1
|
Tants JN, Walbrun A, Kollwitz L, Friedrich K, Rief M, Schlundt A. Roquin exhibits opposing effects on RNA stem-loop stability through its two ROQ domain binding sites. Proc Natl Acad Sci U S A 2025; 122:e2424434122. [PMID: 40203046 PMCID: PMC12012478 DOI: 10.1073/pnas.2424434122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The interaction of mRNA and regulatory proteins is critical for posttranscriptional control. For proper function, these interactions, as well as the involved protein and RNA structures, are highly dynamic, and thus, mechanistic insights from structural biology are challenging to obtain. In this study, we employ a multifaceted approach combining single-molecule force spectroscopy (SMFS) with NMR spectroscopy to analyze the concerted interaction of the two RNA-binding interfaces (A-site and B-site) of the immunoregulatory protein Roquin's ROQ domain with the 3' untranslated region (UTR) of the Ox40 mRNA. This 3'UTR contains two specific hairpin structures termed constitutive and alternative decay elements (CDE, ADE), which mediate mRNA degradation through Roquin binding. Our single-molecule experiments reveal that the CDE folds cooperatively, while ADE folding involves at least three on-pathway and three off-pathway intermediates. Using an integrated microfluidics setup, we extract binding kinetics to Roquin in real time. Supported by NMR data, we find opposing effects of the two Roquin subdomains on distinct regions of the ADE: While the A-site interacts strongly with the folded apical stem-loop, we find that the B-site has a distinct destabilizing effect on the central stem of the ADE owed to single-strand RNA binding. We propose that RNA-motif nature and Roquin A- and B-sites jointly steer mRNA decay with context-encoded specificity, and we suggest plasticity of stem structures as key determinant for Roquin-RNA complex formation. The unique combination of NMR and SMFS uncovers a mechanism of a dual-function RNA-binding domain, offering a model for target RNA recognition by Roquin.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Andreas Walbrun
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Lucas Kollwitz
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Katharina Friedrich
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Matthias Rief
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald17489, Germany
| |
Collapse
|
2
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Bose E, Xiong S, Jones AN. Probing RNA structure and dynamics using nanopore and next generation sequencing. J Biol Chem 2024; 300:107317. [PMID: 38677514 PMCID: PMC11145556 DOI: 10.1016/j.jbc.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
It has become increasingly evident that the structures RNAs adopt are conformationally dynamic; the various structured states that RNAs sample govern their interactions with other nucleic acids, proteins, and ligands to regulate a myriad of biological processes. Although several biophysical approaches have been developed and used to study the dynamic landscape of structured RNAs, technical limitations have limited their application to all classes of RNA due to variable size and flexibility. Recent advances combining chemical probing experiments with next-generation- and direct sequencing have emerged as an alternative approach to exploring the conformational dynamics of RNA. In this review, we provide a methodological overview of the sequencing-based techniques used to study RNA conformational dynamics. We discuss how different techniques have enabled us to better understand the propensity of RNAs from a variety of different classes to sample multiple conformational states. Finally, we present examples of the ways these techniques have reshaped how we think about RNA structure.
Collapse
Affiliation(s)
- Emma Bose
- Department of Chemistry, New York University, New York, New York, USA
| | - Shengwei Xiong
- Department of Chemistry, New York University, New York, New York, USA
| | - Alisha N Jones
- Department of Chemistry, New York University, New York, New York, USA.
| |
Collapse
|
4
|
Linscott ML, Yildiz Y, Flury S, Newby ML, Pak TR. Age and 17β-Estradiol (E 2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain. Noncoding RNA 2023; 9:74. [PMID: 38133208 PMCID: PMC10745551 DOI: 10.3390/ncrna9060074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause.
Collapse
Affiliation(s)
| | | | | | | | - Toni R. Pak
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.L.L.); (Y.Y.); (S.F.); (M.L.N.)
| |
Collapse
|
5
|
Basalova N, Illarionova M, Skryabina M, Vigovskiy M, Tolstoluzhinskaya A, Primak A, Chechekhina E, Chechekhin V, Karagyaur M, Efimenko A. Advances and Obstacles in Using CRISPR/Cas9 Technology for Non-Coding RNA Gene Knockout in Human Mesenchymal Stromal Cells. Noncoding RNA 2023; 9:49. [PMID: 37736895 PMCID: PMC10514828 DOI: 10.3390/ncrna9050049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNA (ncRNAs) genes have attracted increasing attention in recent years due to their widespread involvement in physiological and pathological processes and regulatory networks. The study of the function and molecular partners of ncRNAs opens up opportunities for the early diagnosis and treatment of previously incurable diseases. However, the classical "loss-of-function" approach in ncRNA function analysis is challenged due to some specific issues. Here, we have studied the potency of two CRISPR/Cas9 variants, wild-type (SpCas9wt) and nickase (SpCas9D10A) programmable nucleases, for the editing of extended DNA sequences in human mesenchymal stromal cells (MSCs). Editing the genes of fibrosis-related hsa-miR-21-5p and hsa-miR-29c-3p, we have shown that a pair of SpCas9D10A molecules can effectively disrupt miRNA genes within the genomes of MSCs. This leads not only to a decrease in the level of knockout miRNA in MSCs and MSC-produced extracellular vesicles, but also to a change in cell physiology and the antifibrotic properties of the cell secretome. These changes correlate well with previously published data for the knockdown of certain miRNAs. The proposed approach can be used to knock out ncRNA genes within the genomes of MSCs or similar cell types in order to study their function in biological processes.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Tolstoluzhinskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Elizaveta Chechekhina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| |
Collapse
|
6
|
Bevilacqua PC, Tolbert BS. Regulatory Mechanisms through RNA Conformational Switching and Dynamics. J Mol Biol 2022; 434:167794. [PMID: 35988750 PMCID: PMC9484478 DOI: 10.1016/j.jmb.2022.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry and of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Blanton S Tolbert
- Department of Chemistry, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|