1
|
Agrawal A, Javanmardi Y, Watson SA, Serwinski B, Djordjevic B, Li W, Aref AR, Jenkins RW, Moeendarbary E. Mechanical signatures in cancer metastasis. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:3. [PMID: 39917412 PMCID: PMC11794153 DOI: 10.1038/s44341-024-00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/20/2024] [Indexed: 02/09/2025]
Abstract
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Sara A. Watson
- Department of Mechanical Engineering, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- Northeastern University London, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Amir R. Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
2
|
Ferraro R, Guido S, Caserta S, Tassieri M. i -Rheo-optical assay: Measuring the viscoelastic properties of multicellular spheroids. Mater Today Bio 2024; 26:101066. [PMID: 38693994 PMCID: PMC11061759 DOI: 10.1016/j.mtbio.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
This study introduces a novel mechanobiology assay, named "i-Rheo-optical assay", that integrates rheology with optical microscopy for analysing the viscoelastic properties of multicellular spheroids. These spheroids serve as three-dimensional models resembling tissue structures. The innovative technique enables real-time observation and quantification of morphological responses to applied stress using a cost-effective microscope coverslip for constant compression force application. By bridging a knowledge gap in biophysical research, which has predominantly focused on the elastic properties while only minimally exploring the viscoelastic nature in multicellular systems, the i-Rheo-optical assay emerges as an effective tool. It facilitates the measurement of broadband viscoelastic compressional moduli in spheroids, here derived from cancer (PANC-1) and non-tumoral (NIH/3T3) cell lines during compression tests. This approach plays a crucial role in elucidating the mechanical properties of spheroids and holds potential for identifying biomarkers to discriminate between healthy tissues and their pathological counterparts. Offering comprehensive insights into the biomechanical behaviour of biological systems, i-Rheo-optical assay marks a significant advancement in tissue engineering, cancer research, and therapeutic development.
Collapse
Affiliation(s)
- Rosalia Ferraro
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Stefano Guido
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Sergio Caserta
- DICMaPI, Università di Napoli Federico II, P.le V. Tecchio 80, 80125, Napoli, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80131, Napoli, Italy
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| |
Collapse
|
3
|
Viti F, Pramotton FM, Martufi M, Magrassi R, Pedemonte N, Nizzari M, Zanacchi FC, De Michele B, Alampi M, Zambito M, Santamaria G, Bajetto A, Sardar S, Tomati V, Gandullia P, Giampietro C, Florio T, Beltrame F, Vassalli M, Ceccherini I. Patient's dermal fibroblasts as disease markers for visceral myopathy. BIOMATERIALS ADVANCES 2023; 148:213355. [PMID: 36893487 DOI: 10.1016/j.bioadv.2023.213355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Visceral myopathy (VSCM) is a rare genetic disease, orphan of pharmacological therapy. VSCM diagnosis is not always straightforward due to symptomatology similarities with mitochondrial or neuronal forms of intestinal pseudo-obstruction. The most prevalent form of VSCM is associates with variants in the gene ACTG2, encoding the protein gamma-2 actin. Overall, VSCM is a mechano-biological disorder, in which different genetic variants lead to similar alterations to the contractile phenotype of enteric smooth muscles, resulting in the emergence of life-threatening symptoms. In this work we analyzed the morpho-mechanical phenotype of human dermal fibroblasts from patients affected with VSCM, demonstrating that they retain a clear signature of the disease when compared with different controls. We evaluated several biophysical traits of fibroblasts, and we show that a measure of cellular traction forces can be used as a non-specific biomarker of the disease. We propose that a simple assay based on traction forces could be designed to provide a valuable support for clinical decision or pre-clinical research.
Collapse
Affiliation(s)
- Federica Viti
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy.
| | - Francesca Micaela Pramotton
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland; ETH Zurich, The Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Michela Martufi
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy; Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Raffaella Magrassi
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Mario Nizzari
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | | | - Benedetta De Michele
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | - Manuela Alampi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Viale Causa, 13, 16145 Genova, Italy
| | - Martina Zambito
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Giuseppe Santamaria
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Adriana Bajetto
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Sabah Sardar
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Oakfield avenue, G128LT Glasgow, UK
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Paolo Gandullia
- UOC Pediatric Gastroenterology and Digestive Endoscopy, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Costanza Giampietro
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland; ETH Zurich, The Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Tullio Florio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo rosanna benzi 10, 16132 Genova, Italy
| | - Francesco Beltrame
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Viale Causa, 13, 16145 Genova, Italy
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Oakfield avenue, G128LT Glasgow, UK
| | - Isabella Ceccherini
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
4
|
Zambito M, Viti F, Bosio AG, Ceccherini I, Florio T, Vassalli M. The Impact of Experimental Conditions on Cell Mechanics as Measured with Nanoindentation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1190. [PMID: 37049284 PMCID: PMC10097320 DOI: 10.3390/nano13071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The evaluation of cell elasticity is becoming increasingly significant, since it is now known that it impacts physiological mechanisms, such as stem cell differentiation and embryogenesis, as well as pathological processes, such as cancer invasiveness and endothelial senescence. However, the results of single-cell mechanical measurements vary considerably, not only due to systematic instrumental errors but also due to the dynamic and non-homogenous nature of the sample. In this work, relying on Chiaro nanoindenter (Optics11Life), we characterized in depth the nanoindentation experimental procedure, in order to highlight whether and how experimental conditions could affect measurements of living cell stiffness. We demonstrated that the procedure can be quite insensitive to technical replicates and that several biological conditions, such as cell confluency, starvation and passage, significantly impact the results. Experiments should be designed to maximally avoid inhomogeneous scenarios to avoid divergences in the measured phenotype.
Collapse
Affiliation(s)
- Martina Zambito
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Alessia G Bosio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | | | - Tullio Florio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Monferrer E, Dobre O, Trujillo S, González Oliva MA, Trubert-Paneli A, Acevedo-León D, Noguera R, Salmeron-Sanchez M. Vitronectin-based hydrogels recapitulate neuroblastoma growth conditions. Front Cell Dev Biol 2022; 10:988699. [PMID: 36425532 PMCID: PMC9679952 DOI: 10.3389/fcell.2022.988699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The tumor microenvironment plays an important role in cancer development and the use of 3D in vitro systems that decouple different elements of this microenvironment is critical for the study of cancer progression. In neuroblastoma (NB), vitronectin (VN), an extracellular matrix protein, has been linked to poor prognosis and appears as a promising therapeutic target. Here, we developed hydrogels that incorporate VN into 3D polyethylene glycol (PEG) hydrogel networks to recapitulate the native NB microenvironment. The stiffness of the VN/PEG hydrogels was modulated to be comparable to the in vivo values reported for NB tissue samples. We used SK-N-BE (2) NB cells to demonstrate that PEGylated VN promotes cell adhesion as the native protein does. Furthermore, the PEGylation of VN allows its crosslinking into the hydrogel network, providing VN retention within the hydrogels that support viable cells in 3D. Confocal imaging and ELISA assays indicate that cells secrete VN also in the hydrogels and continue to reorganize their 3D environment. Overall, the 3D VN-based PEG hydrogels recapitulate the complexity of the native tumor extracellular matrix, showing that VN-cell interaction plays a key role in NB aggressiveness, and that VN could potentially be targeted in preclinical drug studies performed on the presented hydrogels.
Collapse
Affiliation(s)
- Ezequiel Monferrer
- Department of Pathology Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oana Dobre
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sara Trujillo
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Alexandre Trubert-Paneli
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Delia Acevedo-León
- Clinical Analysis Service, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Rosa Noguera
- Department of Pathology Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Rosa Noguera, ; Manuel Salmeron-Sanchez,
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Rosa Noguera, ; Manuel Salmeron-Sanchez,
| |
Collapse
|
6
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Affiliation(s)
- Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Center for the Cellular Microenvironment, 70 University Avenue, School of Engineering, G12 8LT, Glasgow, UK
| |
Collapse
|
8
|
Gavazzo P, Viti F, Donnelly H, Oliva MAG, Salmeron-Sanchez M, Dalby MJ, Vassalli M. Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway. Cell Biol Toxicol 2021; 37:915-933. [PMID: 33420657 DOI: 10.1007/s10565-020-09569-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells represent an important resource, for bone regenerative medicine and therapeutic applications. This review focuses on new advancements and biophysical tools which exploit different physical and chemical markers of mesenchymal stem cell populations, to finely characterize phenotype changes along their osteogenic differentiation process. Special attention is paid to recently developed label-free methods, which allow monitoring cell populations with minimal invasiveness. Among them, quantitative phase imaging, suitable for single-cell morphometric analysis, and nanoindentation, functional to cellular biomechanics investigation. Moreover, the pool of ion channels expressed in cells during differentiation is discussed, with particular interest for calcium homoeostasis.Altogether, a biophysical perspective of osteogenesis is proposed, offering a valuable tool for the assessment of the cell stage, but also suggesting potential physiological links between apparently independent phenomena.
Collapse
Affiliation(s)
- Paola Gavazzo
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council, Genoa, Italy.
| | - Hannah Donnelly
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mariana Azevedo Gonzalez Oliva
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Lüchtefeld I, Bartolozzi A, Mejía Morales J, Dobre O, Basso M, Zambelli T, Vassalli M. Elasticity spectra as a tool to investigate actin cortex mechanics. J Nanobiotechnology 2020; 18:147. [PMID: 33081777 PMCID: PMC7576730 DOI: 10.1186/s12951-020-00706-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young’s modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. Results Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young’s modulus. Conclusions The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.![]()
Collapse
Affiliation(s)
- Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Alice Bartolozzi
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Julián Mejía Morales
- Institut de Physique de Nice, Université Côte d'Azur, 1361 Route des Lucioles, 06560, Valbonne, France.,Dipartimento di Medicina Sperimentale, Università degli studi di Genova, Via Leon Battista Alberti 2, 16132, Genova, Italy
| | - Oana Dobre
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK
| | - Michele Basso
- Dipartimento di Ingegneria dell'Informazione, Università degli studi di Firenze, Via di S. Marta 3, 50139, Firenze, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Oakfield avenue, Glasgow, G12 8LT, UK.
| |
Collapse
|
10
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
11
|
Heuer RA, Nella KT, Chang HT, Coots KS, Oleksijew AM, Roque CB, Silva LHA, McGuire TL, Homma K, Matsuoka AJ. Three-Dimensional Otic Neuronal Progenitor Spheroids Derived from Human Embryonic Stem Cells. Tissue Eng Part A 2020; 27:256-269. [PMID: 32580647 DOI: 10.1089/ten.tea.2020.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.
Collapse
Affiliation(s)
- Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa H A Silva
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|