1
|
MacAinsh M, Muhammedkutty FNK, Prasad R, Zhou HX. Membrane Association of Intrinsically Disordered Proteins. Annu Rev Biophys 2025; 54:275-302. [PMID: 39952269 PMCID: PMC12055482 DOI: 10.1146/annurev-biophys-070124-092816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
It is now clear that membrane association of intrinsically disordered proteins or intrinsically disordered regions regulates many cellular processes, such as membrane targeting of Src family kinases and ion channel gating. Residue-specific characterization by nuclear magnetic resonance spectroscopy, molecular dynamics simulations, and other techniques has shown that polybasic motifs and amphipathic helices are the main drivers of membrane association; sequence-based prediction of residue-specific membrane association propensity has become possible. Membrane association facilitates protein-protein interactions and protein aggregation-these effects are due to reduced dimensionality but are similar to those afforded by condensate formation via liquid-liquid phase separation (LLPS). LLPS at the membrane surface provides a powerful means for recruiting and clustering proteins, as well as for membrane remodeling.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | | | - Ramesh Prasad
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
- Department of Physics, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
2
|
Choudhury J, Chaudhuri BN. Tubules, Rods, and Spirals: Diverse Modes of SepF-FtsZ Assembling. Cytoskeleton (Hoboken) 2024. [PMID: 39703081 DOI: 10.1002/cm.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Z-ring formation by FtsZ, the master assembler of the divisome, is a key step in bacterial cell division. Membrane anchoring of the Z-ring requires the assistance of dedicated Z-ring binding proteins, such as SepF and FtsA. SepF participates in bundling and membrane anchoring of FtsZ in gram-positive bacteria. We report in vitro biophysical studies of the interactions between FtsZ and a cytoplasmic component of cognate SepF from three different bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, and Enterococcus gallinarum. While the cytosolic domain of SepF from M. tuberculosis is primarily a dimer, those from S. aureus and E. gallinarum polymerize to form ring-like structures. Mycobacterial SepF helps in the bundling of FtsZ filaments to form thick filaments and large spirals. On the other hand, ring-forming SepF from the Firmicutes bundle FtsZ into tubules. Our results suggest that the oligomeric form of SepF directs how it bundles FtsZ filaments.
Collapse
Affiliation(s)
- Jagrity Choudhury
- GN Ramachandran Protein Center, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Barnali N Chaudhuri
- GN Ramachandran Protein Center, CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Ghaziabad, India
| |
Collapse
|
3
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Alavizargar A, Gass M, Krahn MP, Heuer A. Elucidating the Membrane Binding Process of a Disordered Protein: Dynamic Interplay of Anionic Lipids and the Polybasic Region. ACS PHYSICAL CHEMISTRY AU 2024; 4:167-179. [PMID: 38560754 PMCID: PMC10979486 DOI: 10.1021/acsphyschemau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 04/04/2024]
Abstract
Intrinsically disordered regions of proteins are responsible for many biological processes such as in the case of liver kinase B1 (LKB1)-a serine/threonine kinase relevant for cell proliferation and cell polarity. LKB1 becomes fully activated upon recruitment to the plasma membrane by binding of its disordered C-terminal polybasic motif consisting of eight lysines/arginines to phospholipids. Here, we present extensive molecular dynamics (MD) simulations of the polybasic motif interacting with a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl phosphatidic acid (PA) and cell culture experiments. Protein-membrane binding effects are due to the electrostatic interactions between the polybasic amino acids and PAs. For significant binding, the first three lysines turn out to be dispensable, which was also recapitulated in cell culture using transfected GFP-LKB1 variants. LKB1-membrane binding results in nonmonotonous changes in the structure of the protein as well as the membrane, in particular, accumulation of PAs and reduced thickness at the protein-membrane contact area. The protein-lipid binding turns out to be highly dynamic due to an interplay of PA-PA repulsion and protein-PA attraction. The thermodynamics of this interplay is captured by a statistical fluctuation model, which allows the estimation of both energies. Quantification of the significance of each polar amino acid in the polybasic provides detailed insights into the molecular mechanism of protein-membrane binding of LKB1. These results can likely be transferred to other proteins, which interact by intrinsically disordered polybasic regions with anionic membranes.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Maximilian Gass
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
5
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
6
|
Araya MK, Gorfe AA. Conformational ensemble-dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. Commun Biol 2023; 6:1111. [PMID: 37919400 PMCID: PMC10622456 DOI: 10.1038/s42003-023-05487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. Here we show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we find that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
Affiliation(s)
- Mussie K Araya
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA.
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., TX, 77030, USA.
| |
Collapse
|
7
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
8
|
Araya MK, Gorfe AA. Conformational ensemble dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553039. [PMID: 37609330 PMCID: PMC10441427 DOI: 10.1101/2023.08.11.553039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. We show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we found that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
|
9
|
Dey S, Zhou HX. Why Does Synergistic Activation of WASP, but Not N-WASP, by Cdc42 and PIP 2 Require Cdc42 Prenylation? J Mol Biol 2023; 435:168035. [PMID: 36863659 PMCID: PMC10079582 DOI: 10.1016/j.jmb.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA. https://twitter.com/SouvikDeyUIC
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
10
|
Smrt ST, Escobar CA, Dey S, Cross TA, Zhou HX. An Arg/Ala-rich helix in the N-terminal region of M. tuberculosis FtsQ is a potential membrane anchor of the Z-ring. Commun Biol 2023; 6:311. [PMID: 36959324 PMCID: PMC10036325 DOI: 10.1038/s42003-023-04686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. Here we show that the transmembrane protein FtsQ is a potential membrane anchor of the Mtb Z-ring. In the otherwise disordered cytoplasmic region of FtsQ, a 29-residue, Arg/Ala-rich α-helix is formed that interacts with upstream acidic residues in solution and with acidic lipids at the membrane surface. This helix also binds to the GTPase domain of FtsZ, with implications for drug binding and Z-ring formation.
Collapse
Affiliation(s)
- Sean T Smrt
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian A Escobar
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Souvik Dey
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
11
|
Dey S, Zhou HX. N-WASP is competent for downstream signaling before full release from autoinhibition. J Chem Phys 2023; 158:091105. [PMID: 36889962 PMCID: PMC9995167 DOI: 10.1063/5.0137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Allosteric regulation of intrinsically disordered proteins (IDPs) is still vastly understudied compared to the counterpart of structured proteins. Here, we used molecular dynamics simulations to characterize the regulation of the IDP N-WASP by the binding of its basic region with inter- and intramolecular ligands (PIP2 and an acidic motif, respectively). The intramolecular interactions keep N-WASP in an autoinhibited state; PIP2 binding frees the acidic motif for interacting with Arp2/3 and thereby initiating actin polymerization. We show that PIP2 and the acidic motif compete in binding with the basic region. However, even when PIP2 is present at 30% in the membrane, the acidic motif is free of contact with the basic region ("open" state) in only 8.5% of the population. The very C-terminal three residues of the A motif are crucial for Arp2/3 binding; conformations where only the A tail is free are present at a much higher population than the open state (40- to 6-fold, depending on the PIP2 level). Thus, N-WASP is competent for Arp2/3 binding before it is fully freed from autoinhibition.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
12
|
MacAinsh M, Zhou H. Partial mimicry of the microtubule binding of tau by its membrane binding. Protein Sci 2023; 32:e4581. [PMID: 36710643 PMCID: PMC9926470 DOI: 10.1002/pro.4581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau-microtubule complex was recently determined by cryo-electron microscopy. Here, we used molecular dynamics simulations to characterize the dynamic binding of tau K19 to an acidic membrane. This IDP can be divided into three repeats, each containing an amphipathic helix. The three amphipathic helices, along with flanking residues, tether the protein to the membrane interface. The separation between and membrane positioning of the amphipathic helices in the simulations are validated by published EPR data. The membrane contact probabilities of individual residues in tau show both similarities to and distinctions from native contacts with microtubules. In particular, a Lys that is conserved among the repeats forms similar interactions with membranes and with microtubules, as does a conserved Val. This partial mimicry facilitates both the membrane anchoring of microtubules by tau and the transfer of tau from membranes to microtubules.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Huan‐Xiang Zhou
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of PhysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|