology, Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Russia
| |
Collapse
|
9
|
Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res 2019; 46:11539-11552. [PMID: 30239828 PMCID: PMC6265489 DOI: 10.1093/nar/gky851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon F-69364, France.,Ecole Normale Supérieure de Lyon, Lyon F-69364, France
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
The Nonstructural NS1 Protein of Influenza Viruses Modulates TP53 Splicing through Host Factor CPSF4. J Virol 2019; 93:JVI.02168-18. [PMID: 30651364 DOI: 10.1128/jvi.02168-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) are known to modulate and "hijack" several cellular host mechanisms, including gene splicing and RNA maturation machineries. These modulations alter host cellular responses and enable an optimal expression of viral products throughout infection. The interplay between the host protein p53 and IAV, in particular through the viral nonstructural protein NS1, has been shown to be supportive for IAV replication. However, it remains unknown whether alternatively spliced isoforms of p53, known to modulate p53 transcriptional activity, are affected by IAV infection and contribute to IAV replication. Using a TP53 minigene, which mimics intron 9 alternative splicing, we have shown here that the NS1 protein of IAV changes the expression pattern of p53 isoforms. Our results demonstrate that CPSF4 (cellular protein cleavage and polyadenylation specificity factor 4) independently and the interaction between NS1 and CPSF4 modulate the alternative splicing of TP53 transcripts, which may result in the differential activation of p53-responsive genes. Finally, we report that CPSF4 and most likely beta and gamma spliced p53 isoforms affect both viral replication and IAV-associated type I interferon secretion. All together, our data show that cellular p53 and CPSF4 factors, both interacting with viral NS1, have a crucial role during IAV replication that allows IAV to interact with and alter the expression of alternatively spliced p53 isoforms in order to regulate the cellular innate response, especially via type I interferon secretion, and perform efficient viral replication.IMPORTANCE Influenza A viruses (IAV) constitute a major public health issue, causing illness and death in high-risk populations during seasonal epidemics or pandemics. IAV are known to modulate cellular pathways to promote their replication and avoid immune restriction via the targeting of several cellular proteins. One of these proteins, p53, is a master regulator involved in a large panel of biological processes, including cell cycle arrest, apoptosis, or senescence. This "cellular gatekeeper" is also involved in the control of viral infections, and viruses have developed a wide diversity of mechanisms to modulate/hijack p53 functions to achieve an optimal replication in their hosts. Our group and others have previously shown that p53 activity is finely modulated by different multilevel mechanisms during IAV infection. Here, we characterized IAV nonstructural protein NS1 and the cellular factor CPSF4 as major partners involved in the IAV-induced modulation of the TP53 alternative splicing that was associated with a strong modulation of p53 activity and notably the p53-mediated antiviral response.
Collapse
|
11
|
Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals. J Virol 2019; 93:JVI.01969-18. [PMID: 30463961 PMCID: PMC6363993 DOI: 10.1128/jvi.01969-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk. The cocirculation of H5N1 and H9N2 avian influenza viruses in birds in Egypt provides reassortment opportunities between these two viruses. However, little is known about the emergence potential of reassortants derived from Egyptian H5N1 and H9N2 viruses and about the biological properties of such reassortants. To evaluate the potential public health risk of reassortants of these viruses, we used reverse genetics to generate the 63 possible reassortants derived from contemporary Egyptian H5N1 and H9N2 viruses, containing the H5N1 surface gene segments and combinations of the H5N1 and H9N2 internal gene segments, and analyzed their genetic compatibility, replication ability, and virulence in mice. Genes in the reassortants showed remarkably high compatibility. The replication of most reassortants was higher than the parental H5N1 virus in human cells. Six reassortants were thought to emerge in birds under neutral or positive selective pressure, and four of them had higher pathogenicity in vivo than the parental H5N1 and H9N2 viruses. Our results indicated that H5N1-H9N2 reassortants could be transmitted efficiently to mammals with significant public health risk if they emerge in Egypt, although the viruses might not emerge frequently in birds. IMPORTANCE Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk.
Collapse
|
12
|
Levene RE, Gaglia MM. Host Shutoff in Influenza A Virus: Many Means to an End. Viruses 2018; 10:E475. [PMID: 30189604 PMCID: PMC6165434 DOI: 10.3390/v10090475] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus carries few of its own proteins, but uses them effectively to take control of the infected cells and avoid immune responses. Over the years, host shutoff, the widespread down-regulation of host gene expression, has emerged as a key process that contributes to cellular takeover in infected cells. Interestingly, multiple mechanisms of host shutoff have been described in influenza A virus, involving changes in translation, RNA synthesis and stability. Several viral proteins, notably the non-structural protein NS1, the RNA-dependent RNA polymerase and the endoribonuclease PA-X have been implicated in host shutoff. This multitude of host shutoff mechanisms indicates that host shutoff is an important component of the influenza A virus replication cycle. Here we review the various mechanisms of host shutoff in influenza A virus and the evidence that they contribute to immune evasion and/or viral replication. We also discuss what the purpose of having multiple mechanisms may be.
Collapse
Affiliation(s)
- Rachel Emily Levene
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| | - Marta Maria Gaglia
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
13
|
Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol 2018; 9:1581. [PMID: 30079062 PMCID: PMC6062596 DOI: 10.3389/fimmu.2018.01581] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses replicate within the nucleus of the host cell. This uncommon RNA virus trait provides influenza with the advantage of access to the nuclear machinery during replication. However, it also increases the complexity of the intracellular trafficking that is required for the viral components to establish a productive infection. The segmentation of the influenza genome makes these additional trafficking requirements especially challenging, as each viral RNA (vRNA) gene segment must navigate the network of cellular membrane barriers during the processes of entry and assembly. To accomplish this goal, influenza A viruses (IAVs) utilize a combination of viral and cellular mechanisms to coordinate the transport of their proteins and the eight vRNA gene segments in and out of the cell. The aim of this review is to present the current mechanistic understanding for how IAVs facilitate cell entry, replication, virion assembly, and intercellular movement, in an effort to highlight some of the unanswered questions regarding the coordination of the IAV infection process.
Collapse
Affiliation(s)
- Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Arias-Mireles BH, de Rozieres CM, Ly K, Joseph S. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1. Biochemistry 2018; 57:3590-3598. [PMID: 29782795 DOI: 10.1021/acs.biochem.8b00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.
Collapse
Affiliation(s)
- Bryan H Arias-Mireles
- Department of Biological Sciences , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Cyrus M de Rozieres
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Kevin Ly
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
15
|
Pizzorno A, Dubois J, Machado D, Cartet G, Traversier A, Julien T, Lina B, Bourdon JC, Rosa-Calatrava M, Terrier O. Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection. Sci Rep 2018; 8:3746. [PMID: 29487367 PMCID: PMC5829072 DOI: 10.1038/s41598-018-22139-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Julia Dubois
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Daniela Machado
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire des Pathogènes Emergents, Fondation Mérieux. CIRI, UCBL1- INSERM U1111, ENS Lyon, CNRS UMR5308, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Aurelien Traversier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Thomas Julien
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Bruno Lina
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Olivier Terrier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France.
| |
Collapse
|
16
|
Panthu B, Ohlmann T, Perrier J, Schlattner U, Jalinot P, Elena-Herrmann B, Rautureau GJP. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems. ACS Synth Biol 2018; 7:218-226. [PMID: 28915016 DOI: 10.1021/acssynbio.7b00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.
Collapse
Affiliation(s)
- Baptiste Panthu
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, F-69007 Lyon, France
| | - Johan Perrier
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble cedex, France
| | - Pierre Jalinot
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Bénédicte Elena-Herrmann
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Gilles J. P. Rautureau
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
17
|
Slaine PD, Kleer M, Smith NK, Khaperskyy DA, McCormick C. Stress Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A Virus Replication. Viruses 2017; 9:v9120388. [PMID: 29258238 PMCID: PMC5744162 DOI: 10.3390/v9120388] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/03/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic translation initiation factor 4A (eIF4A) is a helicase that facilitates assembly of the translation preinitiation complex by unwinding structured mRNA 5' untranslated regions. Pateamine A (PatA) and silvestrol are natural products that disrupt eIF4A function and arrest translation, thereby triggering the formation of cytoplasmic aggregates of stalled preinitiation complexes known as stress granules (SGs). Here we examined the effects of eIF4A inhibition by PatA and silvestrol on influenza A virus (IAV) protein synthesis and replication in cell culture. Treatment of infected cells with either PatA or silvestrol at early times post-infection resulted in SG formation, arrest of viral protein synthesis and failure to replicate the viral genome. PatA, which irreversibly binds to eIF4A, sustained long-term blockade of IAV replication following drug withdrawal, and inhibited IAV replication at concentrations that had minimal cytotoxicity. By contrast, the antiviral effects of silvestrol were fully reversible; drug withdrawal caused rapid SG dissolution and resumption of viral protein synthesis. IAV inhibition by silvestrol was invariably associated with cytotoxicity. PatA blocked replication of genetically divergent IAV strains, suggesting common dependence on host eIF4A activity. This study demonstrates that the core host protein synthesis machinery can be targeted to block viral replication.
Collapse
Affiliation(s)
- Patrick D Slaine
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Mariel Kleer
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Nathan K Smith
- Department of Community Health and Epidemiology, Dalhousie University, 5790 University Avenue, Halifax, NS B3H 1V7, Canada.
| | - Denys A Khaperskyy
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|