1
|
Wang Y, Chen S, Liang H, Bai J. A review of graded scaffolds made by additive manufacturing for tissue engineering: design, fabrication and properties. Biofabrication 2025; 17:022009. [PMID: 40009881 DOI: 10.1088/1758-5090/adba8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
The emergence of tissue engineering (TE) has provided new vital means for human body tissue/organ repair. TE scaffolds can provide temporary structural support for cell attachment, growth, and proliferation, until the body restores the mechanical and biological properties of the host tissues. Since native tissues are inhomogeneous and in many situations are graded structures for performing their unique functions, graded scaffolds have become increasingly attractive for regenerating particular types of tissues, which aim to offer a more accurate replication of native interactions and functions. Importantly, the advances introduced by additive manufacturing (AM) have now enabled more design freedom and are capable of tailoring both structural and compositional gradients within a single scaffold. In this context, graded TE scaffolds fabricated by AM technologies have been attracting increasing attention. In this review, we start with an introduction of common graded structures in the human body and analyse the advantages and strengths of AM-formed graded scaffolds. Various AM technologies that can be leveraged to produce graded scaffolds are then reviewed based on non-cellular 3D printing and cell-laden 3D bioprinting. The comparisons among various AM technologies for fabricating graded scaffolds are presented. Subsequently, we propose several types of gradients, structural, material, biomolecular and multi-gradients for scaffolds, and highlight the design methods, resulting mechanical properties and biological responses. Finally, current status, challenges and perspectives for AM in developing graded scaffolds are exhibited and discussed.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
2
|
Zhang Q, Sun C, Zheng J, Wang L, Liu C, Li D. Mechanical behaviour of additive manufactured PEEK/HA porous structure for orthopaedic implants: Materials, structures and manufacturing processes. J Mech Behav Biomed Mater 2025; 163:106848. [PMID: 39671975 DOI: 10.1016/j.jmbbm.2024.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Polyether-ether-ketone (PEEK) composites represent one of the most promising approaches to overcoming the weak osseointegration associated with the bioinertness of PEEK, making them highly suitable for clinical translation. Implants with porous structures fabricated by additive manufacturing offer the potential for long-term stability by promoting bone ingrowth. However, despite the importance of porous design, there is still no consensus on the optimal approach for PEEK-based composites. Given the significance of permeability and mechanical properties as functional indicators closely linked to osseointegration, the effects of material composition, structural design, and manufacturing processes on the permeability and mechanical properties of PEEK/hydroxyapatite (HA) scaffolds were systematically investigated in this study. In terms of permeability, the axial permeability of scaffolds with different pore sizes and representative volume elements varied within the range of 0.3-24.8 × 10-9 m2. Among scaffolds with similar relative density, the Gyroid structure exhibited the lowest permeability, while the orthogonal structure demonstrated the highest. For cylindrical scaffolds, circumferential permeability decreased with increasing penetration depth, suggesting a potential reduction in bone ingrowth speed with depth. As for mechanical properties, the experimentally determined effective elastic modulus and effective yield strength of the scaffolds ranged from 675.1 MPa to 65.2 MPa and 43.5 MPa to 4.1 MPa, respectively. The permeability and mechanical properties of PEEK/HA scaffolds with relative density ranging from 35% to 50% were aligned with the those of human cancellous bone. Heat treatment at 240 °C for 120 min increased the crystallinity of PEEK to 37.2%, resulting in a substantial improvement in both the strength and stiffness of the scaffolds. However, excessive crystallinity led to brittle fracture, which in turn reduced the strength of the scaffolds. This study employed a systematic research approach to investigate how material composition, structural design, and manufacturing processes influence the mechanical properties and permeability of PEEK composite bone scaffolds, which are crucial for bone ingrowth. The results offered insights that support the design, manufacturing, and performance evaluation of PEEK-based porous implants.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; Centre for Medical Device Evaluation, National Medical Products Administration (NMPA), 100081, Beijing, China
| | - Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Innovation Platform (Centre) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, 710115, Xi'an, ShaanXi, China.
| | - Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Innovation Platform (Centre) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, 710115, Xi'an, ShaanXi, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Innovation Platform (Centre) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, 710115, Xi'an, ShaanXi, China.
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054, Xi'an, ShaanXi, China; National Innovation Platform (Centre) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, 710115, Xi'an, ShaanXi, China.
| |
Collapse
|
3
|
Gallego L, Harvey K, Pevida M, García-Consuegra L, García-Suárez O, Meana Á, Alvarez-Viejo M, Junquera L. From Waste to Innovation: A Circular Economy Approach for Tissue Engineering by Transforming Human Bone Waste into Novel Collagen Membranes. Biomolecules 2025; 15:132. [PMID: 39858527 PMCID: PMC11763954 DOI: 10.3390/biom15010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of the circular economy is to treat waste as a valuable raw material, reintegrating it into the industrial economy and extending the lifecycle of subsequent products. Efforts to reduce the production of hard-to-recycle waste are becoming increasingly important to manufacturers, not only of consumer goods but also of specialized items that are difficult to manufacture, such as medical supplies, which have now become a priority for the European Union. The purpose of the study is to manufacture a novel human-purified type I collagen membrane from bone remnants typically discarded during the processing of cortico-cancellous bones in tissue banks and to evaluate its mechanical properties and effectiveness in regenerating bone-critical mandibular defects in rabbits. To prepare the novel membrane, cortico-cancellous bone chip samples from a local tissue bank were processed to isolate collagen by demineralization under agitation in HCl, cast into a silicone mold, and air-dried at room temperature and UV irradiation. The average thickness of the four batches analyzed by SEM was 37.3 μm. The average value of Young's modulus and tensile strength obtained from the specimens was 2.56 GPa and 65.43 Mpa, respectively. The membrane's efficacy was tested by creating a critical bicortical and bilateral osteoperiosteal defect in rabbit mandibles. The right-side defects were covered with the collagen membrane, while the left-side defects were left untreated as a control. Nine weeks post-surgery, clinical, radiological, and histological analyses demonstrated new bone formation in the treated areas, whereas the control sites showed no bone regeneration. This innovative approach not only contributes to sustainability in healthcare by optimizing biological waste but also exemplifies efficient resource use in line with the circular economy, offering a cost-effective, biocompatible option that could benefit national health systems.
Collapse
Affiliation(s)
- Lorena Gallego
- Oral and Maxillofacial Surgery Service, Cabueñes University Hospital, 33394 Gijón, Spain;
| | - Kimberly Harvey
- Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain;
| | - Marta Pevida
- Health Research Institute of the Principality of Asturias (ISPA), Foundation for Biomedical Research and Innovation in Asturias, University of Oviedo, 33011 Oviedo, Spain; (M.P.); (O.G.-S.); (Á.M.); (M.A.-V.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Tissue Engineering Unit, Asturias Community Blood and Tissue Center (CCST), 33006 Oviedo, Spain
| | - Luis García-Consuegra
- Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain;
| | - Olivia García-Suárez
- Health Research Institute of the Principality of Asturias (ISPA), Foundation for Biomedical Research and Innovation in Asturias, University of Oviedo, 33011 Oviedo, Spain; (M.P.); (O.G.-S.); (Á.M.); (M.A.-V.)
- SINPOS Research Group, Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Álvaro Meana
- Health Research Institute of the Principality of Asturias (ISPA), Foundation for Biomedical Research and Innovation in Asturias, University of Oviedo, 33011 Oviedo, Spain; (M.P.); (O.G.-S.); (Á.M.); (M.A.-V.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Tissue Engineering Unit, Asturias Community Blood and Tissue Center (CCST), 33006 Oviedo, Spain
| | - María Alvarez-Viejo
- Health Research Institute of the Principality of Asturias (ISPA), Foundation for Biomedical Research and Innovation in Asturias, University of Oviedo, 33011 Oviedo, Spain; (M.P.); (O.G.-S.); (Á.M.); (M.A.-V.)
- Unit of Cell Therapy and Regenerative Medicine, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Luis Junquera
- Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain;
| |
Collapse
|
4
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
5
|
Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012003. [PMID: 39655853 DOI: 10.1088/2516-1091/ad879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024]
Abstract
The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs. The integration of multiobjective optimization and topology optimization has been highlighted for developing scaffolds that meet the multifaceted requirements of BTE. Challenges such as the need for consideration of manufacturing constraints and the incorporation of degradation and bone regeneration models into the optimization process have been identified. The review underscores the potential of advanced computational tools and additive manufacturing techniques in evolving the field of BTE, aiming to improve patient outcomes in bone tissue regeneration. The reliability of current optimization methods is examined, with suggestions for incorporating non-deterministic approaches andin vivovalidations to enhance the practical application of optimized scaffolds. The review concludes with a call for further research into artificial intelligence-based methods to advance scaffold design and optimization.
Collapse
Affiliation(s)
- Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Caleb Valeri
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
6
|
Jang HJ, Kang MS, Jang J, Lim D, Choi SW, Jung TG, Chun HJ, Kim B, Han DW. Harnessing 3D printed highly porous Ti-6Al-4V scaffolds coated with graphene oxide to promote osteogenesis. Biomater Sci 2024; 12:5491-5503. [PMID: 39310945 DOI: 10.1039/d4bm00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti-6Al-4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration in vivo. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. In vitro assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, in vivo transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.
Collapse
Affiliation(s)
- Hee Jeong Jang
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Moon Sung Kang
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Jinju Jang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Corporate Research Institute, RNX Inc., Bucheon 14558, Republic of Korea
| | - Dohyung Lim
- Corporate Research Institute, RNX Inc., Bucheon 14558, Republic of Korea
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seong-Won Choi
- Industry Support Center for Convergence Medical Devices, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Chungju 28160, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
9
|
Wang Y, Chen S, Liang H, Bai J, Wang M. Design and fabrication of biomimicking radially graded scaffolds via digital light processing 3D printing for bone regeneration. J Mater Chem B 2023; 11:9961-9974. [PMID: 37818766 DOI: 10.1039/d3tb01573d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Scaffolds are an essential component in bone tissue engineering (BTE). However, most of the current BTE scaffolds are homogeneous structures and do not resemble the graded architectures of native bone. In the current study, four types of biomimicking scaffold designs based on gyroid (G) and primitive (P) units with radially graded pore sizes were devised, and scaffolds of these designs with two porosity groups (65 vol% and 75 vol%) were fabricated via digital light processing (DLP) 3D printing using biphasic calcium phosphate (BCP). Scaffolds of the gyroid-gyroid (G-G) design displayed better dimensional accuracy, compressive property, and cell proliferation rate than gyroid-primitive (G-P), primitive-gyroid (P-G), and primitive-primitive (P-P) scaffolds. Subsequently, graded G-G scaffolds with different porosities were fabricated and the relationship between compressive strength and porosity was determined. Furthermore, the sintered BCP bioceramics fabricated via current manufacturing process exhibited excellent biocompatibility and bioactivity, indicating their high potential for BTE.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
10
|
Rahmani R, Lopes SI, Prashanth KG. Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials. J Funct Biomater 2023; 14:521. [PMID: 37888186 PMCID: PMC10607885 DOI: 10.3390/jfb14100521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices for filled ceramics. The primary metal alloys in this category are titanium-based Ti6Al4V and iron-based 316L, which can have either a uniform cell or a gradient structure. Well-known ceramics used in biomaterial applications include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite (HA), wollastonite (W), and tricalcium phosphate (TCP). To fill the structures fabricated by SLM, an appropriate ceramic is employed through the spark plasma sintering (SPS) method, making them suitable for in vitro or in vivo applications following minor post-processing. The combined SLM-SPS approach offers advantages, such as rapid design and prototyping, as well as assured densification and consolidation, although challenges persist in terms of large-scale structure and molding design. The individual or combined application of SLM and SPS processes can be implemented based on the specific requirements for fabricated sample size, shape complexity, densification, and mass productivity. This flexibility is a notable advantage offered by the combined processes of SLM and SPS. The present article provides an overview of metal-ceramic composites produced through SLM-SPS techniques. Mg-W-HA demonstrates promise for load-bearing biomedical applications, while Cu-TiO2-Ag exhibits potential for virucidal activities. Moreover, a functionally graded lattice (FGL) structure, either in radial or longitudinal directions, offers enhanced advantages by allowing adjustability and control over porosity, roughness, strength, and material proportions within the composite.
Collapse
Affiliation(s)
- Ramin Rahmani
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Sérgio Ivan Lopes
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- ADiT-Lab, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Konda Gokuldoss Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia;
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 630014, Tamil Nadu, India
| |
Collapse
|
11
|
Vautrin A, Aw J, Attenborough E, Varga P. Fatigue life of 3D-printed porous titanium dental implants predicted by validated finite element simulations. Front Bioeng Biotechnol 2023; 11:1240125. [PMID: 37636001 PMCID: PMC10449641 DOI: 10.3389/fbioe.2023.1240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Porous dental implants represent a promising strategy to reduce failure rate by favoring osseointegration or delivering drugs locally. Incorporating porous features weakens the mechanical capacity of an implant, but sufficient fatigue strength must be ensured as regulated in the ISO 14801 standard. Experimental fatigue testing is a costly and time-intensive part of the implant development process that could be accelerated with validated computer simulations. This study aimed at developing, calibrating, and validating a numerical workflow to predict fatigue strength on six porous configurations of a simplified implant geometry. Methods: Mechanical testing was performed on 3D-printed titanium samples to establish a direct link between endurance limit (i.e., infinite fatigue life) and monotonic load to failure, and a finite element model was developed and calibrated to predict the latter. The tool was then validated by predicting the fatigue life of a given porous configuration. Results: The normalized endurance limit (10% of the ultimate load) was the same for all six porous designs, indicating that monotonic testing was a good surrogate for endurance limit. The geometry input of the simulations influenced greatly their accuracy. Utilizing the as-designed model resulted in the highest prediction error (23%) and low correlation between the estimated and experimental loads to failure (R2 = 0.65). The prediction error was smaller when utilizing specimen geometry based on micro computed tomography scans (14%) or design models adjusted to match the printed porosity (8%). Discussion: The validated numerical workflow presented in this study could therefore be used to quantitatively predict the fatigue life of a porous implant, provided that the effect of manufacturing on implant geometry is accounted for.
Collapse
Affiliation(s)
- Antoine Vautrin
- AO Research Institute Davos, Davos, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jensen Aw
- Attenborough Dental Laboratories Ltd, Nottingham, United Kingdom
| | - Ed Attenborough
- Attenborough Dental Laboratories Ltd, Nottingham, United Kingdom
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
12
|
Shum JM, Gadomski BC, Tredinnick SJ, Fok W, Fernandez J, Nelson B, Palmer RH, McGilvray KC, Hooper GJ, Puttlitz C, Easley J, Woodfield TBF. Enhanced bone formation in locally-optimised, low-stiffness additive manufactured titanium implants: An in silico and in vivo tibial advancement study. Acta Biomater 2023; 156:202-213. [PMID: 35413478 DOI: 10.1016/j.actbio.2022.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/18/2023]
Abstract
A tibial tuberosity advancement (TTA), used to treat lameness in the canine stifle, provides a framework to investigate implant performance within an uneven loading environment due to the dominating patellar tendon. The purpose of this study was to reassess how we design orthopaedic implants in a load-bearing model to investigate potential for improved osseointegration capacity of fully-scaffolded mechanically-matched additive manufactured (AM) implants. While the mechanobiological nature of bone is well known, we have identified a lower limit in the literature where investigation into exceedingly soft scaffolds relative to trabecular bone ceases due to the trade-off in mechanical strength. We developed a finite element model of the sheep stifle to assess the stresses and strains of homogeneous and locally-optimised TTA implant designs. Using additive manufacturing, we printed three different low-stiffness Ti-6Al-4 V TTA implants: 0.8 GPa (Ti1), 0.6 GPa (Ti2) and an optimised design with a 0.3 GPa cortex and 0.1 GPa centre (Ti3), for implantation in a 12-week in vivo ovine pilot study. Static histomorphometry demonstrated uniform bone ingrowth in optimised low-modulus Ti3 samples compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. Mineralising surfaces were apparent in all implants, though mineral apposition rate was only consistent throughout Ti3. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1. Results from our study suggest lower stiffnesses and higher strain ranges improve early bone formation, and that by accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. STATEMENT OF SIGNIFICANCE: The effect of different strain ranges on bone healing has been traditionally investigated and characterised through computational models, with much of the literature suggesting higher strain ranges being favourable. However, little has been done to incorporate strain-optimisation into porous orthopaedic implants due to the trade-off in mechanical strength required to induce these microenvironments. In this study, we used finite element analysis to optimise the design of additive manufactured (AM) titanium orthopaedic implants for different strain ranges, using a clinically-relevant surgical model. Our research suggests that there is potential for locally-optimised AM scaffolds in the use of orthopaedic devices to induce higher strains, which in turn encourages de novo bone formation and uniform osseointegration.
Collapse
Affiliation(s)
- Josephine M Shum
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Benjamin C Gadomski
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Seamus J Tredinnick
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Wilson Fok
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Bradley Nelson
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Ross H Palmer
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Kirk C McGilvray
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Christian Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Jeremiah Easley
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
13
|
Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2023; 156:110-124. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023]
Abstract
3D printed bone scaffolds have the potential to replace autografts and allografts because of advantages such as unlimited supply and the ability to tailor the scaffolds' biochemical, biological and biophysical properties. Significant progress has been made over the past decade in additive manufacturing techniques to 3D print bone grafts, but challenges remain in the lack of manufacturing techniques that can recapitulate both mechanical and biological functions of native bones. The purpose of this review is to outline the recent progress and challenges of engineering an ideal synthetic bone scaffold and to provide suggestions for overcoming these challenges through bioinspiration, high-resolution 3D printing, and advanced modeling techniques. The article provides a short overview of the progress in developing the 3D printed scaffolds for the repair and regeneration of critical size bone defects. STATEMENT OF SIGNIFICANCE: Treatment of critical size bone defects is still a tremendous clinical challenge. To address this challenge, diverse sets of advanced manufacturing approaches and materials have been developed for bone tissue scaffolds. 3D printing has sparked much interest because it provides a close control over the scaffold's internal architecture and in turn its mechanical and biological properties. This article provides a critical overview of the relationships between material compositions, printing techniques, and properties of the scaffolds and discusses the current technical challenges facing their successful translation to the clinic. Bioinspiration, high-resolution printing, and advanced modeling techniques are discussed as future directions to address the current challenges.
Collapse
Affiliation(s)
- Mohammad Mirkhalaf
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD 4000 Australia.
| | - Yinghui Men
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Rui Wang
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Young No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Lin Y, Shi W, Sun X, Liu S, Li J, Zhou Y, Han Y. Influence of Density Gradient on the Compression of Functionally Graded BCC Lattice Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:520. [PMID: 36676254 PMCID: PMC9866278 DOI: 10.3390/ma16020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this paper, five grading functional gradient lattice structures with a different density perpendicular to the loading direction were proposed, and the surface morphology, deformation behavior, and compression properties of the functional gradient lattice structures prepared by selective laser melting (SLM) with Ti-6Al-4V as the building material were investigated. The results show that the characteristics of the laser energy distribution of the SLM molding process make the spherical metal powder adhere to the surface of the lattice structure struts, resulting in the actual relative density of the lattice structure being higher than the designed theoretical relative density, but the maximum error does not exceed 3.33%. With the same relative density, all lattice structures with density gradients perpendicular to the loading direction have better mechanical properties than the uniform lattice structure, in particular, the elastic modulus of LF, the yield strength of LINEAR, and the first maximum compression strength of INDEX are 28.99%, 16.77%, and 14.46% higher than that of the UNIFORM. In addition, the energy absorption per unit volume of the INDEX and LINEAR is 38.38% and 48.29% higher, respectively, than that of the UNIFORM. Fracture morphology analysis shows that the fracture morphology of these lattice structures shows dimples and smooth planes, indicating that the lattice structure exhibits a mixed brittle and ductile failure mechanism under compressive loading. Finite element analysis results show that when the loading direction is perpendicular to the density gradient-forming direction, the higher density part of the lattice structure is the main bearing part, and the greater the density difference between the two ends of the lattice structure, the greater the elastic modulus.
Collapse
|
15
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
16
|
Shen X, Shukla P, Nayak S, Gopal V, Subramanian P, Sarah Benjamin A, Kalainathan S. Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb). Proc Inst Mech Eng H 2022; 236:1169-1187. [PMID: 35735136 PMCID: PMC9393650 DOI: 10.1177/09544119221105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper focuses on the evaluation of mechanical and biological properties of
laser shock peening (LSP) orthopaedic grade Ti-6Al-7Nb alloy. LSP surface
treatment was conducted at laser energy of 3 to 7 J with overlaps of 33%–67%,
and with a 3 mm laser spot size. Cell viability on laser shock peened surface
was evaluated through in-vitro MTT assay, using osteoblast-like MG63 cells for
the first-time. Residual stresses, microhardness, microstructure, sliding wear
and wetting properties were investigated. Compressive residual stresses were
found at various depths due to controlling the LSP parameters, compared to the
as-received surface. The laser shock peened surfaces were hardened from
365HV0.05 to 405HV0.05, while the as-received surface
was 320HV0.05. The average sub-grain size was refined from 14% to 36%
after LSP. The wear resistance was also controllable by altering LSP parameters.
The MTT results show that the cell viability on the laser shock peened surfaces
was comparatively lower than that of the untreated surface after 24 h. However,
after 72 h, the cell viability on modified surfaces were significantly improved.
This work indicated that laser shock peened surfaces have a strong potential to
decrease the pain from orthopaedic implant failures and promote the
cytocompatibility between the bone and implant.
Collapse
Affiliation(s)
- Xiaojun Shen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Pratik Shukla
- The Manufacturing Technology Centre (MTC), Coventry, UK
| | - Sunita Nayak
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vasanth Gopal
- Department of Metallurgy & Materials Engineering, Faculty of Engineering, University of Malta, Msida, Malta
| | - Prabhakaran Subramanian
- Department of Metallurgy & Materials Engineering, Faculty of Engineering, University of Malta, Msida, Malta
| | - Amy Sarah Benjamin
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shivpuram Kalainathan
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater 2022; 134:105370. [PMID: 35872461 DOI: 10.1016/j.jmbbm.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
This computational study addresses new biomimetic load-bearing implants designed to treat long bone critical-sized defects in a proximal diaphysis region. The design encompasses two strategies: a Haversian bone-mimicking approach for cortical bone and lattices based on triply periodic minimal surfaces (TPMS) for trabecular bone. Compression tests are modeled computationally via a non-linear finite element analysis with Ti6Al4V alloy as a base material. Nine topologies resembling cortical bone are generated as hollow cylinders with different channel arrangements simulating Haversian (longitudinal) and Volkmann (transverse) canals to achieve properties like those of a human cortical bone (Strategy I). Then, the selected optimal structure from Strategy I is merged with the trabecular bone part represented by four types of TPMS-based lattices (Diamond, Primitive, Split-P, and Gyroid) with the same relative density to imitate the whole bone structure. The Strategy I resulted in finding a hollow cylinder including Haversian and Volkmann canals, optimized in canals number, shape, and orientation to achieve mechanical behavior close to human cortical bone. The surface area and volume created by such canals have the maximum values among all studied combinations of transverse and longitudinal channels. Strategy II reveals the effect of interior design on the load-bearing capacity of the whole component. Between four types of selected TPMS, Diamond-based lattice and Split-P have more uniform stress distribution, resulting in a superior load-bearing efficiency than Gyroid and Primitive-based design showing less uniformity. This work offers a new design of the bone-mimicking implant, with cortical and trabecular bone components, to repair long bone critical-sized defects.
Collapse
Affiliation(s)
- Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia; Turku Clinical Biomaterials Center-TCBC, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, FI-20014, Turku, Finland
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
18
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
19
|
Abstract
Ti-6Al-4V (Ti64) alloy is one of the most widely used orthopedic implant materials due to its mechanical properties, corrosion resistance, and biocompatibility nature. Porous Ti64 structures are gaining more research interest as bone implants as they can help in reducing the stress-shielding effect when compared to their solid counterpart. The literature shows that porous Ti64 implants fabricated using different additive manufacturing (AM) process routes, such as laser powder bed fusion (L-PBF) and electron beam melting (EBM) can be tailored to mimic the mechanical properties of natural bone. This review paper categorizes porous implant designs into non-gradient (uniform) and gradient (non-uniform) porous structures. Gradient porous design appears to be more promising for orthopedic applications due to its closeness towards natural bone morphology and improved mechanical properties. In addition, this paper outlines the details on bone structure and its properties, mechanical properties, fatigue behavior, multifunctional porous implant designs, current challenges, and literature gaps in the research studies on porous Ti64 bone implants.
Collapse
|
20
|
Dubey A, Jaiswal S, Lahiri D. Promises of Functionally Graded Material in Bone Regeneration: Current Trends, Properties, and Challenges. ACS Biomater Sci Eng 2022; 8:1001-1027. [PMID: 35201746 DOI: 10.1021/acsbiomaterials.1c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionally graded materials (FGMs) are emerging materials systems, with structures and compositions gradually changing in a particular direction. Consequently, the properties of the materials gradually change in the desired direction to achieve particular nonhomogeneous service demands without abrupting the compositional and behavioral interface at the macroscale. FGMs have been found to have high potential as orthopedic implants; because the functional gradient can be adapted in such a manner that the core of FGM should be compatible with the density and strength of bone, interlayers can maintain the structural integrity and outermost layers would provide bioactivity and corrosion resistance, thus overall tailoring the stress shielding effect. This review article discusses the typical FGM systems existing in nature and the human body, focusing on bone tissue. Further, the reason behind the application of these FGMs systems in orthopedic implants is explored in detail, considering the physical and biological necessities. The substantial focus of the present critical review is devoted to two primary topics related to the usage of FGMs for orthopedic implants: (1) the synthesizing techniques currently available to produce FGMs for load-bearing orthopedic applications and (2) the properties, such as mechanical, structural, and biological behavior of the FGMs. This review article gives an insight into the potential of FGMs for orthopedic applications.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
21
|
Ghio E, Cerri E. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2047. [PMID: 35329496 PMCID: PMC8953129 DOI: 10.3390/ma15062047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms.
Collapse
Affiliation(s)
- Emanuele Ghio
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | | |
Collapse
|
22
|
The Effects of Graphene on the Biocompatibility of a 3D-Printed Porous Titanium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D-printed titanium (Ti) materials have attracted much attention in the field of bone tissue repair. However, the combination strength of traditional alloy materials with bone tissue is lower, and the elastic modulus is higher than that of natural bone tissue, which makes the titanium alloy susceptible to stress shielding phenomena after implantation. Therefore, it is urgent to find better surface modification technology. In this study, the physical and chemical properties, toxicity, and proliferation of adipose stem cells of composite graphene-coated titanium alloy (Gr–Ti) were investigated using 3D-printed titanium alloy as a material model. Physical and chemical property tests confirmed that 3D printing could produce porous titanium alloy materials; the compressive strength and elastic modulus of the titanium alloy scaffolds were 91 ± 3 MPa and 3.1 ± 0.4 GPa, matching the elastic modulus of normal bone tissue. The surface characterization shows that graphene can be coated on titanium alloy by a micro-arc oxidation process, which significantly improves the surface roughness of titanium alloy. The roughness factor (Ra) of the Ti stent was 4.95 ± 1.12 μm, while the Ra of the Gr–Ti stent was 6.37 ± 0.72 μm. After the adipose stem cells were co-cultured with the scaffold for 4 h and 24 h, it was found that the Gr–Ti scaffold could better promote the early cell adhesion. CCK-8 tests showed that the number of ADSCs on the G–Ti scaffold was significantly higher than that on the Ti scaffold (p < 0.01). The relative growth rate (RGR) of ADSCs in Gr–Ti was grade 0–1 (non-toxic). In the in vivo experiment of repairing a critical bone defect of a rabbit mandible, the bone volume fraction in the Gr–Ti group increased to 49.42 ± 3.28%, which was much higher than that in the Ti group (39.76 ± 3.62%) (p < 0.05). In conclusion, the porous graphene–titanium alloy promotes the proliferation and adhesion of adipose stem cells with multidirectional differentiation potential, which has great potential for the application of bone tissue engineering in repairing bone defects in the future.
Collapse
|
23
|
McGregor M, Patel S, McLachlin S, Vlasea M. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. Data Brief 2021; 39:107633. [PMID: 34917699 PMCID: PMC8646123 DOI: 10.1016/j.dib.2021.107633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
The data included in this article provides additional supporting information on our publication (McGregor et al. [1]) on the review of the natural lattice architecture in human bone and its implication towards titanium (Ti) lattice design for laser powder bed fusion and electron beam powder bed fusion. For this work, X-ray computed tomography was deployed to understand and visualize a Ti-6Al-4V lattice structure manufactured by laser powder bed fusion. This manuscript includes details about the manufacturing of the lattice structure using laser powder bed fusion and computed tomography methods used for analyzing the lattice structure. Additionally, a comprehensive literature review was conducted to understand how lattice parameters are controlled in additively manufactured Ti and Ti-alloy parts aimed at replacing or augmenting human bone. From this literature review, lattice design information was collected and is summarized in tabular form in this manuscript.
Collapse
Affiliation(s)
- Martine McGregor
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Sagar Patel
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Stewart McLachlin
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| | - Mihaela Vlasea
- University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
24
|
Ruiz de Galarreta S, Doyle RJ, Jeffers J, Ghouse S. Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis. J Mech Behav Biomed Mater 2021; 123:104784. [PMID: 34419887 DOI: 10.1016/j.jmbbm.2021.104784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed fusion and compression tests were performed. Radially and laterally porous graded structures were found to outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The experimental and finite element analysis (FEA) results were in good agreement with differences in elastic modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this type of structures with accurate results and the consequent reduction of computational time. The accuracy of the Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures and for structures with smooth diameter transitions.
Collapse
Affiliation(s)
- Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Ruben J Doyle
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonathan Jeffers
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shaaz Ghouse
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes (Basel) 2021. [DOI: 10.3390/pr9050865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper is divided into seven main parts. Its purpose is to review the literature to demonstrate the importance of developing bioengineering and global production of biomaterials to care for the level of healthcare in the world. First, the general description of health as a universal human value and assumptions of a long and healthy life policy is presented. The ethical aspects of the mission of medical doctors and dentists were emphasized. The coronavirus, COVID-19, pandemic has had a significant impact on health issues, determining the world’s health situation. The scope of the diseases is given, and specific methods of their prevention are discussed. The next part focuses on bioengineering issues, mainly medical engineering and dental engineering, and the need for doctors to use technical solutions supporting medicine and dentistry, taking into account the current stage Industry 4.0 of the industrial revolution. The concept of Dentistry 4.0 was generally presented, and a general Bioengineering 4.0 approach was suggested. The basics of production management and the quality loop of the product life cycle were analyzed. The general classification of medical devices and biomedical materials necessary for their production was presented. The paper contains an analysis of the synthesis and characterization of biomedical materials supporting medicine and dentistry, emphasizing additive manufacturing methods. Numerous examples of clinical applications supported considerations regarding biomedical materials. The economic conditions for implementing various biomedical materials groups were supported by forecasts for developing global markets for biomaterials, regenerative medicine, and tissue engineering. In the seventh part, recapitulation and final remarks against the background of historical retrospection, it was emphasized that the technological processes of production and processing of biomedical materials and the systematic increase in their global production are a determinant of the implementation of a long and healthy policy.
Collapse
|
26
|
Shi H, Zhou P, Li J, Liu C, Wang L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front Bioeng Biotechnol 2021; 8:616845. [PMID: 33553121 PMCID: PMC7863761 DOI: 10.3389/fbioe.2020.616845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings.
Collapse
Affiliation(s)
- Hongyuan Shi
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Jie Li
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|