1
|
Deng Y, Yao H, Zhao J, Wei J. Immunomodulatory and osteogenic effects of chitosan-based injectable hydrogel with geniposide-loaded mesoporous bioactive glass. Int J Biol Macromol 2025; 284:138050. [PMID: 39608523 DOI: 10.1016/j.ijbiomac.2024.138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
The immune response dominated by macrophages plays a pivotal role in the regeneration of bone tissue. In this work, an injectable temperature-responsive hydrogel composed of geniposide-loaded mesoporous bioactive glass, chitosan and β-glycerophosphate (G-M Gel) was prepared, showing robustly networks, uniform pore structure, excellent biocompatibility, immunomodulatory effect and osteogenic potential. In an inflammatory microenvironment elicited by lipopolysaccharide (LPS), the proportion of M1 and M2 macrophages measured by flow cytometry were 33.17 % and 2.07 %, respectively. After G-M Gel treatment, the proportion of M1 macrophages decreased to 14.4 %, while the proportion of M2 macrophages increased significantly to 16.2 %. LPS treated macrophage conditioned medium inhibited the expression of osteogenic related factors (OCN, OPN, Runx2), alkaline phosphatase (ALP) and alizarin red S (ARS) in MC3T3-E1 cells. In contrast, LPS + G-M Gel treated macrophage conditioned medium significantly increased the expression of osteogenic related factors, ALP and ARS. These results demonstrated that G-M Gel can augment bone formation by promoting the polarization of M2 macrophages, showing great potential clinical application of G-M Gel in bone regeneration field.
Collapse
Affiliation(s)
- Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jian Zhao
- Hospital of Nanchang University, Nangchang University, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China.
| |
Collapse
|
2
|
Guo X, Zhang H, Wu M, Tian Z, Chen Y, Bao R, Hao J, Cheng X, Zhou C. Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling. Gels 2024; 10:788. [PMID: 39727546 DOI: 10.3390/gels10120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix. This hydrogel effectively dissipates energy through dense sacrificial bonds between the networks, allowing for precise control over its tensile strength (ranging from 0.07 to 1.46 MPa) and toughness (from 0.06 to 2.17 MJ/m3) by adjusting the degree of crosslinking in the polysiloxane network. Additionally, the hydrogel exhibits excellent conductivity (10.97 S/cm) and strain sensitivity (GF = 1.43), indicating its potential for use in wearable strain sensors. Moreover, at the end of its life (EOL), the sensor waste can be repurposed as an adsorbent material for metal ions in water treatment, achieving the recycling of hydrogel materials and maximizing resource utilization.
Collapse
Affiliation(s)
- Xiaolei Guo
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Hao Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Manman Wu
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhan Tian
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yanru Chen
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Rui Bao
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jinghao Hao
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao Cheng
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| |
Collapse
|
3
|
Lv X, Li H, Chen Y, Wang Y, Chi J, Wang S, Yang Y, Han B, Jiang Z. Crocin-1 laden thermosensitive chitosan-based hydrogel with smart anti-inflammatory performance for severe full-thickness burn wound therapeutics. Carbohydr Polym 2024; 345:122603. [PMID: 39227115 DOI: 10.1016/j.carbpol.2024.122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Burns are the fourth most common type of civilian trauma worldwide, and the management of severe irregular scald wounds remains a significant challenge. Herein, crocin-1 laden hydroxybutyl chitosan (CRO-HBC) thermosensitive hydrogel with smart anti-inflammatory performance was developed for accelerating full-thickness burn healing. The injectable and shape adaptability of the CRO-HBC gel make it a promising candidate for effectively filling scald wounds with irregular shapes, while simultaneously providing protection against external pathogens. The CRO-HBC gel network formed by hydrophobic interactions exhibited an initial burst release of crocin-1, followed by a gradual and sustained release over time. The excessive release of ROS and pro-inflammatory cytokines should be effectively regulated in the early stage of wound healing. The controlled release of crocin-1 from the CRO-HBC gel adequately addresses this requirement for wound healing. The CRO-HBC hydrogel also exhibited an excellent biocompatibility, an appropriate biodegradability, keratinocyte migration facilitation properties, and a reactive oxygen species scavenging capability. The composite CRO-HBC hydrogel intelligently mitigated inflammatory responses, promoted angiogenesis, and exhibited a commendable efficacy for tissue regeneration in a full-thickness scalding model. Overall, this innovative temperature-sensitive CRO-HBC injectable hydrogel dressing with smart anti-inflammatory performance has enormous potential for managing severe scald wounds.
Collapse
Affiliation(s)
- Xiansen Lv
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Hui Li
- Qingdao Institute of Preventive Medicine, Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, PR China
| | - Ya Chen
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Couturier B, Kozak G, Levering J, Zini A, Elinski MB. Accelerated Nanocomposite Hydrogel Gelation Times Independent of Gold Nanoparticle Ligand Functionality. ACS OMEGA 2024; 9:42858-42867. [PMID: 39464430 PMCID: PMC11500131 DOI: 10.1021/acsomega.4c05102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
The expansive use of hydrogels in healthcare relies on carefully tuned properties in dynamic environments with predictable behavior, including time sensitive biological systems and biomedical applications. To meet demands in these settings, nanomaterials are often introduced to a hydrogel matrix which simultaneously elevates potential applications while adding complexity to fundamental characteristics. With respect to drug delivery, gold nanoparticles have modifiable surfaces to carry an array of targeted drug treatments. However, different molecules acting as capping ligands possess different chemical structures that can impact gelation times. To understand the influence of capping ligand chemistry on polyacrylamide (PAM) based nanocomposite hydrogel radical gelation time, gold nanoparticle (Au NP) capping ligands were selected to encompass varying functional groups and molecular weights: citrate, cetyltrimethylammonium bromide, polyvinylpyrrolidone, and poly(acrylic acid). Gelation times were quantified as the storage-loss moduli crossover point in rheological time sweeps at constant strain and frequency. The dominating factor for gelation time was the presence of Au NPs, independent of a diverse range of capping ligand structures. The gelation times were also markedly faster than the same capping ligand structures used as stand-alone molecular additives. The accelerated Au NP gelation times, under 2 min, are attributed to the Au NPs acting as a cross-linker, promoting gelation. These results bolster the potential implementation of Au NP nanocomposite hydrogels in time-sensitive biomedical applications as robust drug carriers.
Collapse
Affiliation(s)
- Brianna Couturier
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Gloria Kozak
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - John Levering
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Anna Zini
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Meagan B Elinski
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| |
Collapse
|
5
|
Zhang J, Mohd Said F, Daud NFS, Jing Z. Present status and application prospects of green chitin nanowhiskers: A comprehensive review. Int J Biol Macromol 2024; 278:134235. [PMID: 39079565 DOI: 10.1016/j.ijbiomac.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nur Fathin Shamirah Daud
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
8
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
9
|
Thirupathi K, Raorane CJ, Ramkumar V, Ulagesan S, Santhamoorthy M, Raj V, Krishnakumar GS, Phan TTV, Kim SC. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022; 9:35. [PMID: 36661802 PMCID: PMC9858335 DOI: 10.3390/gels9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Synthesis and Characterization of Starch-Based Acid- and Alkali-Resistant Hydrogels Optimized by Box–Behnken Response Surface Methodology. Gels 2022; 8:gels8090585. [PMID: 36135297 PMCID: PMC9498612 DOI: 10.3390/gels8090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/03/2022] Open
Abstract
Applying gel-type solid chlorine dioxide for the sustained release of chlorine dioxide has several shortcomings, such as no resistance to acid and alkali corrosion and poor mechanical properties. However, introducing quaternary ammonium, carboxyl, and amino groups into the hydrogel system can enhance its acid and alkali resistance. In this study, the effects of concentration of dry heat-modified starch, quaternized carboxymethyl cellulose, and chitin on the swelling behavior and mechanical properties of starch-based acid- and alkali-resistant hydrogels are investigated. The feasibility of the actual and predicted values of the tentative results is verified based on the response surface design to determine the optimal concentration ratio of acid- and alkali-resistant hydrogels. The results reveal that optimized process parameters are reliable. The maximum swelling ratio and compressive stress of the hydrogel are 5358.00% and 44.45 kPa, respectively, and its swelling behavior conforms to the pseudo second-order kinetic model. Thus, the present study can provide a new method of developing efficient starch-based chlorine dioxide hydrogels for the sustained release of chlorine dioxide.
Collapse
|
11
|
Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr Polym 2022; 283:119177. [DOI: 10.1016/j.carbpol.2022.119177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 02/08/2023]
|
12
|
Cheng H, Jia X, Yuan D, Li H, Wang L, Fu T, Qiao H, Chen J, Wang Z, Cui X, Cheng J, Li J. Excipient-free nanodispersions dominated by amphiphilic glycosides for bioavailability enhancement of hydrophobic aglycones, a case of glycyrrhetinic acid with diammonium glycyrrhizinate. Int J Pharm 2022; 620:121770. [PMID: 35483618 DOI: 10.1016/j.ijpharm.2022.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Natural aglycones, a major ingredient accompanied by glycosides in plants, have played an important role in the treatment of various diseases. However, their bioavailability is limited by their poor water solubility. In contrast to previous efforts that required the use of new exotic materials which may raise concerns about biocompatibility, we report the first case of excipient-free nanodispersions in which an insoluble glycyrrhetinic acid (GA) assembled with its amphiphilic parent drug diammonium glycyrrhizinate (DG) into water-dispersible nanodispersions (130.8 nm for particle size and 91.74% for encapsulation efficiency). This strategy largely increased GA's water apparent solubility by hundreds of times to 549.0 μg/mL with a high cumulative dissolution percentage in vitro greater than 80% in 5 min. The study on the formation mechanism showed that the OH, C-O and C=O group stretching peaks shifted in the FTIR spectra of GA-DG nanodispersions, while the COOH peak (δ COOH 12.19 ppm) disappeared in the 1H NMR spectrum of GA-DG nanodispersions, indicating that carboxyl groups on GA may interact with the hydroxyl groups of DG in solution. Molecular dynamics simulations suggested that both hydrophobic interactions and hydrogen-bond interactions contribute to the coassembly of GA and DG molecules in aqueous solution. Oral pharmacokinetic studies in rats demonstrated that such nanodispersions have a significant increase in Cmax and AUC0-t of 2.45- and 3.45-fold compared with those for GA, respectively. Therefore, this strategy, employing amphiphilic glycosides as excipients to prepare nanodispersions, not using new materials, paves the way for the further application of hydrophobic aglycone drugs.
Collapse
Affiliation(s)
- Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Xiaoshun Jia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huaning Li
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zengwu Wang
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, PR China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China.
| |
Collapse
|
13
|
Preparation, biocompatibility, and wound healing effects of O-carboxymethyl chitosan nonwoven fabrics in partial-thickness burn model. Carbohydr Polym 2022; 280:119032. [PMID: 35027134 DOI: 10.1016/j.carbpol.2021.119032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
This study was aimed at preparing O-carboxymethyl chitosan (CM-CTS) fabrics, and examining the wound healing effects on partial-thickness burn. The functional polysaccharides were produced from chitosan needle-punched nonwovens reacted with chloroacetic acid. Then the biocompatibility and biological functions were evaluated through fibroblast L-929 and SD rats. CM-CTS fabrics were obtained with elongation at break more than 42%, tensile strength reaching 0.65 N/mm2, and water vapor transmission rate about 2600 g/m2∙24 h. Moreover, CM-CTS fabrics could effectively promote the mouse L-929 migration in vitro. CM-CTS fabrics yielded satisfactory results in angiogenesis, collagen deposition, interleukin-6 content, transforming growth factor level and healing rate, which were superior to the positive control and model groups after rats suffering with partial-thickness burn. In conclusion, CM-CTS fabrics possessed proper mechanical properties, air permeability, favorable biocompatibility, acceleration on fibroblasts migration and healing capacity for partial-thickness burn injury, and owned good potential as high-quality wound dressing.
Collapse
|
14
|
Liao J, Huang H. Preparation, Characterization and Gelation of a Fungal Nano Chitin Derived from Hericium erinaceus Residue. Polymers (Basel) 2022; 14:474. [PMID: 35160463 PMCID: PMC8838266 DOI: 10.3390/polym14030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Nano chitin is a promising biocompatible material with wide applications. In this work, a fungal-derived nano chitin was prepared from Hericium erinaceus residue via mineral/protein purification and subsequent TEMPO-mediated oxidation. The structure, dispersity, and gelation ability of the prepared fungal nano chitin were studied. The results showed that the average length and width of the prepared fungal nano chitin were 336.6 nm and 6.4 nm, respectively, and the aspect ratio exceeded 50:1. The nano chitin retained the basic structure of chitin, while the crystallization index was improved. In addition, the dispersity of the nano chitin in aqueous media was evaluated by the effective diameter, and the polydispersion index was mainly affected by pH and ionic strength. Under acetic acid "gas phase coagulation", the prepared nano chitin dispersions with mass concentrations of 0.2, 0.4, 0.6, and 0.8% were converted into gels by enhanced hydrogen bond crosslinking between nano chitins.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Jiang Z, Wang Y, Li L, Hu H, Wang S, Zou M, Liu W, Han B. Preparation, Characterization, and Biological Evaluation of Transparent Thin Carboxymethyl-Chitosan/Oxidized Carboxymethyl Cellulose Films as New Wound Dressings. Macromol Biosci 2021; 22:e2100308. [PMID: 34752675 DOI: 10.1002/mabi.202100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 01/05/2023]
Abstract
Full thickness burns in which the damage penetrates deep into the skin layers and reaches underneath the muscle, compel the need for more effective cure. Herein, cross-linked carboxymethyl-chitosan (CM-chitosan) films, prepared by Schiff base association with oxidized carboxymethyl cellulose (OCMC), are investigated regarding the wound healing capacity on full thickness burn injuries in vivo. Transparent thin CM-chitosan/OCMC films are obtained with tensile strength reaching 6.11 MPa, elongation at break above 27%, and water absorption more than 800%, which operates in favor of absorbing excess exudate and monitoring the wound status. Furthermore, the nonadherent CM-chitosan/OCMC films, with satisfactory biodegradability, cell, and tissue compatibility, are readily used to the wound sites and easily removed following therapy on scalded tissue so as to alleviate the suffering from burn. The films efficiently promote epithelial and dermal regeneration compared to the control, achieving 75.9% and 94.4% wound closure, respectively, after 14 and 27 days. More importantly, CM-chitosan/OCMC films accelerate wound healing with natural mechanisms which include controlling inflammatory response, reducing apoptosis, promoting fibroblast cell proliferation, and collagen formation. In conclusion, the CM-chitosan/OCMC films elevate the repair ratio of burn injuries and have great potential for facilitating the healing process on full-thickness exuding wounds.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lulu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Huiwen Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Mingyu Zou
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
17
|
Jin T, Liu T, Lam E, Moores A. Chitin and chitosan on the nanoscale. NANOSCALE HORIZONS 2021; 6:505-542. [PMID: 34017971 DOI: 10.1039/d0nh00696c] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In a matter of decades, nanomaterials from biomass, exemplified by nanocellulose, have rapidly transitioned from once being a subject of curiosity to an area of fervent research and development, now reaching the stages of commercialization and industrial relevance. Nanoscale chitin and chitosan, on the other hand, have only recently begun to raise interest. Attractive features such as excellent biocompatibility, antibacterial activity, immunogenicity, as well as the tuneable handles of their acetylamide (chitin) or primary amino (chitosan) functionalities indeed display promise in areas such as biomedical devices, catalysis, therapeutics, and more. Herein, we review recent progress in the fabrication and development of these bio-nanomaterials, describe in detail their properties, and discuss the initial successes in their applications. Comparisons are made to the dominant nanocelluose to highlight some of the inherent advantages that nanochitin and nanochitosan may possess in similar application.
Collapse
Affiliation(s)
- Tony Jin
- Center in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | |
Collapse
|
18
|
Karimipour-Fard P, Jeffrey MP, JonesTaggart H, Pop-Iliev R, Rizvi G. Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds. J Mech Behav Biomed Mater 2021; 120:104583. [PMID: 34062373 DOI: 10.1016/j.jmbbm.2021.104583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 01/16/2023]
Abstract
This paper focuses on utilizing the Fused Deposition Modeling (FDM) to manufacture Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite scaffolds and their subsequent characterization for biomedical applications. FDM nanocomposite filaments were manufactured in multiple nanocomposite formulations of Polycaprolactone/Nano-Hydroxyapatite (nHA), Polycaprolactone/Chitin-Nano-Whisker (CNW), and Polycaprolactone/nHA/CNW using a green method. The FDM processing conditions were optimized using Taguchi orthogonal array method. The mechanical, biodegradation, and biocompatibility properties of the bone tissue scaffolds were assessed. A preosteoblast mouse bone cell line was used for cell proliferation and attachment assays. The results indicated that CNW content in the filaments slightly increases the mechanical properties of the 3D printed parts, and the nanocomposite with 3% CNW content exhibited significant improvement in the cell proliferation and attachment properties of the scaffolds. The nHA content considerably improved the mechanical properties of the scaffolds. The nHA and CNW nanofillers increased the biodegradation rate of PCL. In general, considering all types of responses, a green manufactured nanocomposite of PCL/nHA/CNW can significantly increase the biological and mechanical properties of the 3D printed products for bone tissue scaffolds.
Collapse
Affiliation(s)
- Pedram Karimipour-Fard
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Ontario, Canada.
| | - Michael P Jeffrey
- Faculty of Science, University of Ontario Institute of Technology, Ontario, Canada
| | - Holly JonesTaggart
- Faculty of Health Sciences, University of Ontario Institute of Technology, Ontario, Canada
| | - Remon Pop-Iliev
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Ontario, Canada
| | - Ghaus Rizvi
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Ontario, Canada
| |
Collapse
|
19
|
Pereira AGB, Nunes CS, Rubira AF, Muniz EC, Fajardo AR. Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites. Carbohydr Polym 2021; 266:118116. [PMID: 34044933 DOI: 10.1016/j.carbpol.2021.118116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023]
Abstract
Hydrogels based on biopolymers like Gum Arabic (GA) usually show low applicability due to weak mechanical properties. To overcome this issue, (nano)fillers are utilized as reinforcing agents. Here, GA hydrogels were reinforced by chitin nanowhiskers (CtNWs, aspect ratio of 14) isolated from the biopolymer chitin through acid hydrolysis. Firstly, GA was chemically modified with glycidyl methacrylate (GMA), which allowed its crosslinking by free radical reactions. Next, hydrogel samples containing different concentrations of CtNWs (0-10 wt%) were prepared and fully characterized. Mechanical characterization revealed that 10 wt% of CtNWs promoted an increase of 44% in the Young's modulus and 96% the rupture force values compared to the pristine hydrogel. Overall, all nanocomposites were stiffer and more resistant to elastic deformation. Due to this feature, the swelling capacity of the nanocomposites decreased. GA hydrogel without CtNWs exhibited a swelling degree of 975%, whereas nanocomposites containing CtNWs exhibited swelling degrees under 725%.
Collapse
Affiliation(s)
- Antonio G B Pereira
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil; Laboratório de Biopolímeros, Coordenação de Engenharia de Bioprocessos e Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR- DV), Estrada para Boa Esperança, 85660-000 Dois Vizinhos, PR, Brazil.
| | - Cátia S Nunes
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- Grupo de Materiais Poliméricos e Compósitos (GMPC), Maringá State University, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil; Departamento de Química, Universidade Federal do Piauí, 64049-550 Teresina, PI, Brazil; Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Tecnológica Federal do Paraná (UTFPR- LD), Avenida dos Pioneiros, 3131, 86036-370 Londrina, PR, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
20
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
21
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydr Polym 2020; 237:116138. [DOI: 10.1016/j.carbpol.2020.116138] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
|
23
|
Bioinspired pH-sensitive riboflavin controlled-release alkaline hydrogels based on blue crab chitosan: Study of the effect of polymer characteristics. Int J Biol Macromol 2020; 152:1252-1264. [DOI: 10.1016/j.ijbiomac.2019.10.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
|
24
|
Rameshthangam P, Solairaj D, Arunachalam G, Ramasamy P. Chitin and Chitinases: Biomedical And Environmental Applications of Chitin and its Derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2690-4829.jen-18-2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disposal of chitin wastes from crustacean shell can cause environmental and health hazards. Chitin is a well known abundant natural polymer extracted after deproteinization and demineralization of the shell wastes of shrimp, crab, lobster, and krill. Extraction of chitin and its derivatives from waste material is one of the alternative ways to turn the waste into useful products. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. The presence of surface charge and multiple functional groups make chitin as a beneficial natural polymer. Due to the reactive functional groups chitin can be used for the preparation of a spectrum of chitin derivatives such as chitosan, alkyl chitin, sulfated chitin, dibutyryl chitin and carboxymethyl chitin for specific applications in different areas. The present review is aimed to summarize the efficacy of the chitinases on the chitin and its derivatives and their diverse applications in biomedical and environmental field. Further this review also discusses the synthesis of various chitin derivatives in detail and brings out the importance of chitin and its derivatives in biomedical and environmental applications.
Collapse
Affiliation(s)
| | - Dhanasekaran Solairaj
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | - Gnanapragasam Arunachalam
- College of Poultry Productions and Management, Tamil Nadu Veterinary and Animal Sciences University, Hosur - 635 110, Tamil Nadu, India
| | - Palaniappan Ramasamy
- Director- Research, Sree Balaji Medical College and Hospital, BIHER- Bharath University, Chennai-600041, Tamil Nadu, India
| |
Collapse
|
25
|
Zubillaga V, Alonso-Varona A, Fernandes SCM, Salaberria AM, Palomares T. Adipose-Derived Mesenchymal Stem Cell Chondrospheroids Cultured in Hypoxia and a 3D Porous Chitosan/Chitin Nanocrystal Scaffold as a Platform for Cartilage Tissue Engineering. Int J Mol Sci 2020; 21:E1004. [PMID: 32028724 PMCID: PMC7037297 DOI: 10.3390/ijms21031004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage degeneration is one of the most common causes of pain and disability in middle-aged and older people. Tissue engineering (TE) has shown great therapeutic promise for this condition. The design of cartilage regeneration constructs must take into account the specific characteristics of the cartilaginous matrix, as well as the avascular nature of cartilage and its cells' peculiar arrangement in isogenic groups. Keeping these factors in mind, we have designed a 3D porous scaffold based on genipin-crosslinked chitosan/chitin nanocrystals for spheroid chondral differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) induced in hypoxic conditions. First, we demonstrated that, under low oxygen conditions, the chondrospheroids obtained express cartilage-specific markers including collagen type II (COL2A1) and aggrecan, lacking expression of osteogenic differentiation marker collagen type I (COL1A2). These results were associated with an increased expression of hypoxia-inducible factor 1α, which positively directs COL2A1 and aggrecan expression. Finally, we determined the most suitable chondrogenic differentiation pattern when hASC spheroids were seeded in the 3D porous scaffold under hypoxia and obtained a chondral extracellular matrix with a high sulphated glycosaminoglycan content, which is characteristic of articular cartilage. These findings highlight the potential use of such templates in cartilage tissue engineering.
Collapse
Affiliation(s)
- Veronica Zubillaga
- Department of Cell Biology and Histology, Faculty of Medicine and Nursey, University of the Basque Country (UPV/EHU), B Sarriena s/n, 48940 Leioa, Spain;
| | - Ana Alonso-Varona
- Department of Cell Biology and Histology, Faculty of Medicine and Nursey, University of the Basque Country (UPV/EHU), B Sarriena s/n, 48940 Leioa, Spain;
| | - Susana C. M. Fernandes
- Institute of Analytical Sciences and Physico-chemistry for the Environment and Materials, University of Pau and Pays Adour, E2S UPPA, CNRS, 64600 Anglet, France;
| | - Asier M. Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastian, Spain;
| | - Teodoro Palomares
- Department of Surgery, Radiology and Physic Medicine, Faculty of Medicine, University of the Basque Country (UPV/EHU), B Sarriena, s/n, 48940 Leioa, Spain
| |
Collapse
|
26
|
|
27
|
Peng C, Xu J, Chen G, Tian J, He M. The preparation of α-chitin nanowhiskers-poly (vinyl alcohol) hydrogels for drug release. Int J Biol Macromol 2019; 131:336-342. [DOI: 10.1016/j.ijbiomac.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
|
28
|
Palomino-Durand C, Lopez M, Cazaux F, Martel B, Blanchemain N, Chai F. Influence of the Soluble⁻Insoluble Ratios of Cyclodextrins Polymers on the Viscoelastic Properties of Injectable Chitosan⁻Based Hydrogels for Biomedical Application. Polymers (Basel) 2019; 11:polym11020214. [PMID: 30960198 PMCID: PMC6419078 DOI: 10.3390/polym11020214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
Injectable pre-formed physical hydrogels provide many advantages for biomedical applications. Polyelectrolyte complexes (PEC) formed between cationic chitosan (CHT) and anionic polymers of cyclodextrin (PCD) render a hydrogel of great interest. Given the difference between water-soluble (PCDs) and water-insoluble PCD (PCDi) in the extension of polymerization, the present study aims to explore their impact on the formation and properties of CHT/PCD hydrogel obtained from the variable ratios of PCDi and PCDs in the formulation. Hydrogels CHT/PCDi/PCDs at weight ratios of 3:0:3, 3:1.5:1.5, and 3:3:0 were elaborated in a double–syringe system. The chemical composition, microstructure, viscoelastic properties, injectability, and structural integrity of the hydrogels were investigated. The cytotoxicity of the hydrogel was also evaluated by indirect contact with pre-osteoblast cells. Despite having similar shear–thinning and self-healing behaviors, the three hydrogels showed a marked difference in their rheological characteristics, injectability, structural stability, etc., depending on their PCDi and PCDs contents. Among the three, all the best above-mentioned properties, in addition to a high cytocompatibility, were found in the hydrogel 3:1.5:1.5. For the first time, we gained a deeper understanding of the role of the PCDi/PCDs in the injectable pre-formed hydrogels (CHT/PCDi/PCDs), which could be further fine-tuned to enhance their performance in biomedical applications.
Collapse
Affiliation(s)
- Carla Palomino-Durand
- Controlled Drug Delivery Systems and Biomaterials, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), U1008, 59000 Lille, France.
| | - Marco Lopez
- Controlled Drug Delivery Systems and Biomaterials, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), U1008, 59000 Lille, France.
| | - Frédéric Cazaux
- UMET-Unité Matériaux et Transformations, University of Lille, Centre national de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Unité Matériaux et Transformations (UMR) 8207, 59655 Lille, France.
| | - Bernard Martel
- UMET-Unité Matériaux et Transformations, University of Lille, Centre national de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), Unité Matériaux et Transformations (UMR) 8207, 59655 Lille, France.
| | - Nicolas Blanchemain
- Controlled Drug Delivery Systems and Biomaterials, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), U1008, 59000 Lille, France.
| | - Feng Chai
- Controlled Drug Delivery Systems and Biomaterials, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), U1008, 59000 Lille, France.
| |
Collapse
|
29
|
Chitosan-Based Hydrogels: Preparation, Properties, and Applications. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated β-cyclodextrin. Carbohydr Polym 2018; 201:471-481. [DOI: 10.1016/j.carbpol.2018.08.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 08/19/2018] [Indexed: 01/20/2023]
|
31
|
Chitosan-based hydrogels: Preparation, properties and applications. Int J Biol Macromol 2018; 115:194-220. [DOI: 10.1016/j.ijbiomac.2018.04.034] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 12/18/2022]
|
32
|
Zhang M, Wang J, Jin Z. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. Int J Biol Macromol 2018; 114:381-391. [DOI: 10.1016/j.ijbiomac.2018.03.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
|
33
|
Xu Y, Liang K, Ullah W, Ji Y, Ma J. Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive. Carbohydr Polym 2018; 190:324-330. [DOI: 10.1016/j.carbpol.2018.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/02/2018] [Accepted: 03/05/2018] [Indexed: 02/06/2023]
|
34
|
Vieyra H, Juárez E, López UF, Morales AG, Torres M. Cytotoxicity and biocompatibility of biomaterials based in polyhydroxybutyrate reinforced with cellulose nanowhiskers determined in human peripheral leukocytes. Biomed Mater 2018; 13:045011. [DOI: 10.1088/1748-605x/aaaaf4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Wu H, Fang Q, Liu J, Yu X, Xu Y, Wan Y, Xiao B. Multi-tubule conduit-filler constructs loaded with gradient-distributed growth factors for neural tissue engineering applications. J Mech Behav Biomed Mater 2018; 77:671-682. [DOI: 10.1016/j.jmbbm.2017.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/01/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, the First Affiliated Hospital of Xiamen University, Xiamen 316003, PR China
| | - Qing Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yigui Xu
- Department of Research and Development, ZCPPE Ltd., 5160 Skyline Way NE, Calgary, Alberta, Canada T2E 6V1
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Rahmati M, Milan PB, Samadikuchaksaraei A, Goodarzi V, Saeb MR, Kargozar S, Kaplan DL, Mozafari M. Ionically Crosslinked Thermoresponsive Chitosan Hydrogels formed In Situ: A Conceptual Basis for Deeper Understanding. MACROMOLECULAR MATERIALS AND ENGINEERING 2017; 302. [DOI: 10.1002/mame.201700227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
AbstractIn situ formation and the performance of ionically crosslinked thermosensitive chitosan‐based hydrogels are presented. Experimental analyses, together with mechanistic descriptions of the events during hydrolysis, are employed to uncover the role of urea and isobutanol as chemical modifiers by comparing three classes of hydrogels formed in chitosan/β‐glycerolphosphate (β‐GP) solutions. Rheological measurements demonstrate that urea caused an increase in gelation time and temperature of chitosan/β‐GP systems, while isobutanol has an inverse effect. Interpretations based on increase in pH and chemical bonding of components in chitosan solutions provide further insight into hydrogel network formation. Urea can hinder the hydrophobic characteristics of chitosan‐based hydrogels, whereas isobutanol has the opposite effect. The shape retaining strategy applied here helps in simulation and interpretation of performance of thermosensitive hydrogels for biomedical purposes.
Collapse
Affiliation(s)
- Maryam Rahmati
- Bioengineering Research Group Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) P.O. Box 14155‐4777 Tehran Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences P.O. Box 19945‐546 Tehran Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives Institute for Color Science and Technology P.O. Box 16765‐654 Tehran Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies School of Medicine Mashhad University of Medical Sciences P.O. Box 91388‐13944 Mashhad Iran
| | - David L. Kaplan
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Masoud Mozafari
- Bioengineering Research Group Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) P.O. Box 14155‐4777 Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Iran University of Medical Sciences P.O. Box 14155‐6183 Tehran Iran
| |
Collapse
|
37
|
Bruna ASM, João HDOR, Lindaiá SC, Ingrid LL, Josiane DVB, Joyce BA, Janice ID. Characterization of cassava starch films plasticized with glycerol and strengthened with nanocellulose from green coconut fibers. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Gentamicin-Loaded Thermosetting Hydrogel and Moldable Composite Scaffold: Formulation Study and Biologic Evaluation. J Pharm Sci 2017; 106:1596-1607. [DOI: 10.1016/j.xphs.2017.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
|
39
|
Mahanta AK, Senapati S, Maiti P. Retracted Article: A polyurethane–chitosan brush as an injectable hydrogel for controlled drug delivery and tissue engineering. Polym Chem 2017. [DOI: 10.1039/c7py01218g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogels and porous lyophilized hydrogels have been designed using a polyurethane brush with a chitosan backbone through grafting for controlled drug delivery.
Collapse
Affiliation(s)
- Arun Kumar Mahanta
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| | - Sudipta Senapati
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| | - Pralay Maiti
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| |
Collapse
|