1
|
Galmozzi CV, Tippmann F, Wruck F, Auburger JJ, Kats I, Guennigmann M, Till K, O Brien EP, Tans SJ, Kramer G, Bukau B. Proteome-wide determinants of co-translational chaperone binding in bacteria. Nat Commun 2025; 16:4361. [PMID: 40348781 PMCID: PMC12065913 DOI: 10.1038/s41467-025-59067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Chaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the main E. coli chaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with "unsatisfied residues" exposed on nascent partial folds - residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity.
Collapse
Affiliation(s)
- Carla Verónica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Josef Johannes Auburger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Guennigmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Edward P O Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | - Sander J Tans
- AMOLF, Amsterdam, The Netherlands.
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
2
|
Wales TE, Pajak A, Roeselová A, Shivakumaraswamy S, Howell S, Kjær S, Hartl FU, Engen JR, Balchin D. Resolving chaperone-assisted protein folding on the ribosome at the peptide level. Nat Struct Mol Biol 2024; 31:1888-1897. [PMID: 38987455 PMCID: PMC11638072 DOI: 10.1038/s41594-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Aleksandra Pajak
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Pardo-Avila F, Kudva R, Levitt M, von Heijne G. Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608737. [PMID: 39229094 PMCID: PMC11370347 DOI: 10.1101/2024.08.20.608737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nascent polypeptide chains (NCs) are extruded from the ribosome through an exit tunnel (ET) traversing the large ribosomal subunit. The ET's irregular and chemically complex wall allows for various NC-ET interactions. Translational arrest peptides (APs) bind in the ET to induce translational arrest, a property that can be exploited to study NC-ET interactions by Force Profile Analysis (FPA). We employed FPA and molecular dynamics (MD) simulations to investigate how individual residues placed in a glycine-serine repeat segment within an AP-stalled NC interact with the ET to exert a pulling force on the AP and release stalling. Our results indicate that large and hydrophobic residues generate a pulling force on the NC when placed ≳10 residues away from the peptidyl transfer center (PTC). Moreover, an asparagine placed 12 residues from the PTC makes a specific stabilizing interaction with the tip of ribosomal protein uL22 that reduces the pulling force on the NC, while a lysine or leucine residue in the same position increases the pulling force. Finally, the MD simulations suggest how the Mannheimia succiniproducens SecM AP interacts with the ET to promote translational stalling.
Collapse
Affiliation(s)
- Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
4
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
5
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
6
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Huber MC, Schreiber A, Stühn LG, Schiller SM. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization. Biomaterials 2023; 299:122165. [PMID: 37290157 DOI: 10.1016/j.biomaterials.2023.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
The control of supramolecular complexes in living systems at the molecular level is an important goal in life-sciences. Spatiotemporal organization of molecular distribution & flow of such complexes are essential physicochemical processes in living cells and important for pharmaceutical processes. Membraneless organelles (MO) found in eukaryotic cells, formed by liquid-liquid phase-separation (LLPS) of intrinsically disordered proteins (IDPs) control and adjust intracellular organization. Artificially designed compartments based on LLPS open up a novel pathway to control chemical flux and partition in vitro and in vivo. We designed a library of chemically precisely defined block copolymer-like proteins based on elastin-like proteins (ELPs) with defined charge distribution and type, as well as polar and hydrophobic block domains. This enables the programmability of physicochemical properties and to control adjustable LLPS in vivo attaining control over intracellular partitioning and flux as role model for in vitro and in vivo applications. Tailor-made ELP-like block copolymer proteins exhibiting IDP-behavior enable LLPS formation in vitro and in vivo allowing the assembly of membrane-based and membraneless superstructures via protein phase-separation in E. coli. Subsequently, we demonstrate the responsiveness of protein phase-separated spaces (PPSSs) to environmental physicochemical triggers and their selective, charge-dependent and switchable interaction with DNA or extrinsic and intrinsic molecules enabling their selective shuttling across semipermeable phase boundaries including (cell)membranes. This paves the road for adjustable artificial PPSS-based storage and reaction spaces and the specific transport across phase boundaries for applications in pharmacy and synthetic biology.
Collapse
Affiliation(s)
- Matthias C Huber
- Institut für Pharmazeutische Technologie, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Andreas Schreiber
- Hahn-Schickard Gesellschaft für angewandte Forschung e. V., Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
| | - Stefan M Schiller
- Institut für Pharmazeutische Technologie, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
8
|
Mermans D, Nicolaus F, Baygin A, von Heijne G. Cotranslational folding of human growth hormone in vitro and in Escherichia coli. FEBS Lett 2022; 597:1355-1362. [PMID: 36520514 DOI: 10.1002/1873-3468.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Human growth hormone (hGH) is a four-helix bundle protein of considerable pharmacological interest. Recombinant hGH is produced in bacteria, yet little is known about its folding during expression in Escherichia coli. We have studied the cotranslational folding of hGH using force profile analysis (FPA), both during in vitro translation in the absence and presence of the chaperone trigger factor (TF), and when expressed in E. coli. We find that the main folding transition starts before hGH is completely released from the ribosome, and that it can interact with TF and possibly other chaperones.
Collapse
Affiliation(s)
- Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Aysel Baygin
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
9
|
Agirrezabala X, Samatova E, Macher M, Liutkute M, Maiti M, Gil-Carton D, Novacek J, Valle M, Rodnina MV. A switch from α-helical to β-strand conformation during co-translational protein folding. EMBO J 2022; 41:e109175. [PMID: 34994471 PMCID: PMC8844987 DOI: 10.15252/embj.2021109175] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo‐EM structure determination to show that folding of a β‐barrel protein begins with formation of a dynamic α‐helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N‐terminal part of the nascent chain refolds to a β‐hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α‐helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl‐transferase center suggest that protein folding could modulate ribosome activity.
Collapse
Affiliation(s)
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Meline Macher
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - David Gil-Carton
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| |
Collapse
|
10
|
McBride JM, Tlusty T. Slowest-first protein translation scheme: Structural asymmetry and co-translational folding. Biophys J 2021; 120:5466-5477. [PMID: 34813729 PMCID: PMC8715247 DOI: 10.1016/j.bpj.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α-β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea; Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
11
|
Plessa E, Chu LP, Chan SHS, Thomas OL, Cassaignau AME, Waudby CA, Christodoulou J, Cabrita LD. Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nat Commun 2021; 12:6447. [PMID: 34750347 PMCID: PMC8576036 DOI: 10.1038/s41467-021-26531-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/01/2021] [Indexed: 01/16/2023] Open
Abstract
During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.
Collapse
Affiliation(s)
- Elena Plessa
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lien P Chu
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Oliver L Thomas
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Abstract
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| |
Collapse
|
13
|
Zhang R, Kennedy MA. Current Understanding of the Structure and Function of Pentapeptide Repeat Proteins. Biomolecules 2021; 11:638. [PMID: 33925937 PMCID: PMC8145042 DOI: 10.3390/biom11050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
The pentapeptide repeat protein (PRP) superfamily, identified in 1998, has grown to nearly 39,000 sequences from over 3300 species. PRPs, recognized as having at least eight contiguous pentapeptide repeats (PRs) of a consensus pentapeptide sequence, adopt a remarkable structure, namely, a right-handed quadrilateral β-helix with four consecutive PRs forming a single β-helix coil. Adjacent coils join together to form a β-helix "tower" stabilized by β-ladders on the tower faces and type I, type II, or type IV β-turns facilitating an approximately -90° redirection of the polypeptide chain joining one coil face to the next. PRPs have been found in all branches of life, but they are predominantly found in cyanobacteria. Cyanobacteria have existed on earth for more than two billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. strain PCC 7120 may also represent the oldest and simplest multicellular organisms known to undergo cell differentiation on earth. Knowledge of the biochemical function of these PRPs is essential to understanding how ancient cyanobacteria achieved functions critical to early development of life on earth. PRPs are predicted to exist in all cyanobacteria compartments including thylakoid and cell-wall membranes, cytoplasm, and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical functions of PRPs in cyanobacteria remain almost completely unknown. The precise biochemical function of only a handful of PRPs is currently known from any organisms, and three-dimensional structures of only sixteen PRPs or PRP-containing multidomain proteins from any organism have been reported. In this review, the current knowledge of the structures and functions of PRPs is presented and discussed.
Collapse
Affiliation(s)
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, 106 Hughes Laboratories, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
14
|
Nicolaus F, Metola A, Mermans D, Liljenström A, Krč A, Abdullahi SM, Zimmer M, Miller Iii TF, von Heijne G. Residue-by-residue analysis of cotranslational membrane protein integration in vivo. eLife 2021; 10:64302. [PMID: 33554862 PMCID: PMC7886326 DOI: 10.7554/elife.64302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
We follow the cotranslational biosynthesis of three multispanning Escherichia coli inner membrane proteins in vivo using high-resolution force profile analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the 'sliding' model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.
Collapse
Affiliation(s)
- Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Amanda Liljenström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matthew Zimmer
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, United States
| | - Thomas F Miller Iii
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, United States
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
15
|
Cassaignau AME, Włodarski T, Chan SHS, Woodburn LF, Bukvin IV, Streit JO, Cabrita LD, Waudby CA, Christodoulou J. Interactions between nascent proteins and the ribosome surface inhibit co-translational folding. Nat Chem 2021; 13:1214-1220. [PMID: 34650236 PMCID: PMC8627912 DOI: 10.1038/s41557-021-00796-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Most proteins begin to fold during biosynthesis on the ribosome. It has been suggested that interactions between the emerging polypeptide and the ribosome surface might allow the ribosome itself to modulate co-translational folding. Here we combine protein engineering and NMR spectroscopy to characterize a series of interactions between the ribosome surface and unfolded nascent chains of the immunoglobulin-like FLN5 filamin domain. The strongest interactions are found for a C-terminal segment that is essential for folding, and we demonstrate quantitative agreement between the strength of this interaction and the energetics of the co-translational folding process itself. Mutations in this region that reduce the extent of binding result in a shift in the co-translational folding equilibrium towards the native state. Our results therefore demonstrate that a competition between folding and binding provides a simple, dynamic mechanism for the modulation of co-translational folding by the ribosome.
Collapse
Affiliation(s)
- Anaïs M. E. Cassaignau
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H. S. Chan
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F. Woodburn
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V. Bukvin
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Julian O. Streit
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D. Cabrita
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A. Waudby
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK
| | - John Christodoulou
- grid.83440.3b0000000121901201Institute of Structural and Molecular Biology, University College London, London, UK ,grid.4464.20000 0001 2161 2573Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| |
Collapse
|
16
|
Chen X, Rajasekaran N, Liu K, Kaiser CM. Synthesis runs counter to directional folding of a nascent protein domain. Nat Commun 2020; 11:5096. [PMID: 33037221 PMCID: PMC7547688 DOI: 10.1038/s41467-020-18921-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein. In vivo experiments and optical tweezers force-spectroscopy measurements assessing the co-translational folding of the G-domain from bacterial elongation factor G reveal a sequential folding pathway initiating from the C-terminus. These results suggest that protein folding and synthesis proceed in opposite directions.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kaixian Liu
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, USA.,Molecular Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Shishido H, Yoon JS, Yang Z, Skach WR. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun 2020; 11:4258. [PMID: 32848127 PMCID: PMC7450043 DOI: 10.1038/s41467-020-18101-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
18
|
Xu S, Kennedy MA. Structural dynamics of pentapeptide repeat proteins. Proteins 2020; 88:1493-1512. [PMID: 32548861 DOI: 10.1002/prot.25969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Pentapeptide repeat proteins (PRPs) represent a large superfamily with more than 38 000 sequences in nearly 3500 species, the majority belonging to cyanobacteria but represented among all branches of life. PRPs contain at least eight consecutive pentapeptide repeats with the consensus (A/C/S/V/T/L/I)(D/N/S/K/E/I/R)(L/F)(S/T/R/E/Q/K/V/D)(G/D/E/N/R/Q/K). PRPs fold into right-handed quadrilateral β helices, also known as repeat-five-residue (Rfr)-folds, with four consecutive pentapeptide repeats comprising a single coil, the ~90° change in polypeptide direction in square-shaped coils achieved by type I, II and IV β turns, and hydrogen bonds between coils establishing β ladders on each Rfr-fold face. PRPs are broadly categorized into group 1 and 2 involved in antibiotic resistance and group 3 currently having unknown functions. Motivated by their intriguing structures, we are investigating PRP biophysical characteristics, including Rfr-fold thermal stability, β turn and β ladder hydrogen bond amide exchange rates and backbone dynamics. Here, we present analysis of 20 ns molecular dynamics (MD) simulations and all atom normal mode analysis (aaNMA) calculations for four group 1 and group 2 and four group 3 PRPs whose structures have been determined by X-ray crystallography. The MD cross-correlation matrices and aaNMA indicated strong correlated motion between adjacent coils and weak coupled motion between coils separated by one or more intervening coils. Slow anticorrelated motions were detected between adjacent coils in aaNMA modes that we hypothesize are requisite to access exchange-competent states necessary to permit solvent exchange of amide hydrogens involved in β-ladder and β-turns hydrogen bonds, which can have lifetimes on the order of months.
Collapse
Affiliation(s)
- Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
19
|
Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proc Natl Acad Sci U S A 2020; 117:14119-14126. [PMID: 32513720 DOI: 10.1073/pnas.1909683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
Collapse
|
20
|
Zhang R, Ni S, Kennedy MA. Crystal structure of Alr1298, a pentapeptide repeat protein from the cyanobacterium Nostoc sp. PCC 7120, determined at 2.1 Å resolution. Proteins 2020; 88:1143-1153. [PMID: 32092202 DOI: 10.1002/prot.25882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/03/2023]
Abstract
Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the β-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral β-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.
Collapse
Affiliation(s)
- Ruojing Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| |
Collapse
|
21
|
Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest. Biochem J 2020; 477:557-566. [PMID: 31913464 PMCID: PMC6993859 DOI: 10.1042/bcj20190723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
SecM, a bacterial secretion monitor protein, posttranscriptionally regulates downstream gene expression via translation elongation arrest. SecM contains a characteristic amino acid sequence called the arrest sequence at its C-terminus, and this sequence acts within the ribosomal exit tunnel to stop translation. It has been widely assumed that the arrest sequence within the ribosome tunnel is sufficient for translation arrest. We have previously shown that the nascent SecM chain outside the ribosomal exit tunnel stabilizes translation arrest, but the molecular mechanism is unknown. In this study, we found that residues 57–98 of the nascent SecM chain are responsible for stabilizing translation arrest. We performed alanine/serine-scanning mutagenesis of residues 57–98 to identify D79, Y80, W81, H84, R87, I90, R91, and F95 as the key residues responsible for stabilization. The residues were predicted to be located on and near an α-helix-forming segment. A striking feature of the α-helix is the presence of an arginine patch, which interacts with the negatively charged ribosomal surface. A photocross-linking experiment showed that Y80 is adjacent to the ribosomal protein L23, which is located next to the ribosomal exit tunnel when translation is arrested. Thus, the folded nascent SecM chain that emerges from the ribosome exit tunnel interacts with the outer surface of the ribosome to stabilize translation arrest.
Collapse
|
22
|
Cotranslational Folding of Proteins on the Ribosome. Biomolecules 2020; 10:biom10010097. [PMID: 31936054 PMCID: PMC7023365 DOI: 10.3390/biom10010097] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/04/2023] Open
Abstract
Many proteins in the cell fold cotranslationally within the restricted space of the polypeptide exit tunnel or at the surface of the ribosome. A growing body of evidence suggests that the ribosome can alter the folding trajectory in many different ways. In this review, we summarize the recent examples of how translation affects folding of single-domain, multiple-domain and oligomeric proteins. The vectorial nature of translation, the spatial constraints of the exit tunnel, and the electrostatic properties of the ribosome-nascent peptide complex define the onset of early folding events. The ribosome can facilitate protein compaction, induce the formation of intermediates that are not observed in solution, or delay the onset of folding. Examples of single-domain proteins suggest that early compaction events can define the folding pathway for some types of domain structures. Folding of multi-domain proteins proceeds in a domain-wise fashion, with each domain having its role in stabilizing or destabilizing neighboring domains. Finally, the assembly of protein complexes can also begin cotranslationally. In all these cases, the ribosome helps the nascent protein to attain a native fold and avoid the kinetic traps of misfolding.
Collapse
|
23
|
Abstract
As the influence of translation rates on protein folding and function has come to light, the mechanisms by which translation speed is modulated have become an important issue. One mechanism entails the generation of force by the nascent protein. Cotranslational processes, such as nascent protein folding, the emergence of unfolded nascent chain segments from the ribosome's exit tunnel, and insertion of the nascent chain into or translocation of the nascent chain through membranes, can generate forces that are transmitted back to the peptidyl transferase center and affect translation rates. In this Perspective, we examine the processes that generate these forces, the mechanisms of transmission along the ribosomal exit tunnel to the peptidyl transferase center, and the effects of force on the ribosome's catalytic cycle. We also discuss the physical models that have been developed to predict and explain force generation for individual processes and speculate about other processes that may generate forces that have yet to be tested.
Collapse
Affiliation(s)
- Sarah Leininger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Karthik Narayan
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute for CyberScience, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Type I beta turns make a new twist in pentapeptide repeat proteins: Crystal structure of Alr5209 from Nostoc sp. PCC 7120 determined at 1.7 angström resolution. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100010. [PMID: 32647815 PMCID: PMC7337050 DOI: 10.1016/j.yjsbx.2019.100010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
Pentapeptide repeat proteins (PRPs) are found abundantly in cyanobacteria, numbering in the dozens in some genomes, e.g. in Nostoc sp. PCC 7120. PRPs, comprised of a repeating consensus sequence of five amino acids, adopt a distinctive right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, made up of stacks of coils formed by four consecutive pentapeptide repeats. The right-handed quadrilateral β-helical PRP structure is constructed by repeating β turns at each of four corners in a given coil, each causing a 90° change in direction of the polypeptide chain. Until now, all PRP structures have consisted either of type II and IV β turns or exclusively of type II β turns. Here, we report the first structure of a PRP comprised of type I and II β turns, Alr5209 from Nostoc sp. PCC 7120. The alr5209 gene encodes 129 amino acids containing 16 tandem pentapeptide repeats. The Alr5209 structure was analyzed in comparison to all other PRPs to determine how type I β turns can be accommodated in Rfr folds and the consequences of type I β turns on the right-handed quadrilateral β-helical structure. Given that Alr5209 represents the first PRP structure containing type I β turns, the PRP consensus sequence was reevaluated and updated. Despite a growing number of PRP structural investigations, their function remains largely unknown. Genome analysis indicated that alr5209 resides in a five-gene operon (alr5208-alr5212) with Alr5211 annotated to be a NADH dehydrogenase indicating Alr5209 may be involved in oxidative phosphorylation.
Collapse
|