1
|
Prajapati D, Jabborova D, Saharan BS, Singh N, Patani A, Singh S, Joshi C. Bionanotechnology: A Paradigm for Advancing Environmental Sustainability. Indian J Microbiol 2025; 65:306-332. [PMID: 40371027 PMCID: PMC12069183 DOI: 10.1007/s12088-024-01389-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
The urgent need for innovative solutions to global environmental challenges has driven the convergence of biology and nanotechnology, resulting in the emergence of bionanotechnology as a transformative force. This comprehensive review paper explores the fundamental principles, applications, benefits, and potential risks associated with harnessing bionanotechnology to advance environmental sustainability. Beginning with an elucidation of the fundamental concepts underlying bionanotechnology, this paper establishes the synergy between biological systems and nanomaterials. The unique properties of nanomaterials, coupled with the adaptability of biological processes, form the foundation for a diverse array of real-world applications. Focusing on applications, the paper highlights how bionanotechnology addresses critical environmental issues. It showcases case studies that exemplify its impact on water purification, air quality improvement, waste management, renewable energy production, and more. These case studies underscore the tangible benefits and efficacy of bionanotechnology in tackling complex challenges. However, as the potential of bionanotechnology is harnessed, it is crucial to navigate potential ecological risks. The paper emphasizes the importance of ecotoxicological considerations, discussing how nanomaterials interact with ecosystems and organisms. Ethical and responsible development of bionanotechnology, informed by these considerations, ensures that its benefits are maximized while minimizing potential harm. In conclusion, this review paper underscores bionanotechnology's potential to revolutionize environmental sustainability. By fusing the power of nanomaterials and biology, bionanotechnology offers a holistic approach to address pressing global challenges. While celebrating its transformative promise, the paper emphasizes the need for a balanced approach that safeguards environmental health. As society looks towards a more sustainable future, bionanotechnology stands as a pivotal paradigm for shaping an environmentally conscious world.
Collapse
Affiliation(s)
- Dharmendra Prajapati
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Kibray, Uzbekistan
| | | | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Anil Patani
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| | - Chinmayi Joshi
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| |
Collapse
|
2
|
Musik M, Janus E, Pełech R. A Study of the Catalytic System H 3PW 12O 40/Quaternary Phosphonium Salts for the Epoxidation of Fatty Acid Methyl Esters-The Effect of the Molar Ratio of Hydrogen Peroxide to the Double Bond. Molecules 2025; 30:1109. [PMID: 40076332 PMCID: PMC11901899 DOI: 10.3390/molecules30051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the present work, the epoxidation of fatty acid methyl esters (biodiesel or FAMEs) with an iodine number of 96.4 g/100 g and containing approximately 11% palmitic acid, 4% stearic acid, 51% oleic acid, 25% linoleic acid, and 5% linolenic acid was studied with an aqueous H2O2 solution and different quaternary phosphonium salts (QPSs) combined with the phosphotungstic heteropolyacid (HPA) H3PW12O40 in a biphasic system. The effect of the molar ratio of H2O2:C=C on the epoxidation of FAMEs was investigated. The effect of the molar ratio of H2O2:C=C on the epoxy number (EN) and iodine number (IN) was measured. Multiple regression analysis methods were used to determine the regression model describing the influence of the various independent variables. In the results obtained, it was found that the highest yields were obtained for [P6][Phosf]. The optimum conditions for the epoxidation process with the systems used were a time range of 30 ± 4 min and a H2O2/double bond molar ratio in the range of 1.8 ± 0.2. The formation of epoxidised fatty acid methyl esters (E-FAMEs) was confirmed by FT-IR, 1H NMR and 13C NMR analyses. In the FT-IR spectrum of the E-FAMEs, epoxy ring vibration signals were identified at 826 cm-1. In the 1H NMR spectrum, signals appeared in the range of 3.25-3.00 ppm, corresponding to epoxy ring formation in biodiesel, and in the range of 60-55 ppm in the 13C NMR spectrum.
Collapse
Affiliation(s)
- Marlena Musik
- Department of Organic Chemical Technology and Polymer Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (E.J.); (R.P.)
| | | | | |
Collapse
|
3
|
Zhu S, Sun H, Mu T, Richel A. Research Progress in 3D Printed Biobased and Biodegradable Polyester/Ceramic Composite Materials: Applications and Challenges in Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2791-2813. [PMID: 39760202 DOI: 10.1021/acsami.4c15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transplantation of bone implants is currently recognized as one of the most effective means of treating bone defects. Biobased and biodegradable polyester composites combine the good mechanical and degradable properties of polyester, thereby providing an alternative for bone implant materials. Bone tissue engineering (BTE) accelerates bone defect repair by simulating the bone microenvironment. Composite scaffolds support bone formation and further accelerate the process of bone repair. The introduction of 3D printing technology enables the preparation of scaffolds to be more precise, reproducible, and flexible, which is a very promising development. This review presents the physical properties of BTE scaffolds and summarizes the strategies adopted by domestic and international scholars to improve the properties of scaffolds based on biobased and biodegradable polyester/ceramic composites in recent years. In addition, future development prospects in the field and the challenges of expanding production in clinical applications are presented.
Collapse
Affiliation(s)
- Shunshun Zhu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
4
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Diederichs EV, Mondal D, Patil H, Gorbet M, Willett TL. The effect of triglycerol diacrylate on the printability and properties of UV curable, bio-based nanohydroxyapatite composites. J Mech Behav Biomed Mater 2024; 153:106499. [PMID: 38490049 DOI: 10.1016/j.jmbbm.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
3D printable biopolymer nanocomposites composed of hydroxyapatite nanoparticles and functionalized plant-based monomers demonstrate potential as sustainable and structural biomaterials. To increase this potential, their printability and performance must be improved. For extrusion-based 3D printing, such as Direct Ink Writing (DIW), printability is important for print fidelity. In this work, triglycerol diacrylate (TGDA) was added to an acrylated epoxidized soybean oil:polyethylene glycol diacrylate resin to increase hydrogen bonding. Greater hydrogen bonding was hypothesized to improve printability by increasing the ink's shear yield strength, and therefore shape holding after deposition. The effects of this additive on material and mechanical properties were quantified. Increased hydrogen bonding due to TGDA content increased the ink's shear yield stress and viscosity by 916% and 27.6%, respectively. This resulted in improved printability, with best performance at 3 vol% TGDA. This composition achieved an ultimate tensile strength (UTS) of 32.4 ± 2.1 MPa and elastic modulus of 1.15 ± 0.21 GPa. These were increased from the 0 vol% TGDA composite, which had an UTS of 24.8 ± 1.8 MPa and a modulus of 0.88 ± 0.06 GPa. This study demonstrates the development of bio-based additive manufacturing feedstocks for potential uses in sustainable manufacturing, rapid prototyping, and biomaterial applications.
Collapse
Affiliation(s)
- Elizabeth V Diederichs
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Haresh Patil
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Maud Gorbet
- Material Interaction with Biological Systems Laboratory, Department of Systems Design, University of Waterloo, Carl A. Pollock Hall, 200 University Avenue West, Waterloo, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada.
| |
Collapse
|
6
|
Bodor M, Lasagabáster-Latorre A, Arias-Ferreiro G, Dopico-García MS, Abad MJ. Improving the 3D Printability and Mechanical Performance of Biorenewable Soybean Oil-Based Photocurable Resins. Polymers (Basel) 2024; 16:977. [PMID: 38611235 PMCID: PMC11013316 DOI: 10.3390/polym16070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based on acrylated epoxidized soybean oil (AESO) was explored. Polyethylene glycol di(meth)acrylates of different molecular weights were selected as diluents based on the viscosity and mechanical properties of their binary mixtures with AESO. Ternary mixtures containing 60% AESO, polyethylene glycol diacrylate (PEGDA) and polyethyleneglycol dimethacrylate (PEG200DMA) further improved the mechanical properties, water resistance and printability of the resin. Specifically, the terpolymer AESO/PEG575/PEG200DMA 60/20/20 (wt.%) improved the modulus (16% increase), tensile strength (63% increase) and %deformation at the break (21% increase), with respect to pure AESO. The enhancement of the printability provided by the reactive diluents was proven by Jacobs working curves and the improved accuracy of printed patterns. The proposed formulation, with a biorenewable carbon content of 67%, can be used as the matrix of innovative resins with unrestricted applicability in the electronics and biomedical fields. However, much effort must be done to increase the array of bio-based raw materials.
Collapse
Affiliation(s)
- Marius Bodor
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - Aurora Lasagabáster-Latorre
- Dpto Química Orgánica I, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain;
| | - Goretti Arias-Ferreiro
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - María Sonia Dopico-García
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| | - María-José Abad
- Campus Industrial de Ferrol, Grupo de Polimeros-CITENI, Universidade da Coruña, 15403 Ferrol, Spain; (M.B.); (G.A.-F.); (M.S.D.-G.)
| |
Collapse
|
7
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Yahay Z, Moein Farsani N, Mirhadi M, Tavangarian F. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior. J Mech Behav Biomed Mater 2023; 144:105996. [PMID: 37392603 DOI: 10.1016/j.jmbbm.2023.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
In this study, first willemite (Zn2SiO4) micro and nano-powders were synthesized by the sol-gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) were applied to characterize the crystalline phases and particle size of powders. Then polycaprolactone (PCL) polymer scaffolds containing 20 wt% willemite were successfully fabricated by the DIW 3D printing (direct ink writing) method. The effects of willemite particle size on compressive strength, elastic modulus, degradation rate, and bioactivity of the composite scaffolds were investigated. The results showed that nanoparticle willemite/PCL (NW/PCL) scaffolds had 33.1% and 58.1% higher compressive strength and the elastic modulus of NW/PCL were 1.14 and 2.45 times better compared to micron size willemite/PCL (MW/PCL) and pure PCL scaffolds, respectively. Scanning electron microscopy (SEM) images and Energy-dispersive X-ray spectroscopy map (EDS map) results indicated that willemite nanoparticles, unlike microparticles, were smoothly embedded in the scaffold struts. In vitro tests also revealed an improvement in bone-like apatite formation ability and an increase in the degradation rate up to 2.17% by decreasing the willemite particle size to 50 nm. In addition, NW/PCL rendered significant enhancement in cell viability and cell attachment during the culture of MG-63 human osteosarcoma cell line. Nanostructure had also a positive effect on ALP activity and biomineralization in vitro.
Collapse
Affiliation(s)
- Zahra Yahay
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, 81593-58686, Iran; School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Niloofar Moein Farsani
- Department of Biomedical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, 84181-48499, Iran
| | - Mahtasadat Mirhadi
- Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, 86145-311, Iran
| | - Fariborz Tavangarian
- Mechanical Engineering Program, School of Science, Engineering and Technology, Pennsylvania State University, Harrisburg, Middletown, PA, 17057, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, United States.
| |
Collapse
|
9
|
Mondal D, Willett TL. Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization. J Mech Behav Biomed Mater 2022; 135:105450. [PMID: 36115176 DOI: 10.1016/j.jmbbm.2022.105450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Functionalized phases can effectively increase the mechanical properties of nanocomposites through interfacial bonding. This work demonstrates masked stereolithography (mSLA) of biopolymer-based nanocomposites and the improvement of their mechanical properties by the functionalization of both polymer matrix and nanoparticles with methacrylate groups. 3D printable nanocomposite inks were prepared from plant-derived acrylated epoxidized soybean oil (AESO), polyethylene glycol diacrylate (PEGDA), and nano-hydroxyapatite (nHA). Both AESO and nHA were further functionalized with additional methacrylate groups. We hypothesized that the additional functionalization of AESO and surface functionalization of nHA would improve the tensile strength and fracture toughness of these nanocomposites by increasing the degree of crosslinking and the strength of the interface between the matrix and nanoparticles. Curing efficiency, rheology, and print-fidelity of the nanocomposites were evaluated. Mechanical test specimens were prepared by mSLA-based 3D printing. Tensile mechanical properties, Poisson's ratio, and Mode-I fracture toughness were measured by following ASTM standards. Fracture surfaces of the tested specimens were studied using scanning electron microscopy. Thermomechanical behavior, especially glass transition temperature (Tg), was studied using dynamic mechanical analysis (DMA). Functionalized AESO (mAESO) improved rheological, tensile, and fracture mechanical properties. For instance, by replacing AESO with mAESO, tensile strength, Young's modulus, fracture toughness (K1c), and Tg increased by 33%, 53%, 40%, and 38% respectively. In addition, the combination of both functionalized nHA and mAESO improved the fracture toughness of the 10% volume fraction nHA nanocomposites but made them less extensible presumably due to reduced chain mobility due to greater crosslinking.
Collapse
Affiliation(s)
- Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada.
| |
Collapse
|
10
|
Akbarzadeh FZ, Ghomi ER, Ramakrishna S. Improving the corrosion behavior of magnesium alloys with a focus on AZ91 Mg alloy intended for biomedical application by microstructure modification and coating. Proc Inst Mech Eng H 2022; 236:1188-1208. [DOI: 10.1177/09544119221105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium alloys such as AZ91 have received much attention due to their attractive properties, including biocompatibility and lightness. Although magnesium is a potential candidate for implant application, due to its rapid degradation in the physiological environment, there are still some challenges to using it as biocompatible implants. In this regard, various techniques such as microstructure modification and coating are utilized to moderate the degradation rate of magnesium alloys. Therefore, efforts are being made to conduct more extensive research to produce magnesium implants with acceptable corrosion resistance. In this literature review, an overview of the history of research on the corrosion behavior, biodegradability, microstructure deformation mechanisms, crystallographic texture in magnesium alloys with a focus on AZ91 Mg alloy, is provided. In addition, the necessity of improving the properties of AZ91 Mg alloy by the two methods of improving microstructure and coating, and existing innovations in these methods are investigated.
Collapse
Affiliation(s)
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
11
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Deliv Transl Res 2022; 12:2960-2978. [PMID: 35650332 DOI: 10.1007/s13346-022-01161-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Since cartilage has a limited capacity for self-regeneration, treating cartilage degenerative disorders is a long-standing difficulty in orthopedic medicine. Researchers have scrutinized cartilage tissue regeneration to handle the deficiency of cartilage restoration capacity. This investigation proposed to compose an innovative nanocomposite biomaterial that enhances growth factor delivery to the injured cartilage site. Here, we describe the design and development of the biocompatible poly(lactide-co-glycolide) acid-collagen/poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-collagen/PLGA-PEG-PLGA) nanocomposite hydrogel containing transforming growth factor-β1 (TGF-β1). PLGA-PEG-PLGA nanoparticles were employed as a delivery system embedding TGF-β1 as an articular cartilage repair therapeutic agent. This study evaluates various physicochemical aspects of fabricated scaffolds by 1HNMR, FT-IR, SEM, BET, and DLS methods. The physicochemical features of the developed scaffolds, including porosity, density, degradation, swelling ratio, mechanical properties, morphologies, BET, ELISA, and cytotoxicity were assessed. The cell viability was investigated with the MTT test. Chondrogenic differentiation was assessed via Alcian blue staining and RT-PCR. In real-time PCR testing, the expression of Sox-9, collagen type II, and aggrecan genes was monitored. According to the results, human dental pulp stem cells (hDPSCs) exhibited high adhesion, proliferation, and differentiation on PLGA-collagen/PLGA-PEG-PLGA-TGFβ1 nanocomposite scaffolds compared to the control groups. SEM images displayed suitable cell adhesion and distribution of hDPSCs throughout the scaffolds. RT-PCR assay data displayed that TGF-β1 loaded PLGA-PEG-PLGA nanoparticles puts forward chondroblast differentiation in hDPSCs through the expression of chondrogenic genes. The findings revealed that PLGA-collagen/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogel can be utilized as a supportive platform to support hDPSCs differentiation by implementing specific physio-chemical features.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
13
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
14
|
mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112456. [PMID: 34702532 DOI: 10.1016/j.msec.2021.112456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022]
Abstract
Structural bone allografts are used to treat critically sized segmental bone defects (CSBDs) as such defects are too large to heal naturally. Development of biomaterials with competent mechanical properties that can also facilitate new bone formation is a major challenge for CSBD repair. 3D printed synthetic bone grafts are a possible alternative to structural allografts if engineered to provide appropriate structure with sufficient mechanical properties. In this work, we fabricated a set of novel nanocomposite biomaterials consisting of acrylated epoxidized soybean oil (AESO), polyethylene glycol diacrylate (PEGDA) and nanohydroxyapatite (nHA) by using masked stereolithography (mSLA)-based 3D printing. The nanocomposite inks possess suitable rheological properties and good printability to print complex, anatomically-precise, 'by design' grafts. The addition of nHA to the AESO/PEGDA resin improved the tensile strength and fracture toughness of the mSLA printed nanocomposites, presumably due to small-scale reinforcement. By adding 10 vol% nHA, tensile strength, modulus and fracture toughness (KIc) were increased to 30.8 ± 1.2 MPa (58% increase), 1984.4 ± 126.7 MPa (144% increase) and 0.6 ± 0.1 MPa·m1/2 (42% increase), respectively (relative to the pure resin). The nanocomposites did not demonstrate significant hydrolytic, enzymatic or oxidative degradation when incubated for 28 days, assuring chemical and mechanical stability at early stages of implantation. Apatite nucleated and covered the nanocomposite surfaces within 7 days of incubation in simulated body fluid. Good viability and proliferation of differentiated MC3T3-E1 osteoblasts were also observed on the nanocomposites. Taken all together, our nanocomposites demonstrate excellent bone-bioactivity and potential for bone defect repair.
Collapse
|
15
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: https:/doi.org/10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
16
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: 10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
17
|
Mondal D, Srinivasan A, Comeau P, Toh YC, Willett TL. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111400. [PMID: 33255003 DOI: 10.1016/j.msec.2020.111400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The mechanical properties and biocompatibility of nanocomposites composed of Acrylated Epoxidized Soybean Oil (AESO), nano-Hydroxyapatite (nHA) rods and either 2-Hydroxyethyl Acrylate (HEA) or Polyethylene Glycol Diacrylate (PEGDA) and 3D printed using extrusion-based additive manufacturing methods were investigated. The effects of addition of HEA or PEGDA on the rheological, mechanical properties and cell-biomaterial interactions were studied. AESO, PEGDA (or HEA), and nHA were composited using an ultrasonic homogenizer and scaffolds were 3D printed using a metal syringe on an extrusion-based 3D printer while simultaneously UV cured during layer-by-layer deposition. Nanocomposite inks were characterized for their viscosity before curing, and dispersion of the nHA particles and tensile mechanical properties after curing. Proliferation and differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) were studied by seeding cells onto the scaffolds and culturing in osteogenic differentiation medium for 7, 14 and 21 days. Overall, each of the scaffolds types demonstrated controlled morphology resulting from the printability of nanocomposite inks, well-dispersed nHA particles within the polymer matrices, and were shown to support cell proliferation and osteogenic differentiation after 14 and 21 days of culture. However, the nature of the functional groups present in each ink detectably affected the mechanical properties and cytocompatibility of the scaffolds. For example, while the incorporation of HEA reduced nHA dispersion and tensile strength of the final nanocomposite, it successfully enhanced shear yield strength, and printability, as well as cell adhesion, proliferation and osteogenic differentiation, establishing a positive effect perhaps due to additional hydrogen bonding.
Collapse
Affiliation(s)
- Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada
| | - Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, 117583, Singapore
| | - Patricia Comeau
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, 117583, Singapore
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada.
| |
Collapse
|