1
|
Chonanant C, Chancharoen P, Kiatkulanusorn S, Luangpon N, Klarod K, Surakul P, Thamwiriyasati N, Singsanan S, Ngernyuang N. Biocomposite Scaffolds Based on Chitosan Extraction from Shrimp Shell Waste for Cartilage Tissue Engineering Application. ACS OMEGA 2024; 9:39419-39429. [PMID: 39346874 PMCID: PMC11425810 DOI: 10.1021/acsomega.4c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Chitosan-based scaffolding possesses unique properties that make it highly suitable for tissue engineering applications. Chitosan is derived from deacetylating chitin, which is particularly abundant in the shells of crustaceans. This study aimed to extract chitosan from shrimp shell waste (Macrobrachium rosenbergii) and produce biocomposite scaffolds using the extracted chitosan for cartilage tissue engineering applications. Chitinous material from shrimp shell waste was deproteinized and deacetylated. The extracted chitosan was characterized and compared to commercial chitosan through various physicochemical analyses. The findings revealed that the extracted chitosan shares similar trends in the Fourier transform infrared spectroscopy spectrum, energy dispersive X-ray mapping, and X-ray diffraction pattern to commercial chitosan. Despite differences in the degree of deacetylation, these results underscore its comparable quality. The extracted chitosan was mixed with agarose, collagen, and gelatin to produce the blending biocomposite AG-CH-COL-GEL scaffold by freeze-drying method. Results showed AG-CH-COL-GEL scaffolds have a 3D interconnected porous structure with pore size 88-278 μm, high water uptake capacity (>90%), and degradation percentages in 21 days between 5.08% and 30.29%. Mechanical compression testing revealed that the elastic modulus of AG-CH-COL-GEL scaffolds ranged from 44.91 to 201.77 KPa. Moreover, AG-CH-COL-GEL scaffolds have shown significant potential in effectively inducing human chondrocyte proliferation and enhancing aggrecan gene expression. In conclusion, AG-CH-COL-GEL scaffolds emerge as promising candidates for cartilage tissue engineering with their optimal physical properties and excellent biocompatibility. This study highlights the potential of using waste-derived chitosan and opens new avenues for sustainable and effective tissue engineering solutions.
Collapse
Affiliation(s)
- Chirapond Chonanant
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Pongrung Chancharoen
- Department
of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sirirat Kiatkulanusorn
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Nongnuch Luangpon
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kultida Klarod
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Pornprom Surakul
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Niramon Thamwiriyasati
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Sanita Singsanan
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Nipaporn Ngernyuang
- Thammasat
University Research Unit in Biomedical Science, Thammasat University, Pathum
Thani 12120, Thailand
- Chulabhorn
International College of Medicine, Thammasat
University, Pathum
Thani 12120, Thailand
| |
Collapse
|
2
|
Zhao X, Zhang Y, Wang P, Guan J, Zhang D. Construction of multileveled and oriented micro/nano channels in Mg doped hydroxyapitite bioceramics and their effect on mimicking mechanical property of cortical bone and biological performance of cancellous bone. BIOMATERIALS ADVANCES 2024; 161:213871. [PMID: 38692181 DOI: 10.1016/j.bioadv.2024.213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yu Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jinxin Guan
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dexin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
3
|
Osuchukwu OA, Salihi A, Ibrahim A, Audu AA, Makoyo M, Mohammed SA, Lawal MY, Etinosa PO, Isaac IO, Oni PG, Oginni OG, Obada DO. Weibull analysis of ceramics and related materials: A review. Heliyon 2024; 10:e32495. [PMID: 39021991 PMCID: PMC11252889 DOI: 10.1016/j.heliyon.2024.e32495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
It has been realized throughout the years that an ideal combination of high toughness, hardness and strength is required in many engineering applications that need load-bearing capabilities. Ceramics and related materials have significant constraints for structural and particular non-structural applications due to their low toughness and limited strength while having substantially superior hardness than typical metallic materials. For example, hydroxyapatite (HAp) has gained attention for applications in orthopaedic implants, dental materials, drug delivery, etc. Researchers have continued to strive to produce HAp materials with reliable properties within the acceptable Weibull modulus (m) for load bearing. The Weibull analysis (WA) is a statistical analysis adopted widely in reliability applications to detect failure periods. Researchers have confirmed it to be an effective technique to get results on the reliability of materials at a moderately low rate with assured reliability of the material or component. This review summarizes the WA and the steps in the Weibull method for its reliability analysis to predict the failure rate of ceramics like HAp and other related materials. Also, the applications of WA for these materials were reviewed. From the review, it was discovered that Weibull distribution is proven to confer to the feeblest-link concept. For brittle materials, it was revealed that the Weibull Modulus ranges from 2 to 40, and environment, production processes, and comparative factors are well-thought-out contributing factors for reliability. In addition, the confidence interval can be up to 95 %. The frequently used technique for reliability valuation is to syndicate the Weibull statistics. Also, a very narrow distribution is desirable to offer the expected likelihood. Furthermore, when paired with trials, Monte Carlo simulations prove to be a very helpful tool for forecasting the dependability of different estimate techniques and their optimization. Finally, if the equivalent m is anticipated to be high, it signifies that the material has a high degree of homogeneity of properties and high reliability. WA can find application in predicting the dependability and lifetime of materials, making it widely utilized in engineering and other disciplines. It is especially useful for analysing data in which the likelihood of failure per unit of time varies over time.
Collapse
Affiliation(s)
- Obinna Anayo Osuchukwu
- Department of Mechanical Engineering, Bayero University, Kano, 700241, Nigeria
- Multifunctional Materials Laboratory, Shell Office Complex, Department of Mechanical Engineering, Ahmadu Bello University, Zaria, 810222, Nigeria
| | - Abdu Salihi
- Department of Mechanical Engineering, Bayero University, Kano, 700241, Nigeria
| | - Abdullahi Ibrahim
- Department of Mechanical Engineering, Bayero University, Kano, 700241, Nigeria
| | | | - Mahdi Makoyo
- Department of Mechanical Engineering, Bayero University, Kano, 700241, Nigeria
| | | | - Mohammed Y. Lawal
- Mechanical Engineering Department, Nigerian Defence Academy, Kaduna, PMB 2109, Nigeria
| | - Precious Osayamen Etinosa
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Ibitoye Opeyemi Isaac
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Peter Gbenga Oni
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | | | - David Olubiyi Obada
- Department of Mechanical Engineering, Ahmadu Bello University, Zaria, 810222, Nigeria
- Africa Centre of Excellence on New Pedagogies in Engineering Education, Ahmadu Bello University, Zaria, 810222, Nigeria
- Multifunctional Materials Laboratory, Shell Office Complex, Department of Mechanical Engineering, Ahmadu Bello University, Zaria, 810222, Nigeria
| |
Collapse
|
4
|
Ajisafe VA, Raichur AM. Snail Mucus-Enhanced Adhesion of Human Chondrocytes on 3D Porous Agarose Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11324-11335. [PMID: 38406881 DOI: 10.1021/acsami.3c19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This study reports the preparation of a novel porous 3D scaffold from agarose-snail mucus (AGSMu) for cartilage tissue repair applications. AG is reported for its unique thermal and mechanical properties, biocompatibility, and biodegradability, making it suitable for biomedical applications. Still, it lacks the cell adhesion properties required for tissue engineering applications. SMu is a complex substance identified to contain glycosaminoglycans (GAGs) and other bioactive molecules that promote wound healing and reduce cartilage deterioration and inflammation. Hence, porous 3D blend scaffolds containing AG and SMu were prepared by the freeze-drying method, characterized, and investigated for bioactive effects on human chondrocyte (C28/I2) cells. The scaffolds had a microporous structure with an average pore size of 245 μm. FTIR spectroscopy showed that SMu was successfully incorporated into the scaffolds. The SMu increased the mechanical strength of the composite scaffolds by more than 80% compared to the pristine AG scaffold. The scaffolds were found to be biocompatible with tunable degradation. The human chondrocyte cells attached and proliferated well on the 3D scaffolds in a few days, demonstrating a marked improvement in adhesion due to the presence of SMu. Enhanced cell adhesion and mechanical properties of 3D porous AG scaffolds could make them suitable for articular cartilage repair and regeneration.
Collapse
Affiliation(s)
- Victor A Ajisafe
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Vaiani L, Boccaccio A, Uva AE, Palumbo G, Piccininni A, Guglielmi P, Cantore S, Santacroce L, Charitos IA, Ballini A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J Funct Biomater 2023; 14:146. [PMID: 36976070 PMCID: PMC10052110 DOI: 10.3390/jfb14030146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A growing interest in creating advanced biomaterials with specific physical and chemical properties is currently being observed. These high-standard materials must be capable to integrate into biological environments such as the oral cavity or other anatomical regions in the human body. Given these requirements, ceramic biomaterials offer a feasible solution in terms of mechanical strength, biological functionality, and biocompatibility. In this review, the fundamental physical, chemical, and mechanical properties of the main ceramic biomaterials and ceramic nanocomposites are drawn, along with some primary related applications in biomedical fields, such as orthopedics, dentistry, and regenerative medicine. Furthermore, an in-depth focus on bone-tissue engineering and biomimetic ceramic scaffold design and fabrication is presented.
Collapse
Affiliation(s)
- Lorenzo Vaiani
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Boccaccio
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Emmanuele Uva
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Gianfranco Palumbo
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Piccininni
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Pasquale Guglielmi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Cantore
- Independent Researcher, Sorriso & Benessere-Ricerca e Clinica, 70129 Bari, Italy
| | - Luigi Santacroce
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgency Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
| | - Andrea Ballini
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
The Effect of Germanium-Loaded Hydroxyapatite Biomaterials on Bone Marrow Mesenchymal Stem Cells Growth. Cells 2022; 11:cells11192993. [PMID: 36230954 PMCID: PMC9563598 DOI: 10.3390/cells11192993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding natural and synthetic materials. In this sense, the germanium (Ge) mineral was loaded in HA biomaterial by cold isostatic pressure for the first time and characterization and biocompatibility using bone marrow mesenchymal stem cells (BM-MSCs) were investigated. The addition of Ge at 5% improved the solubility (3.32%), stiffness (18.34 MPa), water holding (31.27%) and biodegradation (21.87%) properties of HA, compared to control. Compared to all composite biomaterials, the drug-releasing behavior of HA-3% Ge was higher at pH 1 and 3 and the maximum drug release was obtained at pH 7 and 9 with HA-5% Ge biomaterials. Among the different mediums tested, the DMEM-medium showed a higher drug release rate, especially at 60 min. HA-Ge biomaterials showed better protein adhesion and apatite layer formation, which ultimately proves the compatibility in BM-MSCs culture. Except for higher concentrations of HA (5 and 10 mg/mL), the different concentrations of Ge and HA and wells coated with 1% of HA-1% Ge had higher BM-MSCs growth than control. All these findings concluded that the fabricated HA biomaterials loaded with Ge could be the potential biomaterial for culturing mammalian cells towards mineralized tissue repair and regeneration.
Collapse
|
7
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
8
|
Henning LM, Müller JT, Smales GJ, Pauw BR, Schmidt J, Bekheet MF, Gurlo A, Simon U. Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential. NANOSCALE ADVANCES 2022; 4:3892-3908. [PMID: 36133322 PMCID: PMC9470055 DOI: 10.1039/d2na00368f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77-49%), mesopore size (6.2-5.2 nm), pore volume (0.50-0.22 g cm-3), and specific surface area (451-180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 °C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 × 10-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling.
Collapse
Affiliation(s)
- Laura M Henning
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Julian T Müller
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 6.5 - Polymers in Life Sciences and Nanotechnology Unter den Eichen 87 12205 Berlin Germany +49 30 8104 3314
| | - Brian R Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 6.5 - Polymers in Life Sciences and Nanotechnology Unter den Eichen 87 12205 Berlin Germany +49 30 8104 3314
| | - Johannes Schmidt
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Chair of Functional Materials Straße des 17. Juni 135 10623 Berlin Germany
| | - Maged F Bekheet
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Aleksander Gurlo
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| | - Ulla Simon
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany +49 30 314 70483
| |
Collapse
|
9
|
Ma J, Wu S, Liu J, Liu C, Ni S, Dai T, Wu X, Zhang Z, Qu J, Zhao H, Zhou D, Zhao X. Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model. Biomater Sci 2022; 10:4635-4655. [PMID: 35796642 DOI: 10.1039/d2bm00547f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiaoyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Zhenyu Zhang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
Ruiz-Ramírez LR, Álvarez-Ortega O, Donohue-Cornejo A, Espinosa-Cristóbal LF, Farias-Mancilla JR, Martínez-Pérez CA, Reyes-López SY. Poly-ε-Caprolactone-Hydroxyapatite-Alumina (PCL-HA-α-Al 2O 3) Electrospun Nanofibers in Wistar Rats. Polymers (Basel) 2022; 14:2130. [PMID: 35683803 PMCID: PMC9182750 DOI: 10.3390/polym14112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Biodegradable polymers of natural origin are ideal for the development of processes in tissue engineering due to their immunogenic potential and ability to interact with living tissues. However, some synthetic polymers have been developed in recent years for use in tissue engineering, such as Poly-ε-caprolactone. The nanotechnology and the electrospinning process are perceived to produce biomaterials in the form of nanofibers with diverse unique properties. Biocompatibility tests of poly-ε-caprolactone nanofibers embedded with hydroxyapatite and alumina nanoparticles manufactured by means of the electrospinning technique were carried out in Wistar rats to be used as oral dressings. Hydroxyapatite as a material is used because of its great compatibility, bioactivity, and osteoconductive properties. The PCL, PCL-HA, PCL-α-Al2O3, and PCL-HA-α-Al2O3 nanofibers obtained in the process were characterized by infrared spectroscopy and scanning electron microscopy. The nanofibers had an average diameter of (840 ± 230) nm. The nanofiber implants were placed and tested at 2, 4, and 6 weeks in the subcutaneous tissue of the rats to give a chronic inflammatory infiltrate, characteristic foreign body reaction, which decreased slightly at 6 weeks with the addition of hydroxyapatite and alumina ceramic particles. The biocompatibility test showed a foreign body reaction that produces a layer of collagen and fibroblasts. Tissue loss and necrosis were not observed due to the coating of the material, but a slight decrease in the inflammatory infiltrate occurred in the last evaluation period, which is indicative of the beginning of the acceptance of the tested materials by the organism.
Collapse
Affiliation(s)
- Luis Roberto Ruiz-Ramírez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| | - Oskar Álvarez-Ortega
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| | - Alejandro Donohue-Cornejo
- Departamento de Estomatología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (A.D.-C.); (L.F.E.-C.)
| | - León Francisco Espinosa-Cristóbal
- Departamento de Estomatología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (A.D.-C.); (L.F.E.-C.)
| | - José Rurik Farias-Mancilla
- Institute of Engineering and Technology, Autonomous University of the City of Juárez, UACJ, Ciudad Juárez 32310, Mexico; (J.R.F.-M.); (C.A.M.-P.)
| | - Carlos A. Martínez-Pérez
- Institute of Engineering and Technology, Autonomous University of the City of Juárez, UACJ, Ciudad Juárez 32310, Mexico; (J.R.F.-M.); (C.A.M.-P.)
| | - Simón Yobanny Reyes-López
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32315, Mexico; (L.R.R.-R.); (O.Á.-O.)
| |
Collapse
|
11
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Front Bioeng Biotechnol 2022; 10:825831. [PMID: 35372306 PMCID: PMC8971796 DOI: 10.3389/fbioe.2022.825831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 01/17/2023] Open
Abstract
The reconstruction of critical-sized segmental bone defects is a key challenge in orthopedics because of its intractability despite technological advancements. To overcome this challenge, scaffolds that promote rapid bone ingrowth and subsequent bone replacement are necessary. In this study, we fabricated three types of carbonate apatite honeycomb (HC) scaffolds with uniaxial channels bridging the stumps of a host bone. These HC scaffolds possessed different channel and micropore volumes. The HC scaffolds were implanted into the defects of rabbit ulnar shafts to evaluate the effects of channels and micropores on bone reconstruction. Four weeks postoperatively, the HC scaffolds with a larger channel volume promoted bone ingrowth compared to that with a larger micropore volume. In contrast, 12 weeks postoperatively, the HC scaffolds with a larger volume of the micropores rather than the channels promoted the scaffold resorption by osteoclasts and bone formation. Thus, the channels affected bone ingrowth in the early stage, and micropores affected scaffold resorption and bone formation in the middle stage. Furthermore, 12 weeks postoperatively, the HC scaffolds with large volumes of both channels and micropores formed a significantly larger amount of new bone than that attained using HC scaffolds with either large volume of channels or micropores, thereby bridging the host bone stumps. The findings of this study provide guidance for designing the pore structure of scaffolds.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Liu Q, Lu WF, Zhai W. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112578. [PMID: 35525758 DOI: 10.1016/j.msec.2021.112578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022]
Abstract
Among different treatments of critical-sized bone defects, bone tissue engineering (BTE) is a fast-developing strategy centering around the fabrication of scaffolds that can stimulate tissue regeneration and provide mechanical support at the same time. This area has seen an extensive application of bioceramics, such as calcium phosphate, for their bioactivity and resemblance to the composition of natural bones. Moreover, recent advances in additive manufacturing (AM) have unleashed enormous potential in the fabrication of BTE scaffolds with tailored porous structures as well as desired biological and mechanical properties. Robocasting is an AM technique that has been widely applied to fabricate calcium phosphate scaffolds, but most of these scaffolds do not meet the mechanical requirements for load-bearing BTE scaffolds. In light of this challenge, various approaches have been utilized to mechanically strengthen the scaffolds. In this review, the current state of knowledge and existing research on robocasting of calcium phosphate scaffolds are presented. Applying the Gibson-Ashby model, this review provides a meta-analysis from the published literature of the compressive strength of robocast calcium phosphate scaffolds. Furthermore, this review evaluates different approaches to the mechanical strengthening of robocast calcium phosphate scaffolds. The aim of this review is to provide insightful data and analysis for future research on mechanical strengthening of robocast calcium phosphate scaffolds and ultimately for their clinical applications.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
13
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
14
|
Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, Hasan A, Khan R, Khan SUD, Shakir I. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. J Tissue Eng Regen Med 2021; 15:322-335. [PMID: 33432773 DOI: 10.1002/term.3168] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
The importance of bone scaffolds has increased many folds in the last few years; however, during bone implantation, bacterial infections compromise the implantation and tissue regeneration. This work is focused on this issue while not compromising on the properties of a scaffold for bone regeneration. Biocomposite scaffolds (BS) were fabricated via the freeze-drying technique. The samples were characterized for structural changes, surface morphology, porosity, and mechanical properties through spectroscopic (Fourier transform-infrared [FT-IR]), microscopic (scanning electron microscope [SEM]), X-ray (powder X-ray diffraction and energy-dispersive X-ray), and other analytical (Brunauer-Emmett-Teller, universal testing machine Instron) techniques. Antibacterial, cellular, and hemocompatibility assays were performed using standard protocols. FT-IR confirmed the interactions of all the components. SEM illustrated porous and interconnected porous morphology. The percentage porosity was in the range of 49.75%-67.28%, and the pore size was 215.65-470.87 µm. The pore size was perfect for cellular penetration. Thus, cells showed significant proliferation onto these scaffolds. X-ray studies confirmed the presence of nanohydroxyapatite and graphene oxide (GO). The cell viability was 85%-98% (BS1-BS3), which shows no significant toxicity of the biocomposite. Furthermore, the biocomposites exhibited better antibacterial activity, no effect on the blood clotting (normal in vitro blood clotting), and less than 5% hemolysis. The ultimate compression strength for the biocomposites increased from 4.05 to 7.94 with an increase in the GO content. These exciting results revealed that this material has the potential for possible application in bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Saqlain A Shah
- Physics Department, Nanotechnology and Biomaterials Lab, Forman Christian College University, Lahore, Pakistan
| | - Anwarul Hasan
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Salah-Ud Din Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Imran Shakir
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Abstract
As the largest organ in the human body, the skin has the function of maintaining balance and protecting from external factors such as bacteria, chemicals, and temperature. If the wound does not heal in time after skin damage, it may cause infection or life-threatening complications. In particular, medical treatment of large skin defects caused by burns or trauma remains challenging. Therefore, human bioengineered skin substitutes represent an alternative approach to treat such injuries. Based on the chemical composition and scaffold material, skin substitutes can be classified into acellular or cellular grafts, as well as natural-based or synthetic skin substitutes. Further, they can be categorized as epidermal, dermal, and composite grafts, based on the skin component they contain. This review presents the common commercially available skin substitutes and their clinical use. Moreover, the choice of an appropriate hydrogel type to prepare cell-laden skin substitutes is discussed. Additionally, we present recent advances in the field of bioengineered human skin substitutes using three-dimensional (3D) bioprinting techniques. Finally, we discuss different skin substitute developments to meet different criteria for optimal wound healing.
Collapse
|
16
|
Mosiman DS, Chen YS, Yang L, Hawkett B, Ringer SP, Mariñas BJ, Cairney JM. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. SMALL METHODS 2021; 5:e2000692. [PMID: 34927889 DOI: 10.1002/smtd.202000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi-Sheng Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Limei Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brian Hawkett
- Key Centre for Polymer Colloids School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Simon P Ringer
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
17
|
Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res 2021; 384:403-421. [PMID: 33433691 DOI: 10.1007/s00441-020-03374-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/β-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.
Collapse
Affiliation(s)
- Sheida Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Factors governing the dimensional accuracy and fracture modes under compression of regular and shifted orthogonal scaffolds. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2020.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111639. [PMID: 33321677 DOI: 10.1016/j.msec.2020.111639] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023]
Abstract
Additive manufacturing holds promise for the fabrication of three-dimensional scaffolds with precise geometry, to serve as substrates for the guided regeneration of natural tissue. In this work, a bioinspired approach is adopted for the synthesis of hybrid hydroxyapatite hydrogels, which were subsequently printed to form 3D scaffolds for bone tissue engineering applications. These hydrogels consist of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of both chitosan and l-arginine. To improve their mechanical properties, chemical crosslinking was performed using a natural crosslinking agent (genipin), and their rheology was modified by employing an acetic acid/gelatin solution. Regarding the 3D printing process, several parameters (flow, infill and perimeter speed) were studied in order to accurately produce scaffolds with predesigned geometry and micro-architecture, while also applying low printing temperature (15 °C). Following the printing procedure, the 3D scaffolds were freeze dried in order to remove the entrapped solvents and therefore, obtain a porous interconnected network. Evaluation of porosity was performed using micro-computed tomography and nanomechanical properties were assessed through nanoindentation. Results of both characterization techniques, showed that the scaffolds' porosity as well as their modulus values, fall within the corresponding range of the respective values of cancellous bone. The biocompatibility of the 3D printed scaffolds was assessed using MG63 human osteosarcoma cells for 7 days of culturing. Cell viability was evaluated by MTT assay as well as double staining and visualized under fluorescence microscopy, while cell morphology was analyzed through scanning electron microscopy. Biocompatibility tests, revealed that the scaffolds constitute a cell-friendly environment, allowed them to adhere on the scaffolds' surface, increase their population and maintain high levels of viability.
Collapse
|
20
|
Biodegradable nanocomposite Fe–Ag load-bearing scaffolds for bone healing. J Mech Behav Biomed Mater 2019; 98:246-254. [DOI: 10.1016/j.jmbbm.2019.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/07/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
|
21
|
Zucchini A, Comodi P, Di Michele A, Vivani R, Mancini L, Lanzafame G, Casagrande S, Gentili S, Vetere F, Bartolucci L, Polidori G, Santinelli F, Neri A. Effect of the Nano-Ca(OH) 2 Addition on the Portland Clinker Cooking Efficiency. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12111787. [PMID: 31159493 PMCID: PMC6600755 DOI: 10.3390/ma12111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
A new technology was tested to improve the cooking efficiency of the raw mixture for Portland clinker production by the use of nano-Ca(OH)2. A decrease in the free lime concentration after the firing of approximately 35% and 55% in the nano-added clinkers burned at 1350 °C and 1450 °C, respectively, with respect to the standard Portland clinkers was observed. Moreover, in the nano-added clinkers, a slight decrease in alite (C3S), of approximately 2-4 wt%, and increase in belite (C2S), of approximately 5-6 wt%, were observed. Despite these variations, the C2S and C3S abundance lies within the ranges for standard Portland clinkers. The results showed that the nano-addition leads to an increase of the raw mixtures' cooking efficiency. The relatively low energy required for the clinker firing could be used to increase the plant productivity and decrease the CO2 emissions during clinker burning. The decrease of the work index of the clinkers produced by the use of the nano-Ca(OH)2 also contributes to the energy saving during clinker grinding. Differences were also found in the pore size distribution among nano-added clinkers and the standard Portland clinker. The smallest porosities with the modal volume lying in the class of 3∙10-6 mm3 were found to increase by the use of nano-Ca(OH)2. However, the pore volumes higher than 2.0∙10-5 mm3 decreased in the nano-added clinkers.
Collapse
Affiliation(s)
- Azzurra Zucchini
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | - Paola Comodi
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabbretti, 06123 Perugia, Italy.
| | - Lucia Mancini
- Elettra - Sincrotrone Trieste S.C.p.A., SS 14, Km 163.5 in Area Science Park, 34149 Basovizza (Trieste), Italy.
| | - Gabriele Lanzafame
- Elettra - Sincrotrone Trieste S.C.p.A., SS 14, Km 163.5 in Area Science Park, 34149 Basovizza (Trieste), Italy.
| | - Serena Casagrande
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabbretti, 06123 Perugia, Italy.
| | - Silvia Gentili
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | - Francesco Vetere
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
- Institut of Mineralogy, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany.
| | - Luca Bartolucci
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | - Gianluca Polidori
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy.
| | | | | |
Collapse
|
22
|
A Simple Estimation Method of Weibull Modulus and Verification with Strength Data. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study examines methods for simplifying estimation of the Weibull modulus. This parameter is an important instrument in understanding the statistical behavior of the strength of materials, especially those of brittle solids. It is shown that a modification of Robinson’s approximate expression can provide good estimates of Weibull modulus values (m) in terms of average strength (<σ>) and standard deviation (S): m = 1.10 <σ>/S. This modified Robinson relation is verified on the basis of 267 Weibull analyses accompanied by <σ> and S measurements. Estimated m values matched normally obtained m values on average within 1%, and each pair of m values was within ± 20%, except for 11 cases. Applications are discussed, indicating that the above relation can offer a quantitative tool based on the Weibull theory to engineering practice. This survey suggests a rule of thumb: ductile metal alloys have Weibull moduli of 10 to 200.
Collapse
|
23
|
Liu F, Liu Y, Li X, Wang X, Li D, Chung S, Chen C, Lee IS. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. J Biomater Appl 2019; 33:1168-1177. [PMID: 30665312 DOI: 10.1177/0885328218825177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To investigate the osteogenesis of macro-pore sized bone scaffolds, biphasic calcium phosphate scaffolds with accurately controlled macro-pore size (0.8, 1.2, and 1.6 mm) and identical porosity of 70% were fabricated by the 3D printing technology. Eight New Zealand rabbits were selected in the present study, while four 8-mm-diameter calvarial defects were created in each rabbit to place BCP scaffolds with different macro-pore size. The harvested specimens of four and eight weeks were used to evaluate the bone forming ability by micro CT and histological examination. All 3D-printed BCP scaffolds exhibited excellent mechanical properties and had better bone-forming ability than the control at both four and eight weeks. Among them, scaffold with 0.8 mm pore size was superior for initial bone formation and maturation, resulting in the highest value of total bone formation.
Collapse
Affiliation(s)
- Fan Liu
- 1 Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China.,3 Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yi Liu
- 1 Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Xinyu Li
- 2 Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xiaohong Wang
- 1 Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Danni Li
- 4 Department of Medical Oncology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - SungMin Chung
- 5 Biomaterials R&D Center, GENOSS Co., Ltd., Suwon, Republic of Korea
| | - Cen Chen
- 6 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - In-Seop Lee
- 7 College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China.,8 Institute of Natural Sciences, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydr Polym 2019; 204:59-67. [DOI: 10.1016/j.carbpol.2018.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
|
25
|
Deng S, Wang Y, Zhuang G, Zhong X, Wei Z, Yao Z, Wang JG. Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Phys Chem Chem Phys 2019; 21:12895-12904. [DOI: 10.1039/c9cp01582e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A part of the solid phase in bicontinuous structures sustains the deformation and larger pore sizes result in lower Young's moduli.
Collapse
Affiliation(s)
- Shengwei Deng
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Yinbin Wang
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Guilin Zhuang
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Xing Zhong
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Zhongzhe Wei
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Zihao Yao
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| | - Jian-guo Wang
- Institute of Industrial Catalysis
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310032
| |
Collapse
|
26
|
Preparation of Nano-Hydroxyapatite Coated Carbon Nanotube Reinforced Hydroxyapatite Composites. COATINGS 2018. [DOI: 10.3390/coatings8100357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uniform and dense nano-hydroxyapatite (nHA) coating with nanorod-shaped structure was fabricated on carbon nanotubes (CNTs) by combining electrodeposition with biomineralization. The CNTs with nHA coating (nHA–CNTs) were used as reinforcement to improve the mechanical properties of HA. Firstly, a mixed acid solution of nitric acid and sulfuric acid was used to treat CNTs (NS–CNTs). The dispersion of NS–CNTs was obviously improved, and O-containing functional groups were grafted on the surfaces of NS–CNTs by treatment. Then, calcium phosphate (CaP) was deposited on NS–CNTs by electrodeposition, and NS–CNTs were provided with numerous active nucleation sites for the next coating preparation process. Then nanorod-shaped HA crystals were obtained on the surfaces of NS–CNTs by biomineralization. Using the CNTs with nHA coating (nHA–CNTs) as reinforcement, HA-based composites reinforced with CNTs and nHA–CNTs (nHA–CNTs/HA) were fabricated by pressure-less process. Bending strength and fracture toughness of 1.0 wt % nHA–CNTs reinforced HA composites (HAnC1) reaches a maximum (30.77 MPa and 2.59 MPa), which increased by 26.94% and 7.02% compared with 1.0 wt % CNTs reinforced HA composites, respectively. Importantly, the fracture toughness of HAnC1 is within the range of that to compact bone. This work provides theoretical and practical guidance for preparing nHA coating on nanomaterials. It also contributes to the potential application of nHA–CNTs/HA composites for artificial bone implants.
Collapse
|
27
|
Zhao X, Liu Q, Yang J, Zhang W, Wang Y. Sintering Behavior and Mechanical Properties of Mullite Fibers/Hydroxyapatite Ceramic. MATERIALS 2018; 11:ma11101859. [PMID: 30274239 PMCID: PMC6212928 DOI: 10.3390/ma11101859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
The effect of fiber content and sintering temperature on sintering behavior and mechanical properties of mullite fibers/hydroxyapatite composites was studied. The composites were fabricated by hydrothermal synthesis and pressureless sintering. The amount of fibers was varied from 5 wt % to 15 wt % through hydrothermal synthesis, mullite fibers and hydroxyapatite composite powders were subsequently sintered at temperatures of 1150, 1250, and 1350 °C. The composites presented a more perturbed structure by increasing fiber content. Moreover, the composites experienced pore coalescence and exhibited a dense microstructure at elevated temperature. X-ray diffraction indicated that the composites underwent various chemical reactions and generated silicate glasses. The generation of silicate glasses increased the driving force of particle rearrangement and decreased the number of pores, which promoted densification of the composites. Densification typically leads to increased hardness and bending strength. The study proposes a densification mechanism and opens new insights into the sintering properties of these materials.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qingyao Liu
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jianjun Yang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Weigang Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yao Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
28
|
Ahlfeld T, Doberenz F, Kilian D, Vater C, Korn P, Lauer G, Lode A, Gelinsky M. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Biofabrication 2018; 10:045002. [PMID: 30004388 DOI: 10.1088/1758-5090/aad36d] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to their characteristic resemblance of the mineral component of bone, calcium phosphates are widely accepted as optimal bone substitute materials. Recent research focused on the development of pasty calcium phosphate cement (CPC) formulations, which can be fabricated into various shapes by low-temperature extrusion-based additive manufacturing, namely 3D plotting. While it could be demonstrated that sensitive substances like growth factors can be integrated in such printed CPC scaffolds without impairment of their biological activity live cells cannot be suspended in CPC as they may not be functional when enclosed in a solid and stiff matrix. In contrast, 3D bioprinting of soft cell-laden hydrogels (bioinks) enables the fabrication of constructs with spatially defined cell distribution, which has the potential to overcome problems of conventional cell seeding techniques-but such objects lack mechanical stability. Herein, we combine 3D plotting of CPC and bioprinting of a cell-laden bioink for the first time. As model bioink, an alginate-methylcellulose blend (alg/mc) was used, previously developed by us. Firstly, a fabrication regime was established, enabling optimal setting of CPC and cell survival inside the bioink. As the cells are exposed to the chemical changes of CPC precursors during setting, we studied the compatibility of the complex system of CPC and cell-laden alg/mc for a combined extrusion process and characterized the cellular behavior of encapsulated human mesenchymal stroma cells within the bioink at the interface and in direct vicinity to the CPC. Furthermore, biphasic scaffolds were mechanically characterized and a model for osteochondral tissue grafts is proposed. The manuscript discusses possible impacts of the CPC setting reaction on cells within the bioink and illustrates the advantages of CPC in bioprinting as alternative to the commonly used thermoplasts for bone tissue engineering.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Babaie E, Bhaduri SB. Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomater Sci Eng 2017; 4:1-39. [DOI: 10.1021/acsbiomaterials.7b00615] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elham Babaie
- Department
of Bioengineering, Bioscience Research Collaborative, Rice University, Houston, Texas 77030, United States
| | - Sarit B. Bhaduri
- Department
of Mechanical and Industrial Engineering and Division of Dentistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
30
|
Joly-Lopez Z, Forczek E, Vello E, Hoen DR, Tomita A, Bureau TE. Abiotic Stress Phenotypes Are Associated with Conserved Genes Derived from Transposable Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:2027. [PMID: 29250089 PMCID: PMC5715367 DOI: 10.3389/fpls.2017.02027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/14/2017] [Indexed: 05/08/2023]
Abstract
Plant phenomics offers unique opportunities to accelerate our understanding of gene function and plant response to different environments, and may be particularly useful for studying previously uncharacterized genes. One important type of poorly characterized genes is those derived from transposable elements (TEs), which have departed from a mobility-driven lifestyle to attain new adaptive roles for the host (exapted TEs). We used phenomics approaches, coupled with reverse genetics, to analyze T-DNA insertion mutants of both previously reported and novel protein-coding exapted TEs in the model plant Arabidopsis thaliana. We show that mutations in most of these exapted TEs result in phenotypes, particularly when challenged by abiotic stress. We built statistical multi-dimensional phenotypic profiles and compared them to wild-type and known stress responsive mutant lines for each particular stress condition. We found that these exapted TEs may play roles in responses to phosphate limitation, tolerance to high salt concentration, freezing temperatures, and arsenic toxicity. These results not only experimentally validate a large set of putative functional exapted TEs recently discovered through computational analysis, but also uncover additional novel phenotypes for previously well-characterized exapted TEs in A. thaliana.
Collapse
|
31
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
32
|
Wang X, Zhao X, Zhang L, Wang W, Zhang J, He F, Yang J. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:765-771. [DOI: 10.1016/j.msec.2017.03.307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
33
|
Song W, Barber K, Lee KY. Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Thavornyutikarn B, Tesavibul P, Sitthiseripratip K, Chatarapanich N, Feltis B, Wright PFA, Turney TW. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1281-1288. [PMID: 28415417 DOI: 10.1016/j.msec.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Scaffolds made from 45S5 Bioglass® ceramic (BG) show clinical potential in bone regeneration due to their excellent bioactivity and ability to bond to natural bone tissue. However, porous BG scaffolds are limited by their mechanical integrity and by the substantial volume contractions occurring upon sintering. This study examines stereolithographic (SLA) methods to fabricate mechanically robust and porous Bioglass®-based ceramic scaffolds, with regular and interconnected pore networks and using various computer-aided design architectures. It was found that a diamond-like (DM) architecture gave scaffolds the most controllable results without any observable closed porosity in the fired scaffolds. When the pore dimensions of the DM scaffolds of the same porosity (~60vol%) were decreased from 700 to 400μm, the compressive strength values increased from 3.5 to 6.7MPa. In addition, smaller dimensional shrinkage could be obtained by employing partially pre-sintered bioglass, compared to standard 45S5 Bioglass®. Scaffolds derived from pre-sintered bioglass also showed marginally improved compressive strength.
Collapse
Affiliation(s)
- Boonlom Thavornyutikarn
- Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Passakorn Tesavibul
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | | | - Nattapon Chatarapanich
- Department of Mechanical Engineering, Faculty of Engineering at Si Racha, Kasetsart University, Chonburi 20230, Thailand
| | - Bryce Feltis
- Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Paul F A Wright
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Terence W Turney
- Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
35
|
Polak SJ, Lee JS, Murphy WL, Tadier S, Grémillard L, Lightcap IV, Wagoner Johnson AJ. Microstructural control of modular peptide release from microporous biphasic calcium phosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:268-277. [DOI: 10.1016/j.msec.2016.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
|
36
|
Qiao W, Liu Q, Li Z, Zhang H, Chen Z. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:110-121. [PMID: 28243337 PMCID: PMC5315024 DOI: 10.1080/14686996.2016.1263140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/15/2023]
Abstract
As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Quan Liu
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
| | - Zhipeng Li
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Hanqing Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Zhuofan Chen
- Department of Oral Implantology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Hospital of Stomatology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
- Corresponding author.
| |
Collapse
|
37
|
Rustom LE, Boudou T, Nemke BW, Lu Y, Hoelzle DJ, Markel MD, Picart C, Wagoner Johnson AJ. Multiscale Porosity Directs Bone Regeneration in Biphasic Calcium Phosphate Scaffolds. ACS Biomater Sci Eng 2016; 3:2768-2778. [DOI: 10.1021/acsbiomaterials.6b00632] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laurence E. Rustom
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, 1270 Digital Computer Laboratory, MC-278, 1304
West Springfield Avenue, Urbana, Illinois 61801, United States
- Le
Laboratoire des Matériaux et du Génie Physique (LMGP), University Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Boudou
- Le
Laboratoire des Matériaux et du Génie Physique (LMGP), University Grenoble Alpes, 38000 Grenoble, France
- CNRS
UMR 5628 (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Brett W. Nemke
- School
of Veterinary Medicine, University of Wisconsin—Madison, 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - Yan Lu
- School
of Veterinary Medicine, University of Wisconsin—Madison, 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - David J. Hoelzle
- Department
of Mechanical and Aerospace Engineering, Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210, United States
| | - Mark D. Markel
- School
of Veterinary Medicine, University of Wisconsin—Madison, 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - Catherine Picart
- Le
Laboratoire des Matériaux et du Génie Physique (LMGP), University Grenoble Alpes, 38000 Grenoble, France
- CNRS
UMR 5628 (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Amy J. Wagoner Johnson
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, 1270 Digital Computer Laboratory, MC-278, 1304
West Springfield Avenue, Urbana, Illinois 61801, United States
- Le
Laboratoire des Matériaux et du Génie Physique (LMGP), University Grenoble Alpes, 38000 Grenoble, France
- Department
of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Rustom LE, Boudou T, Lou S, Pignot-Paintrand I, Nemke BW, Lu Y, Markel MD, Picart C, Wagoner Johnson AJ. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomater 2016; 44:144-54. [PMID: 27544807 DOI: 10.1016/j.actbio.2016.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. STATEMENT OF SIGNIFICANCE The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100μm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (<20μm) also enhances growth, but there is no consensus on the controlling mechanisms. In previous in vitro work, we suggested that micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the positive effects of capillarity on bone regeneration in vivo; it demonstrates that micropore-induced capillarity significantly enhances the bone distribution in the scaffold. The results will impact the design of scaffolds to better exploit capillarity and improve treatments for large and load-bearing bone defects.
Collapse
Affiliation(s)
- Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, 1304 West Springfield Avenue, Urbana, IL 61801, USA; University Grenoble Alpes, LMGP, 38000 Grenoble, France.
| | - Thomas Boudou
- University Grenoble Alpes, LMGP, 38000 Grenoble, France; CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016 Grenoble, France.
| | - Siyu Lou
- University Grenoble Alpes, LMGP, 38000 Grenoble, France; CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016 Grenoble, France; School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China.
| | - Isabelle Pignot-Paintrand
- University Grenoble Alpes, LMGP, 38000 Grenoble, France; CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016 Grenoble, France.
| | - Brett W Nemke
- School of Veterinary Medicine, University of Wisconsin - Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Yan Lu
- School of Veterinary Medicine, University of Wisconsin - Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Mark D Markel
- School of Veterinary Medicine, University of Wisconsin - Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Catherine Picart
- University Grenoble Alpes, LMGP, 38000 Grenoble, France; CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016 Grenoble, France.
| | - Amy J Wagoner Johnson
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, 1304 West Springfield Avenue, Urbana, IL 61801, USA; University Grenoble Alpes, LMGP, 38000 Grenoble, France; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Seuba J, Deville S, Guizard C, Stevenson AJ. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:128-135. [PMID: 27877864 PMCID: PMC5101989 DOI: 10.1080/14686996.2016.1140309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 06/06/2023]
Abstract
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).
Collapse
Affiliation(s)
- Jordi Seuba
- Laboratoire de Synthese et Fonctionnalisation des Ceramiques, UMR3080 CNRS/Saint-Gobain, F-84306 Cavaillon, France
| | - Sylvain Deville
- Laboratoire de Synthese et Fonctionnalisation des Ceramiques, UMR3080 CNRS/Saint-Gobain, F-84306 Cavaillon, France
| | - Christian Guizard
- Institut Europeen des Membranes, Universite de Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Adam J. Stevenson
- Laboratoire de Synthese et Fonctionnalisation des Ceramiques, UMR3080 CNRS/Saint-Gobain, F-84306 Cavaillon, France
| |
Collapse
|
40
|
Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:922-39. [DOI: 10.1016/j.msec.2015.12.087] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
|
41
|
Wei Q, Wang Y, Li X, Yang M, Chai W, Wang K, zhang Y. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 2016; 57:190-200. [DOI: 10.1016/j.jmbbm.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|
42
|
Yang J, Hu X, Huang J, Chen K, Huang Z, Liu Y, Fang M, Sun X. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability. NANOSCALE 2016; 8:3599-3606. [PMID: 26805036 DOI: 10.1039/c5nr08418k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.
Collapse
Affiliation(s)
- Jingzhou Yang
- School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia. and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. and Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaozhi Hu
- School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia.
| | - Juntong Huang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX44QF, UK
| | - Kai Chen
- National Engineering Research Centre for Rare Earth Materials, General Research Institute for Nonferrous Metals, Grirem Advanced Materials Co., Ltd, Beijing 100088, P.R. China
| | - Zhaohui Huang
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yangai Liu
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Minghao Fang
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110004, P. R. China
| |
Collapse
|
43
|
Meininger S, Mandal S, Kumar A, Groll J, Basu B, Gbureck U. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater 2016; 31:401-411. [PMID: 26621692 DOI: 10.1016/j.actbio.2015.11.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/23/2015] [Indexed: 12/26/2022]
Abstract
Strontium ions (Sr(2+)) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg3(PO4)2 - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg3(PO4)2. The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29μm for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg(2+) release and slow but sustained release of Sr(2+) from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr(2+)- release, while the scaffold degrades in physiological medium. STATEMENT OF SIGNIFICANCE The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg(2+) and PO4(3-) as well as Sr(2+), which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures.
Collapse
|
44
|
Roohani-Esfahani SI, Newman P, Zreiqat H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep 2016; 6:19468. [PMID: 26782020 PMCID: PMC4726111 DOI: 10.1038/srep19468] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
Collapse
Affiliation(s)
- Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| | - Peter Newman
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| |
Collapse
|
45
|
Xie Y, Rustom LE, McDermott AM, Boerckel JD, Johnson AJW, Alleyne AG, Hoelzle DJ. Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Biofabrication 2016; 8:015005. [PMID: 26744897 DOI: 10.1088/1758-5090/8/1/015005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calcium phosphate (CaP) materials have been proven to be efficacious as bone scaffold materials, but are difficult to fabricate into complex architectures because of the high processing temperatures required. In contrast, polymeric materials are easily formed into scaffolds with near-net-shape forms of patient-specific defects and with domains of different materials; however, they have reduced load-bearing capacity compared to CaPs. To preserve the merits of CaP scaffolds and enable advanced scaffold manufacturing, this manuscript describes an additive manufacturing process that is coupled with a mold support for overhanging features; we demonstrate that this process enables the fabrication of CaP scaffolds that have both complex, near-net-shape contours and distinct domains with different microstructures. First, we use a set of canonical structures to study the manufacture of complex contours and distinct regions of different material domains within a mold. We then apply these capabilities to the fabrication of a scaffold that is designed for a 5 cm orbital socket defect. This scaffold has complex external contours, interconnected porosity on the order of 300 μm throughout, and two distinct domains of different material microstructures.
Collapse
Affiliation(s)
- Yangmin Xie
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, People's Republic of China, 200444
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang YG, Zhu YJ, Chen F, Sun TW, Jiang YY. Highly porous ceramics based on ultralong hydroxyapatite nanowires. RSC Adv 2016. [DOI: 10.1039/c6ra20984j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly porous ceramics with high biocompatibility are prepared using ultralong hydroxyapatite nanowires and palmitic acid spheres.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
47
|
|
48
|
Totaro NP, Murphy ZD, Burcham AE, King CT, Scherr TF, Bounds CO, Dasa V, Pojman JA, Hayes DJ. In vitro evaluation of thermal frontally polymerized thiol-ene composites as bone augments. J Biomed Mater Res B Appl Biomater 2015; 104:1152-60. [PMID: 26061219 DOI: 10.1002/jbm.b.33466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/12/2022]
Abstract
Because of the large number of total knee replacement (TKR) surgeries conducted per year, and with projections of increased demand to almost a million primary TKR surgeries per year by 2030 in the United States alone, there is a need to discover more efficient working materials as alternatives to current bone cements. There is a need for surgeons and hospitals to become more efficient and better control over the operative environment. One area of inefficiency is the cement steps during TKR. Currently the surgeon has very little control over cement polymerization. This leads to an increase in time, waste, and procedural inefficiencies. There is a clear need to create an extended working time, moldable, osteoconductive, and osteoinductive bone augment as a substitution for the current clinically used bone cement where the surgeon has better control over the polymerization process. This study explored several compositions of pentaerythritol-co-trimethylolpropane tris-(3-mercaptopropionate) hydroxyapatite composite materials prepared via benzoyl peroxide-initiated thermal frontal polymerization. The 4:1 acrylate to thiol ratio containing augment material shows promise with a maximal propagation temperature of 160°C ± 10°C, with mechanical strength of 3.65 MPa, and 111% cytocompatibility, relative to the positive control. This frontally polymerized material may have application as an augment with controlled polymerization supporting cemented implants. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1152-1160, 2016.
Collapse
Affiliation(s)
- Nicholas P Totaro
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana, 70803
| | - Zachari D Murphy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Abigail E Burcham
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Connor T King
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana, 70803
| | - Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235
| | - Christopher O Bounds
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Vinod Dasa
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, Louisiana, 70115
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Daniel J Hayes
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana, 70803
| |
Collapse
|
49
|
Zhan Y, Niu X. Tuning methods and mechanical modelling of hydrogels. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/bbn.14.00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Tanaka SM, Tachibana K. Frequency-Dependence of Mechanically Stimulated Osteoblastic Calcification in Tissue-Engineered Bone In Vitro. Ann Biomed Eng 2015; 43:2083-9. [PMID: 25564327 DOI: 10.1007/s10439-014-1241-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
The effect of mechanical stimulation on osteogenesis remains controversial, especially with respect to the loading frequency that maximizes osteogenesis. Mechanical stimulation at an optimized frequency may be beneficial for the bone tissue regeneration to promote osteoblastic calcification. The objective of this study was to investigate the frequency-dependent effect of mechanical loading on osteoblastic calcification in the tissue-engineered bones in vitro. Tissue-engineered bones were constructed by seeding rat osteoblasts into a type I collagen sponge scaffold at a cell density of 1600 or 24,000 cells/mm(3). Sinusoidal compressive deformation at the peak of 0.2% was applied to the tissue-engineered bones at 0.2, 2, 10, 20, 40, and 60 Hz for 3 min/day for 14 consecutive days. Optically-monitored calcium content started to increase on days 5-7 and reached the highest value at 2 Hz on day 14; however, no increase was observed at 0.2 Hz and in the control. Ash content measured after the mechanical stimulation also showed the highest at 2 Hz despite the differences in cell seeding density. It was concluded that mechanical stimulation at 2 Hz showed the highest promotional effect for osteogenesis in vitro among the frequencies selected in this study.
Collapse
Affiliation(s)
- Shigeo M Tanaka
- Institute of Nature and Environmental Technology, Kanazawa University, Natural Science and Technology Hall 3, 3A519 Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan,
| | | |
Collapse
|