1
|
Li Q, Zhang J, Haluska C, Zhang X, Wang L, Liu G, Wang Z, Jin D, Cheng T, Wang H, Tian Y, Wang X, Sun L, Zhao X, Chen Z, Wang L. Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms. Nat Struct Mol Biol 2024; 31:1532-1542. [PMID: 38890552 PMCID: PMC11479838 DOI: 10.1038/s41594-024-01319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1-3-4 and Nse5-6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function.
Collapse
Affiliation(s)
- Qian Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cory Haluska
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Lei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute,Chinese Academy of Sciences, Shanghai, China
| | - Zhaoning Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Duo Jin
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Cheng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Tian
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangxi Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China.
| | - Lanfeng Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Lorite NP, Apostolova S, Guasch-Vallés M, Pryer A, Unzueta F, Freire R, Solé-Soler R, Pedraza N, Dolcet X, Garí E, Agell N, Taylor EM, Colomina N, Torres-Rosell J. Crucial role of the NSE1 RING domain in Smc5/6 stability and FANCM-independent fork progression. Cell Mol Life Sci 2024; 81:251. [PMID: 38847937 PMCID: PMC11335289 DOI: 10.1007/s00018-024-05275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 08/22/2024]
Abstract
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Collapse
Affiliation(s)
- Neus P Lorite
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Sonia Apostolova
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marta Guasch-Vallés
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Aaron Pryer
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Fernando Unzueta
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Universidad de La Laguna, Campus Ciencias de la Salud, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Roger Solé-Soler
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Pedraza
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Xavier Dolcet
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elaine M Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| |
Collapse
|
3
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Smc5/6 silences episomal transcription by a three-step function. Nat Struct Mol Biol 2022; 29:922-931. [PMID: 36097294 DOI: 10.1038/s41594-022-00829-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process. The first step is entrapment of the episomal DNA by a mechanism dependent on Smc5/6 ATPase activity and a function of its Nse4a subunit for which the Nse4b paralog cannot substitute. The second step results in Smc5/6 recruitment to promyelocytic leukemia nuclear bodies by SLF2 (the human ortholog of Nse6). The third step promotes silencing through a mechanism requiring Nse2 but not its SUMO ligase activity. By contrast, the related cohesin and condensin complexes fail to bind to or silence episomal DNA, indicating a property unique to Smc5/6.
Collapse
|
6
|
Hallett ST, Campbell Harry I, Schellenberger P, Zhou L, Cronin N, Baxter J, Etheridge T, Murray J, Oliver A. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res 2022; 50:9505-9520. [PMID: 35993814 PMCID: PMC9458440 DOI: 10.1093/nar/gkac692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023] Open
Abstract
The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral replication. Here, we report the cryogenic EM (cryo-EM) structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells - providing both an architectural overview of the entire complex and an understanding of how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the 'W-loop' of Smc4 or 'F-loop' of Smc1, mediates an important interaction with Nse1. Notably, mutations that alter the surface-charge profile of the region of Nse1 which accepts the Smc5-loop, lead to a slow-growth phenotype and a global reduction in the chromatin-associated fraction of the Smc5/6 complex, as judged by single molecule localisation microscopy experiments in live yeast. Moreover, when taken together, our data indicates functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Isabella Campbell Harry
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Nora B Cronin
- London Consortium for CryoEM (LonCEM) Facility, The Francis Crick Institute, London, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Thomas J Etheridge
- Correspondence may also be addressed to Thomas J. Etheridge. Tel: +44 1273 678123;
| | - Johanne M Murray
- Correspondence may also be addressed to Johanne M. Murray. Tel: +44 1273 877191;
| | - Antony W Oliver
- To whom correspondence should be addressed. Tel: +44 1273 678349;
| |
Collapse
|
7
|
Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc Natl Acad Sci U S A 2022; 119:e2202799119. [PMID: 35648833 PMCID: PMC9191643 DOI: 10.1073/pnas.2202799119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Smc5/6 complex plays multiple roles in DNA replication and repair. Its genome-protecting functions rely on its interaction with DNA; however, how this complex engages DNA is poorly understood. We report on a cryogenic electron microscopy structure of DNA-bound budding yeast Smc5/6 complex, revealing that its subunits form a clamp to encircle a double-helical DNA. We define the multi-subunit interactions forming the DNA clamp and the DNA binding sites distributed among subunits. We identify subunit transformations upon DNA capture and functional effects conferred by its multiple DNA contact sites. Our findings, in conjunction with studies on other structural maintenance of chromosomes (SMC) complexes, suggest a common SMC DNA-clamp mechanism with individual complex specific features that enable diverse genome organization and protection functions by SMC family complexes. Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.
Collapse
|
8
|
Singh G, Gupta D. In-Silico Functional Annotation of Plasmodium falciparum Hypothetical Proteins to Identify Novel Drug Targets. Front Genet 2022; 13:821516. [PMID: 35444689 PMCID: PMC9013929 DOI: 10.3389/fgene.2022.821516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum is one of the plasmodium species responsible for the majority of life-threatening malaria cases. The current antimalarial therapies are becoming less effective due to growing drug resistance, leading to the urgent requirement for alternative and more effective antimalarial drugs or vaccines. To facilitate the novel drug discovery or vaccine development efforts, recent advances in sequencing technologies provide valuable information about the whole genome of the parasite, yet a lot more needs to be deciphered due to its incomplete proteome annotation. Surprisingly, out of the 5,389 proteins currently annotated in the Plasmodium falciparum 3D7 strain, 1,626 proteins (∼30% data) are annotated as hypothetical proteins. In parasite genomic studies, the challenge to annotate hypothetical proteins is often ignored, which may obscure the crucial information related to the pathogenicity of the parasite. In this study, we attempt to characterize hypothetical proteins of the parasite to identify novel drug targets using a computational pipeline. The study reveals that out of the overall pool of the hypothetical proteins, 266 proteins have conserved functional signatures. Furthermore, the pathway analysis of these proteins revealed that 23 proteins have an essential role in various biochemical, signalling and metabolic pathways. Additionally, all the proteins (266) were subjected to computational structure analysis. We could successfully model 11 proteins. We validated and checked the structural stability of the models by performing molecular dynamics simulation. Interestingly, eight proteins show stable conformations, and seven proteins are specific for Plasmodium falciparum, based on homology analysis. Lastly, mapping the seven shortlisted hypothetical proteins on the Plasmodium falciparum protein-protein interaction network revealed 3,299 nodes and 2,750,692 edges. Our study revealed interesting functional details of seven hypothetical proteins of the parasite, which help learn more about the less-studied molecules and their interactions, providing valuable clues to unravel the role of these proteins via future experimental validation.
Collapse
Affiliation(s)
- Gagandeep Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Higashi TL, Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr Opin Cell Biol 2022; 74:13-22. [PMID: 35016058 PMCID: PMC9089308 DOI: 10.1016/j.ceb.2021.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Loop extrusion has emerged as a prominent hypothesis for how SMC complexes shape chromosomes - single molecule in vitro observations have yielded fascinating images of this process. When not extruding loops, SMC complexes are known to topologically entrap one or more DNAs. Here, we review how structural insight into the SMC complex cohesin has led to a molecular framework for both activities: a Brownian ratchet motion, associated with topological DNA entry, might repeat itself to elicit loop extrusion. After contrasting alternative loop extrusion models, we explore whether topological loading or loop extrusion is more adept at explaining in vivo SMC complex function. SMC variants that experimentally separate topological loading from loop extrusion will in the future probe their respective contributions to chromosome biology.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Cellular Biochemistry, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
10
|
Kolesar P, Stejskal K, Potesil D, Murray JM, Palecek JJ. Role of Nse1 Subunit of SMC5/6 Complex as a Ubiquitin Ligase. Cells 2022; 11:165. [PMID: 35011726 PMCID: PMC8750328 DOI: 10.3390/cells11010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function.
Collapse
Affiliation(s)
- Peter Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karel Stejskal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| | - Johanne M. Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| | - Jan J. Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (K.S.); (D.P.)
| |
Collapse
|
11
|
Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021; 10:e67530. [PMID: 34309513 PMCID: PMC8313234 DOI: 10.7554/elife.67530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
12
|
Yu Y, Li S, Ser Z, Sanyal T, Choi K, Wan B, Kuang H, Sali A, Kentsis A, Patel DJ, Zhao X. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc Natl Acad Sci U S A 2021; 118:e2026844118. [PMID: 33941673 PMCID: PMC8126833 DOI: 10.1073/pnas.2026844118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zheng Ser
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bingbing Wan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Huihui Kuang
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Alex Kentsis
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|