1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Li YC, Wang CH, Patra M, Chen YP, Yang WZ, Yuan H. Structural insights into human PNPase in health and disease. Nucleic Acids Res 2025; 53:gkaf119. [PMID: 39997218 PMCID: PMC11851098 DOI: 10.1093/nar/gkaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Human polynucleotide phosphorylase (hPNPase) is a 3'-to-5' exoribonuclease located in mitochondria, where it plays crucial roles in RNA degradation and RNA import. Mutations in hPNPase can impair these functions, leading to various mitochondrial dysfunctions and diseases. However, the mechanisms by which hPNPase switches between its roles as an RNA-degrading enzyme and an RNA carrier, as well as how disease-associated mutations may affect these distinct functions, remain unclear. In this study, we present cryo-electron microscopy structures of hPNPase, highlighting the flexibility of its S1 domains, which cap the ring-like RNA-degradation chamber and shift between two distinctive open and closed conformations. We further demonstrate by small-angle X-ray scattering and biochemical analyses that the disease-associated mutations P467S and G499R impair hPNPase's stem-loop RNA-binding and degradation activities by limiting the S1 domain's ability to transition from an open to closed state. Conversely, the D713Y mutation, located within the S1 domain, does not affect the RNA-binding affinity of hPNPase, but diminishes its interaction with Suv3 helicase for cooperative degradation of structured RNA. Collectively, these findings underscore the critical role of S1 domain mobility in capturing structured RNA for degradation and import, as well as its involvement in mitochondrial degradosome assembly. Our study thereby reveals the molecular mechanism of hPNPase in RNA binding and degradation, and the multiple molecular defects that could be induced by disease-linked mutations in hPNPase.
Collapse
Affiliation(s)
- Yi-Ching Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Malay Patra
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10048, ROC, Taiwan
| |
Collapse
|
3
|
Meyer I, Volk M, Salto I, Moesser T, Chaoprasid P, Herbrüggen AS, Rohde M, Beckstette M, Heroven AK, Dersch P. RNase-mediated reprogramming of Yersinia virulence. PLoS Pathog 2024; 20:e1011965. [PMID: 39159284 PMCID: PMC11361751 DOI: 10.1371/journal.ppat.1011965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/29/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid. We found that exoribonuclease PNPase and endoribonuclease RNase III inhibit T3SS and yop gene transcription by repressing the synthesis of LcrF, the master activator of Yop-T3SS. Loss of both RNases led to an increase in lcrF mRNA levels. Our work indicates that PNPase exerts its influence via YopD, which accelerates lcrF mRNA degradation. Loss of RNase III, on the other hand, results in the downregulation of the CsrB and CsrC RNAs, thereby increasing the availability of active CsrA, which has been shown previously to enhance lcrF mRNA translation and stability. This CsrA-promoted increase of lcrF mRNA translation could be supported by other factors promoting the protein translation efficiency (e.g. IF-3, RimM, RsmG) that were also found to be repressed by RNase III. Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion leads to global reprogramming of the Yersinia transcriptome with a massive shift of the expression from chromosomal to virulence plasmid-encoded genes. A similar reprogramming was also observed in the RNase III-deficient mutant under non-secretion conditions. Overall, our work revealed a complex control system where RNases orchestrate the expression of the T3SS/Yop machinery on multiple levels to antagonize phagocytic uptake and elimination by innate immune cells.
Collapse
Affiliation(s)
- Ines Meyer
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marcel Volk
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Ileana Salto
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Theresa Moesser
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Paweena Chaoprasid
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Anne-Sophie Herbrüggen
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Manfred Rohde
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- German Center for Infection Research (DZIF), Partner site HZI Braunschweig and associated site University of Münster, Münster, Germany
| |
Collapse
|
4
|
Sarıgül İ, Žukova A, Alparslan E, Remm S, Pihlak M, Kaldalu N, Tenson T, Maiväli Ü. Involvement of Escherichia coli YbeX/CorC in ribosomal metabolism. Mol Microbiol 2024; 121:984-1001. [PMID: 38494741 DOI: 10.1111/mmi.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.
Collapse
Affiliation(s)
- İsmail Sarıgül
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Amata Žukova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Emel Alparslan
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sille Remm
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Margus Pihlak
- Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature 2024; 626:1133-1140. [PMID: 38326618 PMCID: PMC10901742 DOI: 10.1038/s41586-024-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
Collapse
Affiliation(s)
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Sander Granneman
- Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
7
|
Liu K, Lee KP, Duan J, Kim EY, Singh RM, Di M, Meng Z, Kim C. Cooperative role of AtRsmD and AtRimM proteins in modification and maturation of 16S rRNA in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:310-324. [PMID: 36752655 DOI: 10.1111/tpj.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoling Meng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
9
|
Andrews ESV, Patrick WM. The hypothesized role of YbeZ in 16S rRNA maturation. Arch Microbiol 2022; 204:114. [PMID: 34984547 DOI: 10.1007/s00203-021-02739-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Ribosomes are the protein production machines in all living cells. Yet in contrast to our understanding of how the ribosome translates DNA information into life, the steps involved in ribosome biogenesis, the assembly of the ribosomal RNA (rRNA) and protein molecules that make up the ribosome, remain incomplete. YbeY is considered one of the most physiologically critical endoribonucleases and is implicated in numerous roles involving RNA including 16S rRNA maturation, yet our existing knowledge of its biochemical function fails to explain the phenotypes that manifest when it is lost. In bacteria, it is common for functionally associated genes to be found co-localized in the genome. Across phylogenetically diverse bacteria, the gene encoding ybeZ, encoding a PhoH domain protein, sits adjacent to ybeY. Recent experimental evidence has shown that PhoH domains are RNA helicases, suggesting that this is also the role of YbeZ. The role of an RNA helicase to support the function of YbeY would help explain its reported biochemistry; therefore, we propose a model for the function of YbeZ in 16S rRNA maturation, linking it with the most recent hypotheses on the function of YbeY, that YbeY together with other ribosomal proteins, and ribosome-associated proteins, plays a role in the biogenesis of the small ribosomal subunit. Our model provides a testable hypothesis to resolve the outstanding details surrounding ribosome biogenesis in bacteria.
Collapse
Affiliation(s)
- Emma S V Andrews
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
10
|
Naganathan A, Keltz R, Lyon H, Culver GM. Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly. Biochimie 2021; 191:104-117. [PMID: 34508826 DOI: 10.1016/j.biochi.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The bacterial ribosomal protein S15 is located in the platform, a functional region of the 30S ribosomal subunit. While S15 is critical for in vitro formation of E. coli small subunits (SSUs), it is dispensable for in vivo biogenesis and growth. In this work, a novel synergistic interaction between rpsO, the gene that encodes S15, and rnc (the gene that encodes RNase III), was uncovered in E. coli. RNase III catalyzes processing of precursor ribosomal RNA (rRNA) transcripts and thus is involved in functional ribosome subunit maturation. Strains lacking S15 (ΔrpsO), RNase III (Δrnc) or both genes were examined to understand the relationship between these two factors and the impact of this double deletion on rRNA processing and SSU maturation. The double deletion of rpsO and rnc partially alleviates the observed cold sensitivity of ΔrpsO alone. A novel 16S rRNA precursor (17S∗ rRNA) that is detected in free 30S subunits of Δrnc is incorporated in 70S-like ribosomes in the double deletion. The stable accumulation of 17S∗ rRNA suggests that timing of processing events is closely coupled with SSU formation events in vivo. The double deletion has a suppressive effect on the cell elongation phenotype of ΔrpsO. The alteration of the phenotypes associated with S15 loss, due to the absence of RNase III, indicates that pre-rRNA processing and improvement of growth, relative to that observed for ΔrpsO, are connected. The characterization of the functional link between the two factors illustrates that there are redundancies and compensatory pathways for SSU maturation.
Collapse
Affiliation(s)
| | - Roxanne Keltz
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Hiram Lyon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY, USA; Center for RNA Biology, University of Rochester, Rochester, NY, USA; Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
D’Souza AR, Van Haute L, Powell CA, Mutti CD, Páleníková P, Rebelo-Guiomar P, Rorbach J, Minczuk M. YbeY is required for ribosome small subunit assembly and tRNA processing in human mitochondria. Nucleic Acids Res 2021; 49:5798-5812. [PMID: 34037799 PMCID: PMC8191802 DOI: 10.1093/nar/gkab404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.
Collapse
Affiliation(s)
- Aaron R D’Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christian D Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Petra Páleníková
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- To whom correspondence should be addressed. Tel: +44 122 325 2750;
| |
Collapse
|
12
|
YbeY, éminence grise of ribosome biogenesis. Biochem Soc Trans 2021; 49:727-745. [PMID: 33929506 DOI: 10.1042/bst20200669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
YbeY is an ultraconserved small protein belonging to the unique heritage shared by most existing bacteria and eukaryotic organelles of bacterial origin, mitochondria and chloroplasts. Studied in more than a dozen of evolutionarily distant species, YbeY is invariably critical for cellular physiology. However, the exact mechanisms by which it exerts such penetrating influence are not completely understood. In this review, we attempt a transversal analysis of the current knowledge about YbeY, based on genetic, structural, and biochemical data from a wide variety of models. We propose that YbeY, in association with the ribosomal protein uS11 and the assembly GTPase Era, plays a critical role in the biogenesis of the small ribosomal subunit, and more specifically its platform region, in diverse genetic systems of bacterial type.
Collapse
|
13
|
Pseudomonas aeruginosa Polynucleotide Phosphorylase Controls Tolerance to Aminoglycoside Antibiotics by Regulating the MexXY Multidrug Efflux Pump. Antimicrob Agents Chemother 2021; 65:AAC.01846-20. [PMID: 33257447 DOI: 10.1128/aac.01846-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and the bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa In this study, we found that mutation of the PNPase-encoding gene (pnp) in P. aeruginosa increases bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that the upregulation of the mexXY genes is responsible for the increased tolerance of the pnp mutant. Furthermore, our experimental results revealed that PNPase controls the translation of the armZ mRNA through its 5' untranslated region (UTR). ArmZ had previously been shown to positively regulate the expression of mexXY Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.
Collapse
|
14
|
Abstract
RNA quality control pathways are critical for cell survival. Here, we describe a new surveillance process involved in the degradation of highly structured and stable ribosomal RNAs. The results demonstrated that the RNA chaperone Hfq and the 3'-5' exoribonuclease R mediate the elimination of detrimental rRNA fragments and are required for the correct processing of rRNA precursors. Escherichia coli cells lacking both Hfq and RNase R accumulate a high level of 16S- and 23S-derived rRNA fragments. Hfq and RNase R were also shown to participate in the maturation of 16S and 23S rRNA precursors. This correlates with the fact that in the absence of Hfq and RNase R, there are severe ribosome assembly defects and a sharp reduction in 70S ribosome levels. Hfq and RNase R may act independently or in a complex, as protein interaction studies revealed that these RNA-binding proteins can associate. This is the first demonstration that the well-conserved Hfq and RNase R proteins act on common regulatory pathways, unraveling previously unknown mechanisms of rRNA surveillance with important consequences for translation and cell survival.IMPORTANCE Quality control pathways that oversee the quality of stable RNA molecules are critical for the cell. In this work, we demonstrate, for the first time, a functional link between Hfq and RNase R in the processing and degradation of the highly structured rRNAs. These RNA-binding proteins are required for the maturation of 16S and 23S rRNAs and correct ribosome assembly. Furthermore, they participate in the degradation of rRNAs and clearance of toxic rRNA fragments from the cell. Our studies have also shown that Hfq and RNase R can form a complex. In summary, the cooperation between Hfq and RNase R in metabolic pathways of stable RNAs may represent a broader mechanism of RNA quality control, given the high conservation of these RNA-binding proteins throughout evolution.
Collapse
|
15
|
Jain C. RNase AM, a 5' to 3' exonuclease, matures the 5' end of all three ribosomal RNAs in E. coli. Nucleic Acids Res 2020; 48:5616-5623. [PMID: 32343306 PMCID: PMC7261194 DOI: 10.1093/nar/gkaa260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 10/31/2022] Open
Abstract
Bacterial ribosomal RNAs (rRNAs) are transcribed as precursors and require processing by Ribonucleases (RNases) to generate mature and functional rRNAs. Although the initial steps of rRNA processing in Escherichia coli (E. coli) were described several decades ago, the enzymes responsible for the final steps of 5S and 23S rRNA 5'-end maturation have remained unknown. Here, I show that RNase AM, a recently identified 5' to 3' exonuclease, performs the last step of 5S rRNA 5'-end maturation. RNase AM was also found to generate the mature 5' end of 23S rRNA, subsequent to a newly identified prior processing step. Additionally, RNase AM was found to mature the 5' end of 16S rRNA, a reaction previously attributed to RNase G. These findings indicate a major role for RNase AM in cellular RNA metabolism and establish a biological role for the first 5' to 3' RNA exonuclease identified in E. coli.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Phenotypes, transcriptome, and novel biofilm formation associated with the ydcI gene. Antonie Van Leeuwenhoek 2020; 113:1109-1122. [PMID: 32419108 DOI: 10.1007/s10482-020-01412-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The ydcI gene has previously been shown to encode a DNA-binding protein involved with acid stress resistance and induced biofilm formation in a strain of Salmonella enterica serovar Typhimurium. In addition, characterisation of the ydcI gene in Escherichia coli and other bacteria demonstrated strikingly different tolerance for induced ydcI expression across Gram negative species. In this report, we investigated the conservation of these phenotypes across multiple strains of S. Typhimurium and E. coli, and we used RNA Seq to identify the transcriptome of the ΔydcI mutant compared to WT in S. Typhimurium and E. coli (to establish the YdcI regulon in each species). We constructed deletion mutants in each species based on the RNA Seq results and tested these mutants for the relevant ydcI-related phenotypes. Though no evidence for a role in these phenotypes was found via the RNA Seq deletion mutants, we found that the ydcI-induced biofilm in S. Typhimurium is formed independently of the major biofilm genes csgA and bcsA indicating a potentially novel type of biofilm formation.
Collapse
|
17
|
Sharma H, Anand B. Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal. Nucleic Acids Res 2020; 47:11368-11386. [PMID: 31586395 PMCID: PMC6868393 DOI: 10.1093/nar/gkz825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/17/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
In bacteria, the assembly factors tightly orchestrate the maturation of ribosomes whose competency for protein synthesis is validated by translation machinery at various stages of translation cycle. However, what transpires to the quality control measures when the ribosomes are produced with assembly defects remains enigmatic. In Escherichia coli, we show that 30S ribosomes that harbour assembly defects due to the lack of assembly factors such as RbfA and KsgA display suboptimal initiation codon recognition and bypass the critical codon–anticodon proofreading steps during translation initiation. These premature ribosomes on entering the translation cycle compromise the fidelity of decoding that gives rise to errors during initiation and elongation. We show that the assembly defects compromise the binding of initiation factor 3 (IF3), which in turn appears to license the rapid transition of 30S (pre) initiation complex to 70S initiation complex by tempering the validation of codon–anticodon interaction during translation initiation. This suggests that the premature ribosomes harbouring the assembly defects subvert the IF3 mediated proofreading of cognate initiation codon to enter the translation cycle.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
18
|
Pletnev P, Guseva E, Zanina A, Evfratov S, Dzama M, Treshin V, Pogorel'skaya A, Osterman I, Golovina A, Rubtsova M, Serebryakova M, Pobeguts OV, Govorun VM, Bogdanov AA, Dontsova OA, Sergiev PV. Comprehensive Functional Analysis of Escherichia coli Ribosomal RNA Methyltransferases. Front Genet 2020; 11:97. [PMID: 32174967 PMCID: PMC7056703 DOI: 10.3389/fgene.2020.00097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Ribosomal RNAs in all organisms are methylated. The functional role of the majority of modified nucleotides is unknown. We systematically questioned the influence of rRNA methylation in Escherichia coli on a number of characteristics of bacterial cells with the help of a set of rRNA methyltransferase (MT) gene knockout strains from the Keio collection. Analysis of ribosomal subunits sedimentation profiles of the knockout strains revealed a surprisingly small number of rRNA MT that significantly affected ribosome assembly. Accumulation of the assembly intermediates was observed only for the rlmE knockout strain whose growth was retarded most significantly among other rRNA MT knockout strains. Accumulation of the 17S rRNA precursor was observed for rsmA(ksgA) knockout cells as well as for cells devoid of functional rsmB and rlmC genes. Significant differences were found among the WT and the majority of rRNA MT knockout strains in their ability to sustain exogenous protein overexpression. While the majority of the rRNA MT knockout strains supported suboptimal reporter gene expression, the strain devoid of the rsmF gene demonstrated a moderate increase in the yield of ectopic gene expression. Comparative 2D protein gel analysis of rRNA MT knockout strains revealed only minor perturbations of the proteome.
Collapse
Affiliation(s)
- Philipp Pletnev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina Guseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Zanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Evfratov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Margarita Dzama
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Treshin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Pogorel'skaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Golovina
- Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marina Serebryakova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey A Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
19
|
Babu VMP, Sankari S, Budnick JA, Caswell CC, Walker GC. Sinorhizobium meliloti YbeY is a zinc-dependent single-strand specific endoribonuclease that plays an important role in 16S ribosomal RNA processing. Nucleic Acids Res 2020; 48:332-348. [PMID: 31777930 PMCID: PMC6943124 DOI: 10.1093/nar/gkz1095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Single-strand specific endoribonuclease YbeY has been shown to play an important role in the processing of the 3' end of the 16S rRNA in Escherichia coli. Lack of YbeY results in the accumulation of the 17S rRNA precursor. In contrast to a previous report, we show that Sinorhizobium meliloti YbeY exhibits endoribonuclease activity on single-stranded RNA substrate but not on the double-stranded substrate. This study also identifies the previously unknown metal ion involved in YbeY function to be Zn2+ and shows that the activity of YbeY is enhanced when the occupancy of zinc is increased. We have identified a pre-16S rRNA precursor that accumulates in the S. meliloti ΔybeY strain. We also show that ΔybeY mutant of Brucella abortus, a mammalian pathogen, also accumulates a similar pre-16S rRNA. The pre-16S species is longer in alpha-proteobacteria than in gamma-proteobacteria. We demonstrate that the YbeY from E. coli and S. meliloti can reciprocally complement the rRNA processing defect in a ΔybeY mutant of the other organism. These results establish YbeY as a zinc-dependent single-strand specific endoribonuclease that functions in 16S rRNA processing in both alpha- and gamma-proteobacteria.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James A Budnick
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, PA, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Baumgardt K, Gilet L, Figaro S, Condon C. The essential nature of YqfG, a YbeY homologue required for 3' maturation of Bacillus subtilis 16S ribosomal RNA is suppressed by deletion of RNase R. Nucleic Acids Res 2019; 46:8605-8615. [PMID: 29873764 PMCID: PMC6144821 DOI: 10.1093/nar/gky488] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ribosomal RNAs are processed from primary transcripts containing 16S, 23S and 5S rRNAs in most bacteria. Maturation generally occurs in a two-step process, consisting of a first crude separation of the major species by RNase III during transcription, followed by precise trimming of 5′ and 3′ extensions on each species upon accurate completion of subunit assembly. The various endo- and exoribonucleases involved in the final processing reactions are strikingly different in Escherichia coli and Bacillus subtilis, the two best studied representatives of Gram-negative and Gram-positive bacteria, respectively. Here, we show that the one exception to this rule is the protein involved in the maturation of the 3′ end of 16S rRNA. Cells depleted for the essential B. subtilis YqfG protein, a homologue of E. coli YbeY, specifically accumulate 16S rRNA precursors bearing 3′ extensions. Remarkably, the essential nature of YqfG can be suppressed by deleting the ribosomal RNA degrading enzyme RNase R, i.e. a ΔyqfG Δrnr mutant is viable. Our data suggest that 70S ribosomes containing 30S subunits with 3′ extensions of 16S rRNA are functional to a degree, but become substrates for degradation by RNase R and are eliminated.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
21
|
Kosgodage US, Matewele P, Mastroianni G, Kraev I, Brotherton D, Awamaria B, Nicholas AP, Lange S, Inal JM. Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Front Cell Infect Microbiol 2019; 9:227. [PMID: 31316918 PMCID: PMC6610471 DOI: 10.3389/fcimb.2019.00227] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
Outer membrane and membrane vesicles (OMV/MV) are released from bacteria and participate in cell communication, biofilm formation and host-pathogen interactions. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that catalyze post-translational deimination/citrullination of proteins, causing structural and functional changes in target proteins. PADs also play major roles in the regulation of eukaryotic extracellular vesicle release. Here we show phylogenetically conserved pathways of PAD-mediated OMV/MV release in bacteria and describe deiminated/citrullinated proteins in E. coli and their derived OMV/MVs. Furthermore, we show that PAD inhibitors can be used to effectively reduce OMV/MV release, both in Gram-negative and Gram-positive bacteria. Importantly, this resulted in enhanced antibiotic sensitivity of both E. coli and S. aureus to a range of antibiotics tested. Our findings reveal novel strategies for applying pharmacological OMV/MV-inhibition to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Uchini S. Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Paul Matewele
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Giulia Mastroianni
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, London, United Kingdom
| | - Dominik Brotherton
- Bioscience Research Group, Extracellular Vesicle Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Brigitte Awamaria
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Anthony P. Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jameel M. Inal
- Bioscience Research Group, Extracellular Vesicle Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
22
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
23
|
The RNase YbeY Is Vital for Ribosome Maturation, Stress Resistance, and Virulence of the Natural Genetic Engineer Agrobacterium tumefaciens. J Bacteriol 2019; 201:JB.00730-18. [PMID: 30885931 DOI: 10.1128/jb.00730-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Riboregulation involving regulatory RNAs, RNA chaperones, and ribonucleases is fundamental for the rapid adaptation of gene expression to changing environmental conditions. The gene coding for the RNase YbeY belongs to the minimal prokaryotic genome set and has a profound impact on physiology in a wide range of bacteria. Here, we show that the Agrobacterium tumefaciens ybeY gene is not essential. Deletion of the gene in the plant pathogen reduced growth, motility, and stress tolerance. Most interestingly, YbeY is crucial for A. tumefaciens-mediated T-DNA transfer and tumor formation. Comparative proteomics by using isobaric tags for relative and absolute quantitation (iTRAQ) revealed dysregulation of 59 proteins, many of which have previously been found to be dependent on the RNA chaperone Hfq. YbeY and Hfq have opposing effects on production of these proteins. Accumulation of a 16S rRNA precursor in the ybeY mutant suggests that A. tumefaciens YbeY is involved in rRNA processing. RNA coimmunoprecipitation-sequencing (RIP-Seq) showed binding of YbeY to the region immediately upstream of the 16S rRNA. Purified YbeY is an oligomer with RNase activity. It does not physically interact with Hfq and thus plays a partially overlapping but distinct role in the riboregulatory network of the plant pathogen.IMPORTANCE Although ybeY gene belongs to the universal bacterial core genome, its biological function is incompletely understood. Here, we show that YbeY is critical for fitness and host-microbe interaction in the plant pathogen Agrobacterium tumefaciens Consistent with the reported endoribonuclease activity of YbeY, A. tumefaciens YbeY acts as a RNase involved in maturation of 16S rRNA. This report adds a worldwide plant pathogen and natural genetic engineer of plants to the growing list of bacteria that require the conserved YbeY protein for host-microbe interaction.
Collapse
|
24
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
25
|
Maiti P, Kim HJ, Tu YT, Barrientos A. Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res 2018; 46:11423-11437. [PMID: 30321378 PMCID: PMC6265488 DOI: 10.1093/nar/gky938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/18/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Most steps on the biogenesis of the mitochondrial ribosome (mitoribosome) occur near the mitochondrial DNA nucleoid, in RNA granules, which contain dedicated RNA metabolism and mitoribosome assembly factors. Here, analysis of the RNA granule proteome identified the presence of a set of small GTPases that belong to conserved families of ribosome assembly factors. We show that GTPBP10, a member of the conserved Obg family of P-loop small G proteins, is a mitochondrial protein and have used gene-editing technologies to create a HEK293T cell line KO for GTPBP10. The absence of GTPBP10 leads to attenuated mtLSU and mtSSU levels and the virtual absence of the 55S monosome, which entirely prevents mitochondrial protein synthesis. We show that a fraction of GTPBP10 cosediments with the large mitoribosome subunit and the monosome. GTPBP10 physically interacts with the 16S rRNA, but not with the 12S rRNA, and crosslinks with several mtLSU proteins. Additionally, GTPBP10 is indirectly required for efficient processing of the 12S-16S rRNA precursor transcript, which could explain the mtSSU accumulation defect. We propose that GTPBP10 primarily ensures proper mtLSU maturation and ultimately serves to coordinate mtSSU and mtLSU accumulation then providing a quality control check-point function during mtLSU assembly that minimizes premature subunit joining.
Collapse
Affiliation(s)
- Priyanka Maiti
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hyun-Jung Kim
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ya-Ting Tu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
28
|
Elevated Levels of Era GTPase Improve Growth, 16S rRNA Processing, and 70S Ribosome Assembly of Escherichia coli Lacking Highly Conserved Multifunctional YbeY Endoribonuclease. J Bacteriol 2018; 200:JB.00278-18. [PMID: 29914987 DOI: 10.1128/jb.00278-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023] Open
Abstract
YbeY is a highly conserved, multifunctional endoribonuclease that plays a significant role in ribosome biogenesis and has several additional roles. Here we show that overexpression of the conserved GTPase Era in Escherichia coli partially suppresses the growth defect of a ΔybeY strain while improving 16S rRNA processing and 70S ribosome assembly. This suppression requires both the ability of Era to hydrolyze GTP and the function of three exoribonucleases, RNase II, RNase R, and RNase PH, suggesting a model for the action of Era. Overexpression of Vibrio cholerae Era similarly partially suppresses the defects of an E. coli ΔybeY strain, indicating that this property of Era is conserved in bacteria other than E. coliIMPORTANCE This work provides insight into the critical, but still incompletely understood, mechanism of processing of the E. coli 16S rRNA 3' terminus. The highly conserved GTPase Era is known to bind to the precursor of the 16S rRNA near its 3' end. Both the endoribonuclease YbeY, which binds to Era, and four exoribonucleases have been implicated in this 3'-end processing. The results reported here offer additional insights into the role of Era in 16S rRNA 3'-end maturation and into the relationship between the action of the endoribonuclease YbeY and that of the four exoribonucleases. This study also hints at why YbeY is essential only in some bacteria and suggests that YbeY could be a target for a new class of antibiotics in these bacteria.
Collapse
|