1
|
Venkatesh Y, Narayan KB, Baumgart T, Petersson EJ. Strategic Modulation of Polarity and Viscosity Sensitivity of Bimane Molecular Rotor-Based Fluorophores for Imaging α-Synuclein. J Am Chem Soc 2025; 147:15115-15125. [PMID: 40262038 DOI: 10.1021/jacs.4c17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Molecular rotor-based fluorophores (RBFs) that are target-selective and sensitive to both polarity and viscosity are valuable for diverse biological applications. Here, we have designed next-generation RBFs based on the underexplored bimane fluorophore either through a change in aryl substitution or varying π-linkages between the rotatable electron donors and acceptors to produce red-shifted fluorescence emissions with large Stokes shifts. RBFs exhibit a twisted intramolecular charge transfer mechanism that enables control of polarity and viscosity sensitivity as well as target selectivity. These features enable their application in (1) turn-on fluorescent detection of α-synuclein (αS) fibrils, a hallmark of Parkinson's disease, including amplified fibrils from patient samples; (2) monitoring early misfolding and oligomer formation during αS aggregation; and (3) selective imaging of αS condensates formed by liquid-liquid phase separation. In all three cases, we show that our probes have high levels of selectivity for αS compared to other aggregating proteins. These properties enable one to study the interplay of αS and tau in amyloid aggregation and the mechanisms underlying neurodegenerative disorders.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karthik B Narayan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Tian GL, Hsieh CJ, Guarino DS, Graham TJA, Lengyel-Zhand Z, Schmitz A, Chia WK, Young AJ, Crosby JG, Plakas K, Huang T, Jiang H, Yu Y, Hou C, Lee H, Petersson EJ, Giannakoulias S, O'Shea J, Kotzbauer P, Tu Z, Mathis CA, Mach RH. The development of a PET radiotracer for imaging alpha synuclein aggregates in Parkinson's disease. RSC Med Chem 2025:d5md00057b. [PMID: 40256311 PMCID: PMC12004261 DOI: 10.1039/d5md00057b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/16/2025] [Indexed: 04/22/2025] Open
Abstract
M503-1619 was identified as a promising ligand for positron emission tomography (PET) imaging of α-synuclein (α-Syn) pathology in Parkinson's disease (PD). An exemplar for binding site 9 (residues GLY-86, ILE-88, PHE-94 and LYS-96) of α-Syn fibrils was generated. An in silico ultrahigh throughput screening campaign was conducted using a 42 million compound library. Secondary in silico methods followed by visual inspection were used to select 6 compounds as candidates for in vitro binding studies. M503-1619 was found to have a high binding affinity (K i = 6.5 nM versus the site 9 radioligand [3H]BF-2846) to α-Syn fibrils and low affinity for beta amyloid (K i = 390 nM versus [3H]PiB) in competition binding assays. Saturation binding assays of [3H]M503-1619 in human tissues confirmed its high affinity to α-Syn (PD tissue, K D = 2.5 nM; Alzheimer's disease tissue, K D = 37 nM; progressive supranuclear palsy tissue, K D = 55 nM). Autoradiography studies demonstrated a higher binding of this radioligand in PD brain sections than in multiple system atrophy brain sections. PET studies with [11C]M503-1619 showed high brain uptake and rapid washout (whole brain peak to 60 min ratio = 3.2) in non-human primates. The results of this study suggest that [11C]M503-1619 is a lead compound for radiotracer development imaging α-Syn with PET.
Collapse
Affiliation(s)
- Gui-Long Tian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | | | - Thomas J A Graham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Alexander Schmitz
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Wai Kit Chia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - John-Grey Crosby
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Konstantinos Plakas
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Tianyu Huang
- Department of Radiology, Washington University, School of Medicine Saint Louis MO USA
| | - Hao Jiang
- Department of Radiology, Washington University, School of Medicine Saint Louis MO USA
| | - Yanbo Yu
- Department of Radiology, Washington University, School of Medicine Saint Louis MO USA
| | - Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania Philadelphia PA USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania Philadelphia PA USA
| | - Jennifer O'Shea
- Department of Neurology, Washington University School of Medicine Saint Louis MO USA
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine Saint Louis MO USA
| | - Zhude Tu
- Department of Radiology, Washington University, School of Medicine Saint Louis MO USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh Pittsburgh PA USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
3
|
Shimogawa M, Li MH, Park GSH, Ramirez J, Lee H, Watson PR, Sharma S, Lin Z, Peng C, Garcia BA, Christianson DW, Rhoades E, Eliezer D, Petersson EJ. Investigation of All Disease-Relevant Lysine Acetylation Sites in α-Synuclein Enabled by Non-canonical Amino Acid Mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634178. [PMID: 39896484 PMCID: PMC11785115 DOI: 10.1101/2025.01.21.634178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aggregates of α-synuclein (αS) are hallmarks of synucleinopathies, including Parkinson's Disease (PD) and Multiple System Atrophy (MSA). We have recently shown that αS lysine acetylation in the soluble monomer pool varies between healthy controls, PD, and MSA patients. To study the effects of lysine acetylation at all disease-relevant sites of αS, we first compared production of acetylated αS through either native chemical ligation or non-canonical amino acid (ncAA) mutagenesis. Since yields were comparable, ncAA mutagenesis was deemed superior for scanning many acetylation sites. We expressed and purified 12 disease-relevant variants and studied their binding to membranes as well as their aggregation propensities, and found that acetylation of lysine 12, 43, and 80 had particularly strong effects. To understand the implications for acetylation of monomeric αS found in healthy cells, we performed NMR experiments to study protein conformation and fluorescence correlation spectroscopy experiments to quantify lipid binding. We also investigated the effects of acetylation at lysine 12, 43, and 80 on fibril seeding in neurons. Collectively, our biochemical and cell biological investigations indicated that acetylation of K80 could inhibit aggregation without conferring negative effects on monomer function in healthy cells. Therefore, we studied the structures of fibrils with K80 acetylation through cryo-electron microscopy to uncover the structural basis for these effects. Finally, we identified inhibition of HDAC8 as a way of potentially increasing acetylation at K80 and other inhibitory sites for therapeutic benefit.
Collapse
Affiliation(s)
- Marie Shimogawa
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ming-Hao Li
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Grace Shin Hye Park
- Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, 206 Anatomy-Chemistry Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, 206 Anatomy-Chemistry Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Paris R. Watson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Swati Sharma
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 4523 Clayton Ave, St Louis, MO 63130, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, 710 Westwood Plaza, Room C-224, Los Angeles, CA 90095, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 4523 Clayton Ave, St Louis, MO 63130, USA
| | - David W. Christianson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - E. James Petersson
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Singh KS, Verma R, Singh N, Singh LR, Gupta A. Factors responsible for alpha-Synuclein aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:271-292. [PMID: 39947752 DOI: 10.1016/bs.pmbts.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Aggregation of α-Synuclein (α-Syn) is the hallmark of the pathophysiology of Parkinson's disease. Apart from aggregates, α-Syn can exist in multiple abnormal forms such as oligomers, protofibrils, fibrils amorphous aggregates etc. These forms initiate aggressive, selective and progressive neuronal atrophy through various modes such as mitochondrial dysfunction, lysosomal malfunction, and disruption of calcium homeostasis in various α-Syn-related neurodegenerative disorders. Structurally α-Syn is divided into three domains: N-terminal region made by amino acids1-67 (amphipathic, lysine-rich and interacts with acidic lipid membranes), Non-amyloid-β component (NAC) region made by amino acids 67-95 (hydrophobic region, central to α-syn aggregation) and C-terminal region made by amino acids 96-140 (acidic and proline-rich region responsible for interaction with other proteins). α-Syn follows the pattern of a typical intrinsically disordered protein and lacks a proper folded conformation and exist majorly in a random coil form, though on lipid binding the protein assumes an α-helical structure. The central random coil region of α-Syn is involved in fibril formation transforming into β-sheet rich secondary structures which is a characteristic of amyloids. This chapter entails an elaborate explanation of factors influencing the structure, function and aggregation of α-Syn. Major factors being abnormally high physiological expression of the protein, mutations, posttranslational modifications and also interactions with small molecules such as osmolytes in the cellular milieu. Studying the factors responsible for misfolding and aggregation of α-Syn along with the mechanism involved is crucial to understanding their implications in Parkinson's disease, and will yield valuable insights into disease mechanisms, potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Rahul Verma
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Nagendra Singh
- Gautam Buddha University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh, India
| | | | - Akshita Gupta
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
5
|
Venkatesh Y, Narayan KB, Baumgart T, Petersson EJ. Strategic Modulation of Polarity and Viscosity Sensitivity of Bimane Molecular Rotor-Based Fluorophores for Imaging α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631748. [PMID: 39829767 PMCID: PMC11741376 DOI: 10.1101/2025.01.07.631748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Molecular rotor-based fluorophores (RBFs) that are target-selective and sensitive to both polarity and viscosity are valuable for diverse biological applications. Here, we have designed next-generation RBFs based on the underexplored bimane fluorophore through either changing in aryl substitution or varying π-linkages between the rotatable electron donors and acceptors to produce red-shifted fluorescence emissions with large Stokes shifts. RBFs exhibit a twisted intramolecular charge transfer mechanism that enables control of polarity and viscosity sensitivity, as well as target selectivity. These features enable their application in: (1) turn-on fluorescent detection of α-synuclein (αS) fibrils, a hallmark of Parkinson's disease (PD), including amplified fibrils from patient samples; (2) monitoring early misfolding and oligomer formation during αS aggregation; and (3) selective imaging of αS condensates formed by liquid-liquid phase separation (LLPS). In all three cases, we show that our probes have high levels of selectivity for αS versus other aggregating proteins. These properties enable one to study the interplay of αS and tau in amyloid aggregation and the mechanisms underlying neurodegenerative disorders.
Collapse
|
6
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
7
|
Marmorstein JG, Pagar VV, Hummingbird E, Saleh IG, Phan HAT, Chang Y, Shaffer KD, Venkatesh Y, Dmochowski IJ, Stebe KJ, Petersson EJ. Improved Large-Scale Synthesis of Acridonylalanine for Diverse Peptide and Protein Applications. Bioconjug Chem 2024; 35:1913-1922. [PMID: 39531540 DOI: 10.1021/acs.bioconjchem.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluorescent unnatural amino acids give biochemists, biophysicists, and bioengineers new ways to probe the properties of proteins and peptides. Here, the synthesis of acridon-2-ylalanine (Acd) is optimized for large-scale production to enable ribosomal incorporation through genetic code expansion (GCE), and fluorenylmethoxycarbonyl (Fmoc)-protected Acd is prepared for solid-phase peptide synthesis (SPPS). We demonstrate the utility of Acd in several applications: first, Acd quenching by Tyr is used in the design of fluorescent protease sensors made by SPPS. Second, we demonstrate Acd incorporation into a lanthanide-binding peptide that is generated either by GCE or by SPPS and demonstrate the utility of Acd for sensitizing the emission of Eu3+. Finally, Acd is inserted into the intrinsically disordered protein, α-synuclein, using GCE and used to study ion binding and aggregation.
Collapse
Affiliation(s)
- Jason G Marmorstein
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Vinayak V Pagar
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eshe Hummingbird
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ibrahim G Saleh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yanan Chang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Huang F, Yan J, Xu H, Wang Y, Zhang X, Zou Y, Lian J, Ding F, Sun Y. Exploring the Impact of Physiological C-Terminal Truncation on α-Synuclein Conformations to Unveil Mechanisms Regulating Pathological Aggregation. J Chem Inf Model 2024; 64:8616-8627. [PMID: 39504036 PMCID: PMC11588551 DOI: 10.1021/acs.jcim.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Emerging evidence suggests that physiological C-terminal truncation of α-synuclein (αS) plays a critical role in regulating liquid-liquid phase separation and promoting amyloid aggregation, processes implicated in neurodegenerative diseases such as Parkinson's disease (PD). However, the molecular mechanisms through which C-terminal truncation influences αS conformation and modulates its aggregation remain poorly understood. In this study, we investigated the impact of C-terminal truncation on αS conformational dynamics by comparing full-length αS1-140 with truncated αS1-103 monomers using atomistic discrete molecular dynamics simulations. Our findings revealed that both αS1-140 and αS1-103 primarily adopted helical conformations around residues 7-32, while residues 36-95, located in the second half of the N-terminal and NAC domains, predominantly formed a dynamic β-sheet core. The C-terminus of αS1-140 was largely unstructured and dynamically wrapped around the β-sheet core. While residues 1-95 exhibited similar secondary structure propensities in both αS1-140 and αS1-103, the dynamic capping by the C-terminus in αS1-140 slightly enhanced β-sheet formation around residues 36-95. In contrast, key aggregation-driving regions (residues 2-9, 36-42, 45-57, and 68-78) were dynamically shielded by the C-terminus in αS1-140, reducing their exposure and potentially preventing interpeptide interactions that drive aggregation. C-terminal truncation, on the other hand, increased the exposed surface area of these aggregation-prone regions, thereby enhancing interpeptide interactions, phase separation, and amyloid aggregation. Overall, our simulations provide valuable insights into the conformational effects of C-terminal truncation on αS and its role in promoting pathological aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
9
|
Ramirez J, Saleh IG, Yanagawa ESK, Shimogawa M, Brackhahn E, Petersson EJ, Rhoades E. Multivalency drives interactions of alpha-synuclein fibrils with tau. PLoS One 2024; 19:e0309416. [PMID: 39255305 PMCID: PMC11386428 DOI: 10.1371/journal.pone.0309416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Age-related neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by deposits of protein aggregates, or amyloid, in various regions of the brain. Historically, aggregation of a single protein was observed to be correlated with these different pathologies: tau in AD and α-synuclein (αS) in PD. However, there is increasing evidence that the pathologies of these two diseases overlap, and the individual proteins may even promote each other's aggregation. Both tau and αS are intrinsically disordered proteins (IDPs), lacking stable secondary and tertiary structure under physiological conditions. In this study we used a combination of biochemical and biophysical techniques to interrogate the interaction of tau with both soluble and fibrillar αS. Fluorescence correlation spectroscopy (FCS) was used to assess the interactions of specific domains of fluorescently labeled tau with full length and C-terminally truncated αS in both monomer and fibrillar forms. We found that full-length tau as well as individual tau domains interact with monomer αS weakly, but this interaction is much more pronounced with αS aggregates. αS aggregates also mildly slow the rate of tau aggregation, although not the final degree of aggregation. Our findings suggest that co-occurrence of tau and αS in disease are more likely to occur through monomer-fiber binding interactions, rather than monomer-monomer or co-aggregation.
Collapse
Affiliation(s)
- Jennifer Ramirez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ibrahim G. Saleh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Evan S. K. Yanagawa
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Brackhahn
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - E. James Petersson
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Rhoades
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Gamage K, Wang B, Hard ER, Van T, Galesic A, Phillips GR, Pratt M, Lapidus LJ. O-GlcNAc Modification of α-Synuclein Can Alter Monomer Dynamics to Control Aggregation Kinetics. ACS Chem Neurosci 2024; 15:3044-3052. [PMID: 39082221 PMCID: PMC11342298 DOI: 10.1021/acschemneuro.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
The intrinsically disordered protein α-Synuclein is identified as a major toxic aggregate in Parkinson's as well as several other neurodegenerative diseases. Recent work on this protein has focused on the effects of posttranslational modifications on aggregation kinetics. Among them, O-GlcNAcylation of α-Synuclein has been observed to inhibit the aggregation propensity of the protein. Here, we investigate the monomer dynamics of two O-GlcNAcylated α-Synucleins, α-Syn(gT72), and α-Syn(gS87) and correlate them with the aggregation kinetics. We find that, compared to the unmodified protein, glycosylation at T72 makes the protein less compact and more diffusive, while glycosylation at S87 makes the protein more compact and less diffusive. Based on a model of the earliest steps in aggregation, we predict that T72 should aggregate slower than unmodified protein, which is confirmed by ThT fluorescence measurements. In contrast, S87 should aggregate faster, which is not mirrored in ThT kinetics of later fibril formation but does not rule out a higher rate of formation of small oligomers. Together, these results show that posttranslational modifications do not uniformly affect aggregation propensity.
Collapse
Affiliation(s)
- Kasun Gamage
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Binyou Wang
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Eldon R Hard
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thong Van
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Ana Galesic
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - George R Phillips
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Pratt
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Lisa J. Lapidus
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Kochen NN, Seaney D, Vasandani V, Murray M, Braun AR, Sachs JN. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study. Proteins 2024; 92:854-864. [PMID: 38458997 PMCID: PMC11147710 DOI: 10.1002/prot.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Hydration plays a crucial role in the refolding of intrinsically disordered proteins into amyloid fibrils; however, the specific interactions between water and protein that may contribute to this process are still unknown. In our previous studies of alpha-synuclein (aSyn), we have shown that waters confined in fibril cavities are stabilizing features of this pathological fold; and that amino acids that hydrogen bond with these confined waters modulate primary and seeded aggregation. Here, we extend our aSyn molecular dynamics (MD) simulations with three new polymorphs and correlate MD trajectory information with known post-translational modifications (PTMs) and experimental data. We show that cavity residues are more evolutionarily conserved than non-cavity residues and are enriched with PTM sites. As expected, the confinement within hydrophilic cavities results in more stably hydrated amino acids. Interestingly, cavity PTM sites display the longest protein-water hydrogen bond lifetimes, three-fold greater than non-PTM cavity sites. Utilizing the deep mutational screen dataset by Newberry et al. and the Thioflavin T aggregation review by Pancoe et al. parsed using a fibril cavity/non-cavity definition, we show that hydrophobic changes to amino acids in cavities have a larger effect on fitness and aggregation rate than residues outside cavities, supporting our hypothesis that these sites are involved in the inhibition of aSyn toxic fibrillization. Finally, we expand our study to include analysis of fibril structures of tau, FUS, TDP-43, prion, and hnRNPA1; all of which contained hydrated cavities, with tau, FUS, and TDP-43 recapitulating our PTM results in aSyn fibril cavities.
Collapse
Affiliation(s)
- Noah Nathan Kochen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darren Seaney
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vivek Vasandani
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marguerite Murray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
13
|
Gamage K, Wang B, Hard ER, Van T, Galesic A, Phillips GR, Pratt M, Lapidus LJ. Post-translational Modification of α-Synuclein Modifies Monomer Dynamics and Aggregation Kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592473. [PMID: 38766253 PMCID: PMC11100617 DOI: 10.1101/2024.05.06.592473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The intrinsically disordered protein α-Synuclein is identified as a major toxic aggregate in Parkinson's as well as several other neurodegenerative diseases. Recent work on this protein has focused on the effects of posttranslational modifications on aggregation kinetics. Among these, O-GlcNAcylation of α-Synuclein has been observed to inhibit the aggregation propensity of the protein. Here we investigate the monomer dynamics of two O-GlcNAcylated α-Synucleins, α-Syn(gT72) and α-Syn(gS87) and correlate them with the aggregation kinetics. We find that, compared to the unmodified protein, glycosylation at T72 makes the protein less compact and more diffusive while glycosylation at S87 makes the protein more compact and less diffusive. Based on a model of the earliest steps in aggregation, we predict that T72 should aggregate slower than unmodified protein, which is confirmed by ThT fluorescence measurements. In contrast, S87 should aggregate faster, which is not mirrored in ThT kinetics of later fibril formation but does not rule out a higher rate of formation of small oligomers. Together, these results show that posttranslational modifications do not uniformly affect aggregation propensity.
Collapse
|
14
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Venkatesh Y, Marotta NP, Lee VMY, Petersson EJ. Highly tunable bimane-based fluorescent probes: design, synthesis, and application as a selective amyloid binding dye. Chem Sci 2024; 15:6053-6063. [PMID: 38665526 PMCID: PMC11040648 DOI: 10.1039/d4sc00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Small molecule fluorescent probes are indispensable tools for a broad range of biological applications. Despite many probes being available, there is still a need for probes where photophysical properties and biological selectivity can be tuned as desired. Here, we report the rational design and synthesis of a palette of fluorescent probes based on the underexplored bimane scaffold. The newly developed probes with varied electronic properties show tunable absorption and emission in the visible region with large Stokes shifts. Probes featuring electron-donating groups exhibit rotor effects that are sensitive to polarity and viscosity by "intramolecular charge transfer" (ICT) and twisted intramolecular charge transfer (TICT) mechanisms, respectively. These properties enable their application as "turn-on" fluorescent probes to detect fibrillar aggregates of the α-synuclein (αS) protein that are a hallmark of Parkinson's disease (PD). One probe shows selective binding to αS fibrils relative to soluble proteins in cell lysates and amyloid fibrils of tau and amyloid-β. Finally, we demonstrate the diagnostic potential of the probe in selectively detecting αS fibrils amplified from PD with dementia (PDD) patient samples.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Nicholas P Marotta
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania 3600 Spruce Street Philadelphia PA 19104 USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania 3600 Spruce Street Philadelphia PA 19104 USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania 421 Curie Boulevard Philadelphia PA 19104 USA
| |
Collapse
|
16
|
Rupert J, Monti M, Zacco E, Tartaglia G. RNA sequestration driven by amyloid formation: the alpha synuclein case. Nucleic Acids Res 2023; 51:11466-11478. [PMID: 37870427 PMCID: PMC10681735 DOI: 10.1093/nar/gkad857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleic acids can act as potent modulators of protein aggregation, and RNA has the ability to either hinder or facilitate protein assembly, depending on the molecular context. In this study, we utilized a computational approach to characterize the physico-chemical properties of regions involved in amyloid aggregation. In various experimental datasets, we observed that while the core is hydrophobic and highly ordered, external regions, which are more disordered, display a distinct tendency to interact with nucleic acids. To validate our predictions, we performed aggregation assays with alpha-synuclein (aS140), a non-nucleic acid-binding amyloidogenic protein, and a mutant truncated at the acidic C-terminus (aS103), which is predicted to have a higher tendency to interact with RNA. For both aS140 and aS103, we observed an acceleration of aggregation upon RNA addition, with a significantly stronger effect for aS103. Due to favorable electrostatics, we noted an enhanced nucleic acid sequestration ability for the aggregated aS103, allowing it to entrap a larger amount of RNA compared to the aggregated wild-type counterpart. Overall, our research suggests that RNA sequestration might be a common phenomenon linked to protein aggregation, constituting a gain-of-function mechanism that warrants further investigation.
Collapse
Affiliation(s)
- Jakob Rupert
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Michele Monti
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Elsa Zacco
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
- Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
17
|
Ramirez J, Pancoe SX, Rhoades E, Petersson EJ. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023; 13:1476. [PMID: 37892158 PMCID: PMC10604467 DOI: 10.3390/biom13101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The small neuronal protein α-synuclein (αS) is found in pre-synaptic terminals and plays a role in vesicle recycling and neurotransmission. Fibrillar aggregates of αS are the hallmark of Parkinson's disease and related neurodegenerative disorders. In both health and disease, interactions with lipids influence αS's structure and function, prompting much study of the effects of lipids on αS aggregation. A comprehensive collection (126 examples) of aggregation rate data for various αS/lipid combinations was presented, including combinations of lipid variations and mutations or post-translational modifications of αS. These data were interpreted in terms of lipid structure to identify general trends. These tabulated data serve as a resource for the community to help in the interpretation of aggregation experiments with lipids and to be potentially used as inputs for computational models of lipid effects on aggregation.
Collapse
Affiliation(s)
- Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA;
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Galesic A, Pan B, Ramirez J, Rhoades E, Pratt MR, Petersson EJ. Combining non-canonical amino acid mutagenesis and native chemical ligation for multiply modifying proteins: A case study of α-synuclein post-translational modifications. Methods 2023; 218:101-109. [PMID: 37549799 PMCID: PMC10657485 DOI: 10.1016/j.ymeth.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked β-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.
Collapse
Affiliation(s)
- Ana Galesic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Perez R, Li X, Giannakoulias S, Petersson EJ. AggBERT: Best in Class Prediction of Hexapeptide Amyloidogenesis with a Semi-Supervised ProtBERT Model. J Chem Inf Model 2023; 63:5727-5733. [PMID: 37552230 PMCID: PMC10777593 DOI: 10.1021/acs.jcim.3c00817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The prediction of peptide amyloidogenesis is a challenging problem in the field of protein folding. Large language models, such as the ProtBERT model, have recently emerged as powerful tools in analyzing protein sequences for applications, such as predicting protein structure and function. In this article, we describe the use of a semisupervised and fine-tuned ProtBERT model to predict peptide amyloidogenesis from sequences alone. Our approach, which we call AggBERT, achieved state-of-the-art performance, demonstrating the potential for large language models to improve the accuracy and speed of amyloid fibril prediction over simple heuristics or structure-based approaches. This work highlights the transformative potential of machine learning and large language models in the fields of chemical biology and biomedicine.
Collapse
Affiliation(s)
- Ryann Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Kim HY, Chia WK, Hsieh CJ, Guarino DS, Graham TJA, Lengyel-Zhand Z, Schneider M, Tomita C, Lougee MG, Kim HJ, Pagar VV, Lee H, Hou C, Garcia BA, Petersson EJ, O’Shea J, Kotzbauer PT, Mathis CA, Lee VMY, Luk KC, Mach RH. A Novel Brain PET Radiotracer for Imaging Alpha Synuclein Fibrils in Multiple System Atrophy. J Med Chem 2023; 66:12185-12202. [PMID: 37651366 PMCID: PMC10617560 DOI: 10.1021/acs.jmedchem.3c00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy-N-(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)phenyl)benzamide (4i) as a PET radiotracer candidate for imaging α-syn. In vitro assays revealed high binding of 4i to recombinant α-syn fibrils (inhibition constant (Ki) = 6.1 nM) and low affinity for amyloid beta (Aβ) fibrils in Alzheimer's disease (AD) homogenates. However, [3H]4i also exhibited high specific binding to AD, progressive supranuclear palsy, and corticobasal degeneration tissues as well as PD and MSA tissues, suggesting notable affinity to tau. Nevertheless, the specific binding to pathologic α-syn aggregates in MSA post-mortem brain tissues was significantly higher than in PD tissues. This finding demonstrated the potential use of [11C]4i as a PET tracer for imaging α-syn in MSA patients. Nonhuman primate PET studies confirmed good brain uptake and rapid washout for [11C]4i.
Collapse
Affiliation(s)
- Ho Young Kim
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Wai Kit Chia
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Dinahlee Saturnino Guarino
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Thomas J. A. Graham
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Mark Schneider
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Cosette Tomita
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Marshall G. Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6303, USA
| | - Vinayak V. Pagar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6303, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jennifer O’Shea
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA
| | - Paul T. Kotzbauer
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-2676, USA
| | - Kelvin C. Luk
- Center for Neurodegenerative Disease Research, Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-2676, USA
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Vagelos Laboratories, 1012, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
21
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
22
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Janssen B, Tian G, Lengyel-Zhand Z, Hsieh CJ, Lougee MG, Riad A, Xu K, Hou C, Weng CC, Lopresti BJ, Kim HJ, Pagar VV, Ferrie JJ, Garcia BA, Mathis CA, Luk K, Petersson EJ, Mach RH. Identification of a Putative α-synuclein Radioligand Using an in silico Similarity Search. Mol Imaging Biol 2023; 25:704-719. [PMID: 36991273 PMCID: PMC10527666 DOI: 10.1007/s11307-023-01814-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE Previous studies from our lab utilized an ultra-high throughput screening method to identify compound 1 as a small molecule that binds to alpha-synuclein (α-synuclein) fibrils. The goal of the current study was to conduct a similarity search of 1 to identify structural analogs having improved in vitro binding properties for this target that could be labeled with radionuclides for both in vitro and in vivo studies for measuring α-synuclein aggregates. METHODS Using 1 as a lead compound in a similarity search, isoxazole derivative 15 was identified to bind to α-synuclein fibrils with high affinity in competition binding assays. A photocrosslinkable version was used to confirm binding site preference. Derivative 21, the iodo-analog of 15, was synthesized, and subsequently radiolabeled isotopologs [125I]21 and [11C]21 were successfully synthesized for use in in vitro and in vivo studies, respectively. [125I]21 was used in radioligand binding studies in post-mortem Parkinson's disease (PD) and Alzheimer's disease (AD) brain homogenates. In vivo imaging of an α-synuclein mouse model and non-human primates was performed with [11C]21. RESULTS In silico molecular docking and molecular dynamic simulation studies for a panel of compounds identified through a similarity search, were shown to correlate with Ki values obtained from in vitro binding studies. Improved affinity of isoxazole derivative 15 for α-synuclein binding site 9 was indicated by photocrosslinking studies with CLX10. Design and successful (radio)synthesis of iodo-analog 21 of isoxazole derivative 15 enabled further in vitro and in vivo evaluation. Kd values obtained in vitro with [125I]21 for α-synuclein and Aβ42 fibrils were 0.48 ± 0.08 nM and 2.47 ± 1.30 nM, respectively. [125I]21 showed higher binding in human postmortem PD brain tissue compared with AD tissue, and low binding in control brain tissue. Lastly, in vivo preclinical PET imaging showed elevated retention of [11C]21 in PFF-injected mouse brain. However, in PBS-injected control mouse brain, slow washout of the tracer indicates high non-specific binding. [11C]21 showed high initial brain uptake in a healthy non-human primate, followed by fast washout that may be caused by rapid metabolic rate (21% intact [11C]21 in blood at 5 min p.i.). CONCLUSION Through a relatively simple ligand-based similarity search, we identified a new radioligand that binds with high affinity (<10 nM) to α-synuclein fibrils and PD tissue. Although the radioligand has suboptimal selectivity for α-synuclein towards Aβ and high non-specific binding, we show here that a simple in silico approach is a promising strategy to identify novel ligands for target proteins in the CNS with the potential to be radiolabeled for PET neuroimaging studies.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guilong Tian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marshall G Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aladdin Riad
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chi-Chang Weng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vinayak V Pagar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Huang F, Wang Y, Zhang Y, Wang C, Lian J, Ding F, Sun Y. Dissecting the Self-assembly Dynamics of Imperfect Repeats in α-Synuclein. J Chem Inf Model 2023; 63:3591-3600. [PMID: 37253119 PMCID: PMC10363412 DOI: 10.1021/acs.jcim.3c00533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pathological aggregation of α-synuclein (αS) into amyloid fibrils is the hallmark of Parkinson's disease (PD). The self-assembly and membrane interactions of αS are mainly governed by the seven imperfect 11-residue repeats of the XKTKEGVXXXX motif around residues 1-95. However, the particular role of each repeat in αS fibrillization remains unclear. To answer this question, we studied the aggregation dynamics of each repeat with up to 10 peptides in silico by conducting multiple independent micro-second atomistic discrete molecular dynamics simulations. Our simulations revealed that only repeats R3 and R6 readily self-assembled into β-sheet-rich oligomers, while the other repeats remained as unstructured monomers with weak self-assembly and β-sheet propensities. The self-assembly process of R3 featured frequent conformational changes with β-sheet formation mainly in the non-conserved hydrophobic tail, whereas R6 spontaneously self-assembled into extended and stable cross-β structures. These results of seven repeats are consistent with their structures and organization in recently solved αS fibrils. As the primary amyloidogenic core, R6 was buried inside the central cross-β core of all αS fibrils, attracting the hydrophobic tails of adjacent R4, R5, and R7 repeats forming β-sheets around R6 in the core. Further away from R6 in the sequence but with a moderate amyloid aggregation propensity, the R3 tail could serve as a secondary amyloidogenic core and form independent β-sheets in the fibril. Overall, our results demonstrate the critical role of R3 and R6 repeats in αS amyloid aggregation and suggest their potential as targets for the peptide-based and small-molecule amyloid inhibitors.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
25
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
26
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc modification forces the formation of an α-Synuclein amyloid-strain with notably diminished seeding activity and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531573. [PMID: 36945566 PMCID: PMC10028859 DOI: 10.1101/2023.03.07.531573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.
Collapse
Affiliation(s)
- Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Binh A Nguyen
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Eldon R. Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Preeti Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Shumaila Afrin
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Rose Pedretti
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virender Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virginia M.-Y. Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C. Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
27
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|