1
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
Goswami V, Tomar VR, Yashika, Deep S. Nanocarriers for the Delivery of Quercetin to Inhibit the UV-Induced Aggregation of γD-Crystallin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5617-5631. [PMID: 38051761 DOI: 10.1021/acs.langmuir.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Due to gradual environmental changes like ozone layer depletion and global warming, human eyes are exposed to UV light. Exposure to UV light can be a cause of cataracts, one of the ocular diseases that may cause vision impairment. To date, lens replacement has been the only treatment available for cataracts. In our present study, we carried out an extensive examination of polyphenols as inhibitors for UV-induced aggregation of γD-crystallin. On exposure to UV-C light, γD-crystallin forms fibrils instead of amorphous aggregates. Various polyphenols were tested as inhibitors; out of them, quercetin, baicalein, and caffeic acid were found to be effective. As polyphenols are insoluble in water, nanoencapsulation was used to enhance their bioavailability. CS-TPP and CS-PLGA encapsulating systems were considered, as they form biodegradable nanocapsules. Out of three polyphenols (quercetin, baicalein, and caffeic acid), quercetin forms nanocarriers of smaller sizes, a must for crossing the retinal barrier. Quercetin nanocarriers were considered an effective system that could be used for therapeutic applications. For these nanocarriers, encapsulation efficiency and polyphenol release kinetics were studied. CS-PLGA NPs were found to have a better loading efficiency for quercetin than CS-TPP NPs.
Collapse
Affiliation(s)
- Vishakha Goswami
- Department of Chemistry, Indian Institute of Technology, Hauzkhas, Delhi New Delhi 110016, India
| | - Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology, Hauzkhas, Delhi New Delhi 110016, India
| | - Yashika
- Department of Chemistry, Indian Institute of Technology, Hauzkhas, Delhi New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauzkhas, Delhi New Delhi 110016, India
| |
Collapse
|
4
|
Farrell KM, Fields CR, Dicke SS, Zanni MT. Simultaneously Measured Kinetics of Two Amyloid Polymorphs Using Cross Peak Specific 2D IR Spectroscopy. J Phys Chem Lett 2023; 14:11750-11757. [PMID: 38117179 PMCID: PMC11163371 DOI: 10.1021/acs.jpclett.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The origin of in vitro amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale. We simulated the data with three different kinetic models for polymorph formation. Only a model based on secondary nucleation reproduces the cross peak kinetics. These experiments are evidence that fibrils formed by secondary nucleation have a different polymorphic structure than the parent fibrils and illustrate the enhanced structural resolution of this new cross peak specific polarization scheme.
Collapse
Affiliation(s)
- Kieran M Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
6
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
8
|
Rauf MA, Alam MT, Ishtikhar M, Ali N, Alghamdi A, AlAsmari AF. Investigating Chaperone like Activity of Green Silver Nanoparticles: Possible Implications in Drug Development. Molecules 2022; 27:944. [PMID: 35164209 PMCID: PMC8838336 DOI: 10.3390/molecules27030944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Protein aggregation and amyloidogenesis have been associated with several neurodegenerative disorders like Alzheimer's, Parkinson's etc. Unfortunately, there are still no proper drugs and no effective treatment available. Due to the unique properties of noble metallic nanoparticles, they have been used in diverse fields of biomedicine like drug designing, drug delivery, tumour targeting, bio-sensing, tissue engineering etc. Small-sized silver nanoparticles have been reported to have anti-biotic, anti-cancer and anti-viral activities apart from their cytotoxic effects. The current study was carried out in a carefully designed in-vitro to observe the anti-amyloidogenic and inhibitory effects of biologically synthesized green silver nanoparticles (B-AgNPs) on human serum albumin (HSA) aggregation taken as a model protein. We have used different biophysical assays like thioflavin T (ThT), 8-Anilino-1-naphthalene-sulphonic acid (ANS), Far-UV CD etc. to analyze protein aggregation and aggregation inhibition in vitro. It has been observed that the synthesized fluorescent B-AgNPs showed inhibitory effects on protein aggregation in a concentration-dependent manner reaching a plateau, after which the effect of aggregation inhibition was significantly declined. We also observed meaningful chaperone-like aggregation-inhibition activities of as-synthesized florescent B-AgNPs in astrocytes.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Md Tauqir Alam
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Ishtikhar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| | - Adel Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| |
Collapse
|
9
|
Alperstein AM, Molnar KS, Dicke SS, Farrell KM, Makley LN, Zanni MT, Andley UP. Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PLoS One 2021; 16:e0257098. [PMID: 34520490 PMCID: PMC8439473 DOI: 10.1371/journal.pone.0257098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer's, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract.
Collapse
Affiliation(s)
- Ariel M. Alperstein
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathleen S. Molnar
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Sidney S. Dicke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kieran M. Farrell
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leah N. Makley
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Usha P. Andley
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Dicke SS, Alperstein AM, Schueler KL, Stapleton DS, Simonett SP, Fields CR, Chalyavi F, Keller MP, Attie AD, Zanni MT. Application of 2D IR Bioimaging: Hyperspectral Images of Formalin-Fixed Pancreatic Tissues and Observation of Slow Protein Degradation. J Phys Chem B 2021; 125:9517-9525. [PMID: 34396779 PMCID: PMC8769495 DOI: 10.1021/acs.jpcb.1c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used two-dimensional IR bioimaging to study the structural heterogeneity of formalin-fixed mouse pancreas. Images were generated from the hyperspectral data sets by plotting quantities associated with the amide I vibrational mode, which is created by the backbone carbonyl stretch. Images that measure the fundamental vibrational frequencies, cross peaks, and anharmonic shifts are presented. Histograms are generated for each quantity, providing averaged values and distributions around the mean that serve as metrics for protein structures. Images were generated from tissue that had been stored in a formalin fixation for 3, 8, and 48 weeks. Over this period, all three metrics show that that the β-sheet content of the samples increased, consistent with protein aggregation. Our results indicate that formalin fixation does not entirely arrest the degradation of a protein structure in pancreas tissue.
Collapse
Affiliation(s)
- Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Shane P Simonett
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Farzaneh Chalyavi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
12
|
Bawankar M, Thakur AK. Mechanism of human γD-crystallin protein aggregation in UV-C light. Mol Vis 2021; 27:415-428. [PMID: 34267497 PMCID: PMC8254662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose To characterize intermediate aggregate species on the aggregation pathway of γD-crystallin protein in ultraviolet (UV)-C light. Methods The kinetics of γD-crystallin protein aggregation was studied with reversed-phase high-performance liquid chromatography (RP-HPLC) sedimentation assay, ThT binding assay, and light scattering. We used analytical ultracentrifugation to recognize intermediate aggregate species and characterized them with Fourier transform infrared spectroscopy (FTIR). Quantification of free sulfhydryl groups in an ongoing aggregation reaction was achieved by using Ellman's assay. Results Negligible lag phase was found in the aggregation kinetic experiments of the γD-crystallin protein. Dimer, tetramer, octamer, and higher oligomer intermediates were formed on the aggregation pathway. The protein changes its conformation to form intermediate aggregate species. FTIR and trypsin digestion indicated structural differences between the protein monomer, intermediate aggregate species, and fibrils. Ellman's assay revealed that disulfide bonds were formed in the protein monomers and aggregates during the aggregation process. Conclusions This study showed that various intermediate and structurally different aggregate species are formed on the aggregation pathway of γD-crystallin protein in UV-C light.
Collapse
Affiliation(s)
- Mangesh Bawankar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| |
Collapse
|
13
|
UV Effect on Human Anterior Lens Capsule Macro-Molecular Composition Studied by Synchrotron-Based FTIR Micro-Spectroscopy. Int J Mol Sci 2021; 22:ijms22105249. [PMID: 34065666 PMCID: PMC8156142 DOI: 10.3390/ijms22105249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) irradiation is an important risk factor in cataractogenesis. Lens epithelial cells (LECs), which are a highly metabolically active part of the lens, play an important role in UV-induced cataractogenesis. The purpose of this study was to characterize cell compounds such as nucleic acids, proteins, and lipids in human UV C-irradiated anterior lens capsules (LCs) with LECs, as well as to compare them with the control, non-irradiated LCs of patients without cataract, by using synchrotron radiation-based Fourier transform infrared (SR-FTIR) micro-spectroscopy. In order to understand the effect of the UV C on the LC bio-macromolecules in a context of cataractogenesis, we used the SR-FTIR micro-spectroscopy setup installed on the beamline MIRAS at the Spanish synchrotron light source ALBA, where measurements were set to achieve a single-cell resolution with high spectral stability and high photon flux. UV C irradiation of LCs resulted in a significant effect on protein conformation with protein formation of intramolecular parallel β-sheet structure, lower phosphate and carboxyl bands in fatty acids and amino acids, and oxidative stress markers with significant increase of lipid peroxidation and diminishment of the asymmetric CH3 band.
Collapse
|
14
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
15
|
Procacci B, Rutherford SH, Greetham GM, Towrie M, Parker AW, Robinson CV, Howle CR, Hunt NT. Differentiation of bacterial spores via 2D-IR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119319. [PMID: 33360210 DOI: 10.1016/j.saa.2020.119319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Ultrafast 2D-IR spectroscopy is a powerful tool for understanding the spectroscopy and dynamics of biological molecules in the solution phase. A number of recent studies have begun to explore the utility of the information-rich 2D-IR spectra for analytical applications. Here, we report the application of ultrafast 2D-IR spectroscopy for the detection and classification of bacterial spores. 2D-IR spectra of Bacillus atrophaeus and Bacillus thuringiensis spores as dry films on CaF2 windows were obtained. The sporulated nature of the bacteria was confirmed using 2D-IR diagonal and off-diagonal peaks arising from the calcium dipicolinate CaDP·3H2O biomarker for sporulation. Distinctive peaks, in the protein amide I region of the spectrum were used to differentiate the two types of spore. The identified marker modes demonstrate the potential for the use of 2D-IR methods as a direct means of spore classification. We discuss these new results in perspective with the current state of analytical 2D-IR measurements, showing that the potential exists to apply 2D-IR spectroscopy to detect the spores on surfaces and in suspensions as well as in dry films. The results demonstrate how applying 2D-IR screening methodologies to spores would enable the creation of a library of spectra for classification purposes.
Collapse
Affiliation(s)
- Barbara Procacci
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Samantha H Rutherford
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, UK
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Camilla V Robinson
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Christopher R Howle
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
16
|
Bari KJ, Sharma S. A Perspective on Biophysical Studies of Crystallin Aggregation and Implications for Cataract Formation. J Phys Chem B 2020; 124:11041-11054. [PMID: 33297682 DOI: 10.1021/acs.jpcb.0c07449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lens crystallins are subject to various types of damage during their lifetime which triggers protein misfolding and aggregation, ultimately causing cataracts. There are several models for crystallin aggregation, but a comprehensive picture of the mechanism of cataract is still underway. The complex biomolecular interactions underlying crystallin aggregation have motivated major efforts to resolve the structural details and mechanism of aggregation using multiple biophysical techniques at different resolutions. Together, experimental and computational approaches identify and characterize both amyloidogenic and amorphous aggregates leading to an improved understanding of crystallin aggregation. A rigorous characterization of the aggregation-prone intermediates is crucial in cataract-mediated drug discovery. This Perspective summarizes recent biophysical studies on lens crystallin aggregation. We evaluate the outstanding challenges, future outlook, and rewards in this fertile field of research. With lessons learned from protein folding and multiple pathways of aggregation, we highlight the differences in the overall mechanisms of age-related and congenital cataracts. We expect that a correlation between the existing and developing biophysical techniques would provide a platform to study amyloid architecture in the eye lens and reduce the existing gaps in our understanding of crystallin biophysics.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Shrikant Sharma
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Ram L, Mittal C, Harsolia RS, Yadav JK. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 2020; 39:509-518. [PMID: 33037983 DOI: 10.1007/s10930-020-09919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins' solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30-40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.
Collapse
Affiliation(s)
- Lakshman Ram
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
18
|
Grosas AB, Rekas A, Mata JP, Thorn DC, Carver JA. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency. J Mol Biol 2020; 432:5593-5613. [PMID: 32827531 DOI: 10.1016/j.jmb.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
One of the most crowded biological environments is the eye lens which contains a high concentration of crystallin proteins. The molecular chaperones αB-crystallin (αBc) with its lens partner αA-crystallin (αAc) prevent deleterious crystallin aggregation and cataract formation. However, some forms of cataract are associated with structural alteration and dysfunction of αBc. While many studies have investigated the structure and function of αBc under dilute in vitro conditions, the effect of crowding on these aspects is not well understood despite its in vivo relevance. The structure and chaperone ability of αBc under conditions that mimic the crowded lens environment were investigated using the polysaccharide Ficoll 400 and bovine γ-crystallin as crowding agents and a variety of biophysical methods, principally contrast variation small-angle neutron scattering. Under crowding conditions, αBc unfolds, increases its size/oligomeric state, decreases its thermal stability and chaperone ability, and forms kinetically distinct amorphous and fibrillar aggregates. However, the presence of αAc stabilizes αBc against aggregation. These observations provide a rationale, at the molecular level, for the aggregation of αBc in the crowded lens, a process that exhibits structural and functional similarities to the aggregation of cataract-associated αBc mutants R120G and D109A under dilute conditions. Strategies that maintain or restore αBc stability, as αAc does, may provide therapeutic avenues for the treatment of cataract.
Collapse
Affiliation(s)
- Aidan B Grosas
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Agata Rekas
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
19
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
20
|
Fritzsch R, Hume S, Minnes L, Baker MJ, Burley GA, Hunt NT. Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 2020; 145:2014-2024. [PMID: 32051976 DOI: 10.1039/c9an02035g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultrafast two-dimensional infrared (2D-IR) spectroscopy has provided valuable insights into biomolecular structure and dynamics, but recent progress in laser technology and data analysis methods have demonstrated the potential for high throughput 2D-IR measurements and analytical applications. Using 2D-IR as an analytical tool requires a different approach to data collection and analysis compared to pure research applications however and, in this review, we highlight progress towards usage of 2D-IR spectroscopy in areas relevant to biomedical, pharmaceutical and analytical molecular science. We summarise the technical and methodological advances made to date and discuss the challenges that still face 2D-IR spectroscopy as it attempts to transition from the state-of-the-art laser laboratory to the standard suite of analytical tools.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | | | | | | | | | | |
Collapse
|
21
|
Xu K, Wang J. Discovering the effect of alum on UV photo-degradation of gelatin binder via FTIR, XPS and DFT calculation. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc Natl Acad Sci U S A 2019; 116:6602-6607. [PMID: 30894486 DOI: 10.1073/pnas.1821534116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid β-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid β-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.
Collapse
|
23
|
Giubertoni G, Meister K, DeVries AL, Bakker HJ. Determination of the Solution Structure of Antifreeze Glycoproteins Using Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2019; 10:352-357. [PMID: 30615465 PMCID: PMC6369719 DOI: 10.1021/acs.jpclett.8b03468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/07/2019] [Indexed: 05/20/2023]
Abstract
We study the solution structure of antifreeze glycoproteins (AFGPs) with linear and two-dimensional infrared spectroscopy (2D-IR). With 2D-IR, we study the coupling between the amide I and amide II vibrations of AFGPs. The measured nonlinear spectral response constitutes a much more clearly resolved amide I spectrum than the linear absorption spectrum of the amide I vibrations and allows us to identify the different structural elements of AFGPs in solution. We find clear evidence for the presence of polyproline II (PPII) helical structures already at room temperature, and we find that the fraction of PPII structures increases when the temperature is decreased to the biological working temperature of AFGP. We observe that inhibition of the antifreeze activity of AFGP using borate buffer or enhancing the antifreeze activity using sulfate buffer does not lead to significant changes in the protein conformation. This finding indicates that AFGPs bind to ice with their sugar side chains.
Collapse
Affiliation(s)
| | - Konrad Meister
- Max-Planck
Institute for Polymer Research, D-55128 Mainz, Germany
| | - Arthur L. DeVries
- University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- E-mail:
| |
Collapse
|
24
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|
25
|
Chen XJ, Hu LD, Yao K, Yan YB. Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms. Biochem Biophys Res Commun 2018; 506:868-873. [PMID: 30392915 DOI: 10.1016/j.bbrc.2018.10.175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022]
Abstract
Cataract, a crystallin aggregation disease, is the leading cause of human blindness worldwide. Surgery is the only established treatment of cataracts and no anti-cataract drugs are available thus far. Recently lanosterol and 25-hydroxycholesterol have been reported to redissolve crystallin aggregates and partially restore lens transparency in animals. However, the efficacies of these two compounds have not been quantitatively studied ex vivo using patient tissues. In this research, we developed a quantitative assay applicable to efficacy validations and mechanistic studies by a protocol to isolate protein aggregates from the surgically removed cataractous human lens. Our results showed that both compounds were effective for human cataractous samples with EC50 values at ten micromolar level. The efficacies of both compounds strongly depended on cataract severity. Lanosterol and 25-hydroxycholesterol were two mechanistically different lead compounds of anti-cataract drug design.
Collapse
Affiliation(s)
- Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Eye Institute of Zhejiang University, Eye Center of the 2nd Affiliated Hospital of Zhejiang University, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Yao
- Eye Institute of Zhejiang University, Eye Center of the 2nd Affiliated Hospital of Zhejiang University, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
RETRACTED: Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp Eye Res 2018; 179:193-205. [PMID: 30448341 DOI: 10.1016/j.exer.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al., Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.
Collapse
|
27
|
Zhu S, Xi XB, Duan TL, Zhai Y, Li J, Yan YB, Yao K. The cataract-causing mutation G75V promotes γS-crystallin aggregation by modifying and destabilizing the native structure. Int J Biol Macromol 2018; 117:807-814. [DOI: 10.1016/j.ijbiomac.2018.05.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
|
28
|
Petti MK, Lomont JP, Maj M, Zanni MT. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science. J Phys Chem B 2018; 122:1771-1780. [PMID: 29346730 DOI: 10.1021/acs.jpcb.7b11370] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Lomont JP, Ostrander JS, Ho JJ, Petti MK, Zanni MT. Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy. J Phys Chem B 2017; 121:8935-8945. [PMID: 28851219 DOI: 10.1021/acs.jpcb.7b06826] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition dipole strengths and frequencies of the amyloid β-sheet amide I mode for the aggregated proteins amyloid-β1-40, calcitonin, α-synuclein, and glucagon. According to standard vibrational coupling models for proteins, the frequencies of canonical β-sheets are set by their size and structural and environmental disorder, which determines the delocalization length of the vibrational excitons. The larger the delocalization the lower the frequency of the main infrared-allowed transition, A⊥. The models also predict an accompanying increase in transition dipole strength. For the proteins measured here, we find no correlation between transition dipole strengths and amyloid β-sheet transition frequency. To understand this observation, we have extracted from the protein data bank crystal structures of amyloid peptides from which we calculate the amide I vibrational couplings, and we use these in a model β-sheet Hamiltonian to simulate amyloid vibrational spectra. We find that the variations in amyloid β-sheet structures (e.g., dihedral angles, interstrand distances, and orientations) create significant differences in the average values for interstrand and nearest neighbor couplings, and that those variations encompass the variation in measured A⊥ frequencies. We also find that off-diagonal disorder about the average values explains the range of transition dipole strengths observed experimentally. Thus, we conclude that the lack of correlation between transition dipole-strength and frequency is caused by variations in amyloid β-sheet structure. Taken together, these results indicate that the amide I frequency is very sensitive to amyloid β-sheet structure, the β-sheets of these 4 proteins are not identical, and the assumption that frequency of amyloids scales with β-sheet size cannot be adopted without an accompanying measurement of transition dipole strengths.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| |
Collapse
|