1
|
Asano S, Ozasa K, Uehara T, Yokoyama R, Nakazawa T, Yanamoto S, Ago Y. Dimerisation of the VIP receptor VIPR2 is essential to its binding VIP and Gα i proteins, and to its functions in breast cancer cells. Br J Pharmacol 2025. [PMID: 40203889 DOI: 10.1111/bph.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Several G protein-coupled receptors (GPCRs) are known to homodimerise. Dimeric GPCRs may have different properties from their monomers, but the molecular basis and functional significance of GPCR dimerisation remain largely unknown. We recently found that signalling by the vasoactive intestinal peptide receptor, VIPR2, regulates breast cancer cell migration and proliferation. However, it is unclear whether VIPR2 monomers directly interact with each other and what function the dimeric receptor has. Here, we showed that VIPR2 dimerises and investigated their role in breast cancer progression. EXPERIMENTAL APPROACH Dimerisation of VIPR2 was assessed by fluorescence resonance energy transfer (FRET) analysis and a pull-down assay. Breast cancer progression was analysed by orthotopic growth and metastasis of human breast cancers into proper axillary and subiliac lymph-nodes in mice. KEY RESULTS VIPR2 monomers directly interacted with each other through transmembrane domains (TM)3-4. FRET analysis revealed that VIPR2 moved further apart in cells expressing TM3-4-peptides, suggesting that TM3-4 prevents VIPR2 dimerisation. Breast cancer cells stably expressing TM3-4 region exhibited suppressed tumour growth and lymph-node metastasis. Furthermore, ligand-receptor binding assays revealed that VIP-FITC bound to cells dose-dependently, and VIPR2 de-dimerisation by TM3-4 expression decreased VIP's affinity to cells. Additionally, TM3-4 expression decreased Gαi-VIPR2 interactions. CONCLUSION AND IMPLICATIONS Dimeric VIPR2 forms the minimal functional unit that effectively promotes growth and metastasis of breast cancer. Therefore, dimeric VIPR2 is a potential therapeutic target for breast cancer, and TM3-4-peptides are potential anti-cancer drug candidates to suppress cancer progression.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- School of Dentistry, Hiroshima University, Hiroshima, Japan
| | - Kairi Ozasa
- School of Dentistry, Hiroshima University, Hiroshima, Japan
| | - Teru Uehara
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rei Yokoyama
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- School of Dentistry, Hiroshima University, Hiroshima, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Souichi Yanamoto
- School of Dentistry, Hiroshima University, Hiroshima, Japan
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- School of Dentistry, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Zhang B, Zhang Y, Liu J, Reverter D, Wang Q, Choi SH, Liu B, Shao S. ChIP-seq and structural analyses delineating the regulatory mechanism of master regulator EsrB in Edwardsiella piscicida. Appl Environ Microbiol 2024; 90:e0180524. [PMID: 39545739 PMCID: PMC11653779 DOI: 10.1128/aem.01805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
As a response regulator of the EsrA-EsrB two-component system, EsrB is conserved in Hafniaceae and plays a crucial role in virulence and pathogenicity. EsrB possesses DNA binding abilities, enabling it to regulate the transcription of virulence genes to confront different stresses and achieve systematic infections. Here, ChIP-seq analysis of EsrB in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments) revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7'' pseudopalindromic DNA motif and interact with metabolic-related promoters with a high AT DNA motif. The crystal structure of the C-terminal of EsrB (EsrBC) was solved at 2.20-Å resolution. Specifically, Lys181 enabled the DNA-binding affinity of EsrB and promoted the in vitro and in vivo pathogenicity of Edwardsiella piscicida. Moreover, EsrB directly regulated the expression of genes associated with basal metabolism, including iron and tricarboxylic acid (TCA) cycles. Furthermore, EsrB enhanced iron transport capability and the enzyme activity of succinate dehydrogenase and pyruvate dehydrogenase in DMEM. Collectively, our structural and ChIP-seq analysis provides valuable insights into the DNA binding mechanism of EsrB which will facilitate our understanding of EsrB coordinating virulence and basal metabolism gene expression. IMPORTANCE As a crucial virulence regulator, EsrB possesses a LuxR-like superfamily domain at the C-terminal, which is conserved within the canonical NarL family regulators. Due to its critically important role in virulence and pathogenicity in fish hosts, the DNA binding ability has been believed to allow EsrB to regulate genes associated with the invasion process of host cells and basal metabolism in response to environmental stimuli. The lack of EsrB's crystal structure has been a major obstacle in understanding the molecular mechanisms of EsrB-DNA interaction which choreographs EsrB-mediated pathogenic behavior. Here, we conducted ChIP-seq and solved the crystal structure of the C-terminal of EsrB (EsrBC) at 2.20-Å resolution, which revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7' pseudopalindromic DNA motif and interacted with metabolic-related promoters with a high AT DNA motif in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments). Our results facilitate a detailed understanding of EsrB's regulatory role in Edwardsiella piscicida pathogenesis and expand our knowledge of virulence regulators in the family Hafniaceae.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
3
|
Corsini M, Ravelli C, Grillo E, Domenichini M, Mitola S. Mutation in the Kinase Domain Alters the VEGFR2 Membrane Dynamics. Cells 2024; 13:1346. [PMID: 39195235 PMCID: PMC11352761 DOI: 10.3390/cells13161346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Recently, the substitution R1051Q in VEGFR2 has been described as a cancer-associated "gain of function" mutation. VEGFR2R1051Q phosphorylation is ligand-independent and enhances the activation of intracellular pathways and cell growth both in vitro and in vivo. In cancer, this mutation is found in heterozygosity, suggesting that an interaction between VEGFR2R1051Q and VEGFR2WT may occur and could explain, at least in part, how VEGFR2R1051Q acts to promote VEGFR2 signaling. Despite this, the biochemical/biophysical mechanism of the activation of VEGFR2R1051Q remains poorly understood. On these bases, the aim of our study is to address how VEGFR2R1051Q influences the biophysical behavior (dimerization and membrane dynamics) of the co-expressed VEGFR2WT. METHODS We employed quantitative FLIM/FRET and FRAP imaging techniques using CHO cells co-transfected with the two forms of VEGFR2 to mimic heterozygosity. RESULTS Membrane protein biotinylation reveals that VEGFR2WT is more exposed on the cell membrane with respect to VEGFR2R1051Q. The imaging analyses show the ability of VEGFR2WT to form heterodimers with VEGFR2R1051Q and this interaction alters its membrane dynamics. Indeed, when the co-expression of VEGFR2WT/VEGFR2R1051Q occurs, VEGFR2WT shows reduced lateral motility and a minor pool of mobile fraction. CONCLUSIONS This study demonstrates that active VEGFR2R1051Q can affect the membrane behavior of the VEGFR2WT.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CN3 “Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA”, 25123 Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CN3 “Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA”, 25123 Brescia, Italy
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| |
Collapse
|
4
|
Xin W, Huang B, Chi X, Liu Y, Xu M, Zhang Y, Li X, Su Q, Zhou Q. Structures of human γδ T cell receptor-CD3 complex. Nature 2024; 630:222-229. [PMID: 38657677 PMCID: PMC11153141 DOI: 10.1038/s41586-024-07439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.
Collapse
MESH Headings
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/ultrastructure
- Cholesterol/metabolism
- Cholesterol/chemistry
- Cryoelectron Microscopy
- Ligands
- Lymphocyte Activation/immunology
- Models, Molecular
- Protein Domains
- Protein Multimerization
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Signal Transduction
- Cell Membrane/chemistry
- Cell Membrane/metabolism
Collapse
Affiliation(s)
- Weizhi Xin
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bangdong Huang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ximin Chi
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen, China
| | - Yuehua Liu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Mengjiao Xu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xu Li
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qiang Su
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qiang Zhou
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
5
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
6
|
Bermejo GA, Tjandra N, Clore GM, Schwieters CD. Xplor-NIH: Better parameters and protocols for NMR protein structure determination. Protein Sci 2024; 33:e4922. [PMID: 38501482 PMCID: PMC10962493 DOI: 10.1002/pro.4922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/20/2024]
Abstract
The present work describes an update to the protein covalent geometry and atomic radii parameters in the Xplor-NIH biomolecular structure determination package. In combination with an improved treatment of selected non-bonded interactions between atoms three bonds apart, such as those involving methyl hydrogens, and a previously developed term that affects the system's gyration volume, the new parameters are tested using structure calculations on 30 proteins with restraints derived from nuclear magnetic resonance data. Using modern structure validation criteria, including several formally adopted by the Protein Data Bank, and a clear measure of structural accuracy, the results show superior performance relative to previous Xplor-NIH implementations. Additionally, the Xplor-NIH structures compare favorably against originally determined NMR models.
Collapse
Affiliation(s)
- Guillermo A. Bermejo
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMarylandUSA
| | - G. Marius Clore
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Charles D. Schwieters
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
7
|
Zhang Z, Zhao Q, Gong Z, Du R, Liu M, Zhang Y, Zhang L, Li C. Progress, Challenges and Opportunities of NMR and XL-MS for Cellular Structural Biology. JACS AU 2024; 4:369-383. [PMID: 38425916 PMCID: PMC10900494 DOI: 10.1021/jacsau.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The validity of protein structures and interactions, whether determined under ideal laboratory conditions or predicted by AI tools such as Alphafold2, to precisely reflect those found in living cells remains to be examined. Moreover, understanding the changes in protein structures and interactions in response to stimuli within living cells, under both normal and disease conditions, is key to grasping proteins' functionality and cellular processes. Nevertheless, achieving high-resolution identification of these protein structures and interactions within living cells presents a technical challenge. In this Perspective, we summarize the recent advancements in in-cell nuclear magnetic resonance (NMR) and in vivo cross-linking mass spectrometry (XL-MS) for studying protein structures and interactions within a cellular context. Additionally, we discuss the challenges, opportunities, and potential benefits of integrating in-cell NMR and in vivo XL-MS in future research to offer an exhaustive approach to studying proteins in their natural habitat.
Collapse
Affiliation(s)
- Zeting Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qun Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhou Gong
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ruichen Du
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yukui Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
8
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
11
|
Abstract
Lipid-protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host-pathogen interactions, and transmembrane transport. At the plasma membrane, lipid-protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid-protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid-protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid-protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA;
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
13
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|