1
|
Howe J, Barbar EJ. Dynamic interactions of dimeric hub proteins underlie their diverse functions and structures: A comparative analysis of 14-3-3 and LC8. J Biol Chem 2025; 301:108416. [PMID: 40107617 PMCID: PMC12017986 DOI: 10.1016/j.jbc.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025] Open
Abstract
Hub proteins interact with a host of client proteins and regulate multiple cellular functions. Dynamic hubs have a single binding interface for one client at a time resulting in competition among clients with the highest affinity. Dynamic dimeric hubs with two identical sites bind either two different client proteins or two chains of the same client to form homogenous complexes and could also form heterogeneous mixtures of interconverting complexes. Here, we review the interactions of the dimeric hubs 14-3-3 and LC8. 14-3-3 is a phosphoserine/threonine binding protein involved in structuring client proteins and regulating their phosphorylation. LC8 is involved in promoting the dimerization of client peptides and the rigidification of their disordered regions. Both 14-3-3 and LC8 are essential genes, with 14-3-3 playing a crucial role in apoptosis and cell cycle regulation, while LC8 is critical for the assembly of proteins involved in transport, DNA repair, and transcription. Interestingly, both protein dimers can dissociate by phosphorylation, which results in their interactome-wide changes. Their interactions are also regulated by the phosphorylation of their clients. Both form heterogeneous complexes with various functions including phase separation, signaling, and viral hijacking where they restrict the conformational heterogeneity of their dimeric clients that bind nucleic acids. This comparative analysis highlights the importance of dynamic protein-protein interactions in the diversity of functions of 14-3-3 and LC8 and how small differences in structures of interfaces explain why 14-3-3 is primarily involved in the regulation of phosphorylation states while LC8 is primarily involved in the regulation of assembly of large dynamic complexes.
Collapse
Affiliation(s)
- Jesse Howe
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA.
| |
Collapse
|
2
|
Bouchama F, Mubashira K, Mas C, Le Roy A, Ebel C, Bourhis JM, Zemb T, Prevost S, Jamin M. Rabies Virus Phosphoprotein Exhibits Thermoresponsive Phase Separation with a Lower Critical Solution Temperature. J Mol Biol 2025; 437:168889. [PMID: 39645030 DOI: 10.1016/j.jmb.2024.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Rabies virus (RABV) generates membrane-less liquid organelles (Negri bodies) in the cytoplasm of its host cell, where genome transcription and replication and nucleocapsid assembly take place, but the mechanisms of their assembly and maturation remain to be explained. An essential component of the viral RNA synthesizing machine, the phosphoprotein (P), acts as a scaffold protein for the assembly of these condensates. This intrinsically disordered protein forms star-shaped dimers with N-terminal negatively charged flexible arms and C-terminal globular domains exhibiting a large dipole moment. Our study shows that in vitro self-association of RABV P drives a complex thermoresponsive phase separation with a lower critical solution temperature. Protein dimers assemble already below the saturation concentration, and condensation is driven by attractive conformation-specific interactions leading to reentrant liquid phase separation over a narrow range of salt concentration. We propose a minimal molecular model in which P can adopt three limit conformational states and the disordered N-terminal arms control the interactions between giant dipoles that is consistent with our observations.
Collapse
Affiliation(s)
- Fella Bouchama
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Khadeeja Mubashira
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Caroline Mas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 38000, Grenoble, France
| | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Jean-Marie Bourhis
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Thomas Zemb
- Institut de Chimie Séparatives de Marcoule, CEA-CEA/CNRS/UM, 30290 Bagnols-sur-cèze, France
| | | | - Marc Jamin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France.
| |
Collapse
|
3
|
Ribeiro EDA, Leyrat C, Gérard FCA, Jamin M. Dimerization of Rabies Virus Phosphoprotein and Phosphorylation of Its Nucleoprotein Enhance Their Binding Affinity. Viruses 2024; 16:1735. [PMID: 39599850 PMCID: PMC11599015 DOI: 10.3390/v16111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models. We found that RABV P binds with nanomolar affinity to both circular and linear N-RNA complexes and that the dimerization of P protein enhances the binding affinity by 15-30-fold as compared to the monomeric fragments, but less than expected for a bivalent ligand, in which the binding domains are connected by a flexible linker. We also showed that the phosphorylation of N at Ser389 creates high-affinity sites on the polymeric N-RNA complex that enhance the binding affinity of P by a factor of about 360.
Collapse
Affiliation(s)
| | | | | | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France; (E.d.A.R.J.); (C.L.); (F.C.A.G.)
| |
Collapse
|
4
|
Stuwe H, Reardon PN, Yu Z, Shah S, Hughes K, Barbar EJ. Phosphorylation in the Ser/Arg-rich region of the nucleocapsid of SARS-CoV-2 regulates phase separation by inhibiting self-association of a distant helix. J Biol Chem 2024; 300:107354. [PMID: 38718862 PMCID: PMC11180338 DOI: 10.1016/j.jbc.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.
Collapse
Affiliation(s)
- Hannah Stuwe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | | | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Sahana Shah
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
5
|
Sethi A, Rawlinson SM, Dubey A, Ang CS, Choi YH, Yan F, Okada K, Rozario AM, Brice AM, Ito N, Williamson NA, Hatters DM, Bell TDM, Arthanari H, Moseley GW, Gooley PR. Structural insights into the multifunctionality of rabies virus P3 protein. Proc Natl Acad Sci U S A 2023; 120:e2217066120. [PMID: 36989298 PMCID: PMC10083601 DOI: 10.1073/pnas.2217066120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.
Collapse
Affiliation(s)
- Ashish Sethi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Yoon Hee Choi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Fei Yan
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu501-1193, Japan
| | | | - Aaron M. Brice
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu501-1193, Japan
- Center for One Medicine Innovative Research, Institute for Advanced Study, Gifu University, Gifu501-1193, Japan
| | - Nicholas A. Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, VIC3800, Australia
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
6
|
Estelle AB, George A, Barbar EJ, Zuckerman DM. Quantifying cooperative multisite binding in the hub protein LC8 through Bayesian inference. PLoS Comput Biol 2023; 19:e1011059. [PMID: 37083599 PMCID: PMC10155966 DOI: 10.1371/journal.pcbi.1011059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/03/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Multistep protein-protein interactions underlie most biological processes, but their characterization through methods such as isothermal titration calorimetry (ITC) is largely confined to simple models that provide little information on the intermediate, individual steps. In this study, we primarily examine the essential hub protein LC8, a small dimer that binds disordered regions of 100+ client proteins in two symmetrical grooves at the dimer interface. Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data analyses employing simple models that treat bivalent binding as a single event with a single binding affinity. We build on existing Bayesian ITC approaches to quantify thermodynamic parameters for multi-site binding interactions impacted by significant uncertainty in protein concentration. Using a two-site binding model, we identify positive cooperativity with high confidence for LC8 binding to multiple client peptides. In contrast, application of an identical model to the two-site binding between the coiled-coil NudE dimer and the intermediate chain of dynein reveals little evidence of cooperativity. We propose that cooperativity in the LC8 system drives the formation of saturated induced-dimer structures, the functional units of most LC8 complexes. In addition to these system-specific findings, our work advances general ITC analysis in two ways. First, we describe a previously unrecognized mathematical ambiguity in concentrations in standard binding models and clarify how it impacts the precision with which binding parameters are determinable in cases of high uncertainty in analyte concentrations. Second, building on observations in the LC8 system, we develop a system-agnostic heat map of practical parameter identifiability calculated from synthetic data which demonstrates that the ability to determine microscopic binding parameters is strongly dependent on both the parameters themselves and experimental conditions. The work serves as a foundation for determination of multi-step binding interactions, and we outline best practices for Bayesian analysis of ITC experiments.
Collapse
Affiliation(s)
- Aidan B. Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - August George
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Elisar J. Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
7
|
Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic 2023; 24:114-130. [PMID: 35146839 DOI: 10.1111/tra.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.
Collapse
Affiliation(s)
- Clàudia Río-Bergé
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Walker DR, Jara KA, Rolland AD, Brooks C, Hare W, Swansiger AK, Reardon PN, Prell JS, Barbar EJ. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules 2023; 13:404. [PMID: 36979339 PMCID: PMC10046861 DOI: 10.3390/biom13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
LC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs. Using isothermal-titration calorimetry, analytical-ultracentrifugation, and native mass-spectrometry of QT2-4 variants, with methodically deactivated motifs, we show that inter-motif spacing and specific motif sequences combine to control binding affinity and compositional heterogeneity of multivalent duplexes. A short linker separating strong and weak motifs results in stable duplexes but forms off-register structures at high LC8 concentrations. Contrastingly, long linkers engender lower cooperativity and heterogeneous complexation at low LC8 concentrations. Accordingly, two-mers, rather than the expected three-mers, dominate negative-stain electron-microscopy images of QT2-4. Comparing variants containing weak-strong and strong-strong motif combinations demonstrates sequence also regulates IDP/LC8 assembly. The observed trends persist for trivalent ASCIZ subdomains: QT2-4, with long and short linkers, forms heterogeneous complexes, whereas QT4-6, with similar mid-length linkers, forms homogeneous complexes. Implications of linker length variations for function are discussed.
Collapse
Affiliation(s)
- Douglas R. Walker
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kayla A. Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Amber D. Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Wendy Hare
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew K. Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Patrick N. Reardon
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Elisar J. Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Gérard FCA, Bourhis JM, Mas C, Branchard A, Vu DD, Varhoshkova S, Leyrat C, Jamin M. Structure and Dynamics of the Unassembled Nucleoprotein of Rabies Virus in Complex with Its Phosphoprotein Chaperone Module. Viruses 2022; 14:v14122813. [PMID: 36560817 PMCID: PMC9786881 DOI: 10.3390/v14122813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.
Collapse
Affiliation(s)
- Francine C. A. Gérard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, CNRS, CEA, EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anaïs Branchard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Duc Duy Vu
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Varhoshkova
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- Correspondence: (C.L.); (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
- Correspondence: (C.L.); (M.J.)
| |
Collapse
|
10
|
Howe J, Weeks A, Reardon P, Barbar E. Multivalent binding of the hub protein LC8 at a newly discovered site in 53BP1. Biophys J 2022; 121:4433-4442. [PMID: 36335430 PMCID: PMC9748353 DOI: 10.1016/j.bpj.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/28/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53 binding protein 1 (53BP1) is a scaffolding protein involved in poly-ADP ribose polymerase inhibitor hypersensitivity in BRCA1-negative cancers. 53BP1 plays a critical role in the DNA damage response and relies on its oligomerization to create foci that promote repair of DNA double-strand breaks. Previous work shows that mutation of either the oligomerization domain or the dynein light chain 8 (LC8)-binding sites of 53BP1 results in reduced accumulation of 53BP1 at double-strand breaks. Mutation of both abolishes focus formation almost completely. Here, we show that, contrary to current literature, 53BP1 contains three LC8-binding sites, all of which are conserved in mammals. Isothermal titration calorimetry measuring binding affinity of 53BP1 variants with LC8 shows that the third LC8-binding site has a high affinity and can bind LC8 in the absence of other sites. NMR titrations confirm that the third site binds LC8 even in variants that lack the other LC8-binding sites. The third site is the closest to the oligomerization domain of 53BP1, and its discovery would challenge our current understanding of the role of LC8 in 53BP1 function.
Collapse
Affiliation(s)
- Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Austin Weeks
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Patrick Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
11
|
Borna Disease Virus 1 Phosphoprotein Forms a Tetramer and Interacts with Host Factors Involved in DNA Double-Strand Break Repair and mRNA Processing. Viruses 2022; 14:v14112358. [PMID: 36366462 PMCID: PMC9692295 DOI: 10.3390/v14112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Determining the structural organisation of viral replication complexes and unravelling the impact of infection on cellular homeostasis represent important challenges in virology. This may prove particularly useful when confronted with viruses that pose a significant threat to human health, that appear unique within their family, or for which knowledge is scarce. Among Mononegavirales, bornaviruses (family Bornaviridae) stand out due to their compact genomes and their nuclear localisation for replication. The recent recognition of the zoonotic potential of several orthobornaviruses has sparked a surge of interest in improving our knowledge on this viral family. In this work, we provide a complete analysis of the structural organisation of Borna disease virus 1 (BoDV-1) phosphoprotein (P), an important cofactor for polymerase activity. Using X-ray diffusion and diffraction experiments, we revealed that BoDV-1 P adopts a long coiled-coil α-helical structure split into two parts by an original β-strand twist motif, which is highly conserved across the members of whole Orthobornavirus genus and may regulate viral replication. In parallel, we used BioID to determine the proximal interactome of P in living cells. We confirmed previously known interactors and identified novel proteins linked to several biological processes such as DNA repair or mRNA metabolism. Altogether, our study provides important structure/function cues, which may improve our understanding of BoDV-1 pathogenesis.
Collapse
|
12
|
Tati S, Alisaraie L. Recruitment of dynein and kinesin to viral particles. FASEB J 2022; 36:e22311. [DOI: 10.1096/fj.202101900rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayi’Mone Tati
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| | - Laleh Alisaraie
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| |
Collapse
|
13
|
Rodriguez Galvan J, Donner B, Veseley CH, Reardon P, Forsythe HM, Howe J, Fujimura G, Barbar E. Human Parainfluenza Virus 3 Phosphoprotein Is a Tetramer and Shares Structural and Interaction Features with Ebola Phosphoprotein VP35. Biomolecules 2021; 11:1603. [PMID: 34827601 PMCID: PMC8615749 DOI: 10.3390/biom11111603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The human parainfluenza virus 3 (HPIV3) poses a risk for pneumonia development in young children and immunocompromised patients. To investigate mechanisms of HPIV3 pathogenesis, we characterized the association state and host protein interactions of HPIV3 phosphoprotein (HPIV3 P), an indispensable viral polymerase cofactor. Sequence analysis and homology modeling predict that HPIV3 P possesses a long, disordered N-terminal tail (PTAIL) a coiled-coil multimerization domain (PMD), similar to the well-characterized paramyxovirus phosphoproteins from measles and Sendai viruses. Using a recombinantly expressed and purified construct of PMD and PTAIL, we show that HPIV3 P in solution is primarily an alpha-helical tetramer that is stable up to 60 °C. Pulldown and isothermal titration calorimetry experiments revealed that HPIV3 P binds the host hub protein LC8, and turbidity experiments demonstrated a new role for LC8 in increasing the solubility of HPIV3 P in the presence of crowding agents such as RNA. For comparison, we show that the multimerization domain of the Zaire Ebola virus phosphoprotein VP35 is also a tetramer and binds LC8 but with significantly higher affinity. Comparative analysis of the domain architecture of various virus phosphoproteins in the order Mononegavirales show multiple predicted and verified LC8 binding motifs, suggesting its prevalence and importance in regulating viral phosphoprotein structures. Our work provides evidence for LC8 binding to phosphoproteins with multiple association states, either tetrameric, as in the HPIV3 and Ebola phosphoproteins shown here, or dimeric as in rabies virus phosphoprotein. Taken together the data suggest that the association states of a virus-specific phosphoprotein and the complex formed by binding of the phosphoprotein to host LC8 are important regulators of viral function.
Collapse
Affiliation(s)
- Joaquin Rodriguez Galvan
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Brianna Donner
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Cat Hoang Veseley
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Patrick Reardon
- NMR Facility, Oregon State University, Corvallis, OR 97331, USA;
| | - Heather M. Forsythe
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Jesse Howe
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Gretchen Fujimura
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| |
Collapse
|
14
|
The role of dancing duplexes in biology and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34656330 DOI: 10.1016/bs.pmbts.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Across species, a common protein assembly arises: proteins containing structured domains separated by long intrinsically disordered regions, and dimerized through a self-association domain or through strong protein interactions. These systems are termed "IDP duplexes." These flexible dimers have roles in diverse pathologies including development of cancer, viral infections, and neurodegenerative disease. Here we discuss the role of disorder in IDP duplexes with similar domain architectures that bind hub protein, LC8. LC8-binding IDP duplexes are categorized into three groups: IDP duplexes that contain a self-association domain that is extended by LC8 binding, IDP duplexes that have no self-association domain and are dimerized through binding several copies of LC8, and multivalent LC8-binders that also have a self-association domain. Additionally, we discuss non-LC8-binding IDP duplexes with similar domain organizations, including the Nucleocapsid protein of SARS-CoV-2. We propose that IDP duplexes have structural features that are essential in many biological processes and that improved understanding of their structure function relationship will provide new therapeutic opportunities.
Collapse
|
15
|
Forsythe HM, Rodriguez Galvan J, Yu Z, Pinckney S, Reardon P, Cooley RB, Zhu P, Rolland AD, Prell JS, Barbar E. Multivalent binding of the partially disordered SARS-CoV-2 nucleocapsid phosphoprotein dimer to RNA. Biophys J 2021; 120:2890-2901. [PMID: 33794152 PMCID: PMC8007181 DOI: 10.1016/j.bpj.2021.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The nucleocapsid phosphoprotein N plays critical roles in multiple processes of the severe acute respiratory syndrome coronavirus 2 infection cycle: it protects and packages viral RNA in N assembly, interacts with the inner domain of spike protein, binds to structural membrane (M) protein during virion packaging and maturation, and to proteases causing replication of infective virus particle. Even with its importance, very limited biophysical studies are available on the N protein because of its high level of disorder, high propensity for aggregation, and high susceptibility for autoproteolysis. Here, we successfully prepare the N protein and a 1000-nucleotide fragment of viral RNA in large quantities and purity suitable for biophysical studies. A combination of biophysical and biochemical techniques demonstrates that the N protein is partially disordered and consists of an independently folded RNA-binding domain and a dimerization domain, flanked by disordered linkers. The protein assembles as a tight dimer with a dimerization constant of sub-micromolar but can also form transient interactions with other N proteins, facilitating larger oligomers. NMR studies on the ∼100-kDa dimeric protein identify a specific domain that binds 1-1000-nt RNA and show that the N-RNA complex remains highly disordered. Analytical ultracentrifugation, isothermal titration calorimetry, multiangle light scattering, and cross-linking experiments identify a heterogeneous mixture of complexes with a core corresponding to at least 70 dimers of N bound to 1-1000 RNA. In contrast, very weak binding is detected with a smaller construct corresponding to the RNA-binding domain using similar experiments. A model that explains the importance of the bivalent structure of N to its binding on multivalent sites of the viral RNA is presented.
Collapse
Affiliation(s)
| | | | - Zhen Yu
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | - Seth Pinckney
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | | | | | - Phillip Zhu
- Department of Biochemistry and Biophysics Corvallis, Oregon
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - Elisar Barbar
- Department of Biochemistry and Biophysics Corvallis, Oregon.
| |
Collapse
|
16
|
Crystal structure of human LC8 bound to a peptide from Ebola virus VP35. J Microbiol 2021; 59:410-416. [PMID: 33630249 DOI: 10.1007/s12275-021-0641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central β-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.
Collapse
|
17
|
Rohde RE, Rupprecht CE. Update on lyssaviruses and rabies: will past progress play as prologue in the near term towards future elimination? Fac Rev 2020; 9:9. [PMID: 33659941 PMCID: PMC7886060 DOI: 10.12703/b/9-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rabies is an ancient, much-feared, and neglected infectious disease. Caused by pathogens in the family Rhabdoviridae, genus Lyssavirus, and distributed globally, this viral zoonosis results in tens of thousands of human fatalities and millions of exposures annually. All mammals are believed susceptible, but only certain taxa act as reservoirs. Dependence upon direct routing to, replication within, and passage from the central nervous system serves as a basic viral strategy for perpetuation. By a combination of stealth and subversion, lyssaviruses are quintessential neurotropic agents and cause an acute, progressive encephalitis. No treatment exists, so prevention is the key. Although not a disease considered for eradication, something of a modern rebirth has been occurring within the field as of late with regard to detection, prevention, and management as well as applied research. For example, within the past decade, new lyssaviruses have been characterized; sensitive and specific diagnostics have been optimized; pure, potent, safe, and efficacious human biologics have improved human prophylaxis; regional efforts have controlled canine rabies by mass immunization; wildlife rabies has been controlled by oral rabies vaccination over large geographic areas in Europe and North America; and debate has resumed over the controversial topic of therapy. Based upon such progress to date, there are certain expectations for the next 10 years. These include pathogen discovery, to uncover additional lyssaviruses in the Old World; laboratory-based surveillance enhancement by simplified, rapid testing; anti-viral drug appearance, based upon an improved appreciation of viral pathobiology and host response; and improvements to canine rabies elimination regionally throughout Africa, Asia, and the Americas by application of the best technical, organizational, economic, and socio-political practices. Significantly, anticipated Gavi support will enable improved access of human rabies vaccines in lesser developed countries at a national level, with integrated bite management, dose-sparing regimens, and a 1 week vaccination schedule.
Collapse
Affiliation(s)
- Rodney E Rohde
- Clinical Laboratory Science, Texas State University, San Marcos, TX, 78666, USA
| | | |
Collapse
|
18
|
Riedel C, Hennrich AA, Conzelmann KK. Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses 2020; 12:v12090959. [PMID: 32872471 PMCID: PMC7552012 DOI: 10.3390/v12090959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdoviruses, as single-stranded, negative-sense RNA viruses within the order Mononegavirales, are characterised by bullet-shaped or bacteroid particles that contain a helical ribonucleoprotein complex (RNP). Here, we review the components of the RNP and its higher-order structural assembly.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Correspondence:
| | - Alexandru A. Hennrich
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| |
Collapse
|
19
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
20
|
Reardon PN, Jara KA, Rolland AD, Smith DA, Hoang HTM, Prell JS, Barbar EJ. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner. J Biol Chem 2020; 295:4912-4922. [PMID: 32139510 PMCID: PMC7152752 DOI: 10.1074/jbc.ra119.011653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.
Collapse
Affiliation(s)
- Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon 97331
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Delaney A Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hanh T M Hoang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|