1
|
Chou CW, Huang CC, Chen KM, Wang CI, Chen WJ, Hsu CH, Lai SC, Chou S, Chang YK, Lin KY, Chiu CH, Lu CY. Upregulation of Nrf2 attenuates Angiostrongylus cantonensis-induced parasitic meningitis in mice. Parasit Vectors 2025; 18:129. [PMID: 40181380 PMCID: PMC11969990 DOI: 10.1186/s13071-025-06724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is a food-borne parasite that can infect mammals, including humans, causing angiostrongyliasis. The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that plays a crucial role in the host's antioxidant defense and inflammation mechanisms. Herein, this study investigates the anti-inflammatory effects of Nrf2 in A. cantonensis-induced parasitic meningitis in mice. METHODS We used animal infection and treatment, larvae collection, western blotting, enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E) stain, blood-brain barrier (BBB) permeability assays, and an NAD(P)H quinone dehydrogenase 1 (NQO1) enzyme activity, reactive oxygen species (ROS), and superoxide dismutase (SOD) assay kit in this study. RESULTS Our findings revealed that larvae recovery, BBB permeability, and inflammatory mediators (interleukin (IL)-1β, IL-6, IL-17A, and tumor necrosis factor (TNF)-α) were increased in A. cantonensis-infected mice. However, p-Nrf2 levels were slightly increased in infected groups. To better understand the modulatory role of Nrf2 in the parasitic meningitis, we also treated A. cantonensis-infected mice with oltipraz (an Nrf2 activator) and trigonelline (an Nrf2 inhibitor). The larvae recovery, BBB permeability, and levels of inflammatory mediators were significantly decreased in the albendazole alone, oltipraz, and albendazole-oltipraz co-treatment groups, particularly in albendazole-oltipraz co-treatment groups. In contrast, trigonelline treatment resulted in increased levels of larvae recovery, BBB permeability, and inflammatory mediators. Moreover, since Nrf2 is involved in the regulation of antioxidant enzymes, we also examined the expression of ROS, NQO1, and SOD. ROS levels were significantly increased in infected groups but decreased in the albendazole alone, oltipraz alone, and albendazole-oltipraz co-treatment groups. NQO1 and SOD levels were significantly decreased in infected groups, but these levels were notably restored during treatment with albendazole alone, oltipraz alone, and albendazole-oltipraz co-treatment. CONCLUSIONS Our findings revealed the albendazole-Nrf2 activator co-treatment effectively suppressed excessive inflammation compared with the anthelmintics drug (albendazole) treatment alone, and Nrf2 activation might produce a synergistic effect in the inflammatory response of the brain in mice with angiostrongyliasis.
Collapse
Affiliation(s)
- Chii-Wen Chou
- Division of Neurosurgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Chia-Chun Huang
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-I Wang
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jing Chen
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chiung-Hung Hsu
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Shyun Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kuan-Yu Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chih-Hao Chiu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-You Lu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Sofiyatun E, Chen KY, Chou CJ, Lee HC, Day YA, Chiang PJ, Chiu CH, Chen WJ, Jhan KY, Wang LC. Doxycycline cotherapy with albendazole relieves neural function damage in C57BL/6 and BALB/c mice infected with Angiostrongylus cantonensis. Biomed J 2025; 48:100727. [PMID: 38636898 PMCID: PMC11751418 DOI: 10.1016/j.bj.2024.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND We investigated the effects of combination therapy albendazole and doxycycline in Angiostrongylus cantonensis-infected mice during early and late treatment. MATERIALS AND METHODS C57BL/6 and BALB/c mice were divided into five groups: (i) uninfected, (ii) infected with A. cantonensis, (iii) infected + 10 mg/kg albendazole, (iv) infected + 25 mg/kg doxycycline, and (v) infected + 10 mg/kg albendazole + 25 mg/kg doxycycline. We administered drugs in both early treatments started at 7-day post infections (dpi) and late treatments (14 dpi) to A. cantonensis-infected C57BL/6 and BALB/c mice. To assess the impact of these treatments, we employed the Morris water maze test to evaluate spatial learning and memory abilities, and the rotarod test to measure motor coordination and balance in C57BL/6 mice. Additionally, we monitored the expression of the cytokine IL-33 and GFAP in the brain of these mice using Western blot analysis. RESULTS In this study, A. cantonensis infection was observed to cause extensive cerebral angiostrongyliasis in C57BL/6 mice. This condition significantly affected their spatial learning and memory abilities, as assessed by the Morris water maze test, as well as their motor coordination, which was evaluated using the rotarod test. Early treatment with albendazole led to favorable recovery outcomes. Both C57BL/6 and BALB/c mice express IL-33 and GFAP after co-therapy. The differences of levels and patterns of IL-33 and GFAP expression in mice may be influenced by the balance between pro-inflammatory and anti-inflammatory signals within the immune system. CONCLUSIONS Combination therapy with anthelmintics and antibiotics in the early stage of A. cantonensis infection, in C57BL/6 and BALB/c mice resulted in the death of parasites in the brain and reduced the subsequent neural function damage and slowed brain damage and neurobehavior impairment. This study suggests a more effective and novel treatment, and drug delivery method for brain lesions that can decrease the neurological damage of angiostrongyliasis patients.
Collapse
Affiliation(s)
- Eny Sofiyatun
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Environmental Health, Polytechnic College of Banjarnegara, Central Java, Indonesia
| | - Kuang-Yao Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Jen Chou
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Chia Lee
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-An Day
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Jui Chiang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-June Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Lian-Chen Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Lam HYP, Huang YT, Liang TR, Peng SY. In vivo screening of flavonoid compounds revealed quercetin as a potential drug to improve recovery of angiostrongyliasis after albendazole treatment. PLoS Negl Trop Dis 2024; 18:e0012526. [PMID: 39348380 PMCID: PMC11476796 DOI: 10.1371/journal.pntd.0012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Human angiostrongyliasis, caused by consuming the larva stage of Angiostrongylus cantonensis, is an infectious disease involving the central nervous system (CNS) and ophthalmic system. Current treatment of angiostrongyliasis involves albendazole accompanied by analgesics and corticosteroids. However, long-term use of corticosteroids may lead to significant adverse effects. In the current study, we screened through different potentially effective flavonoid compounds and identified quercetin as an effective anti-inflammatory agent in an angiostrongyliasis mouse model. Our results identified that quercetin may reverse the neurological defects in mice with angiostrongyliasis. The brain pathology and inflammatory status were also improved by albendazole-quercetin co-therapy. Further analysis showed that albendazole-quercetin co-therapy had a better therapeutic effect than albendazole or quercetin monotherapy. This therapeutic effect was achieved by inhibiting the brain inflammasome activation and apoptosis. Albendazole-quercetin co-therapy also leads to the inhibition of brain IL-5, possibly leading to improved pathology. Our results here proved that quercetin may serve as a potential adjuvant drug in treating human angiostrongyliasis.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Yu-Ting Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Zhou Z, Huayu M, Mu Y, Tang F, Ge RL. Ubenimex combined with Albendazole for the treatment of Echinococcus multilocularis-induced alveolar echinococcosis in mice. Front Vet Sci 2024; 11:1320308. [PMID: 38585297 PMCID: PMC10995866 DOI: 10.3389/fvets.2024.1320308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis-Leucine aminopeptidase (EM-LAP) could inhibit the growth and invasion of E. multilocularis in host liver, and Ubenimex, a broad-spectrum inhibitor of LAP, could also inhibit E. multilocularis invasion but had a limited effect on the growth and development of E. multilocularis. Methods In this study, the therapeutic effect of Ubenimex combined with Albendazole on AE was evaluated. Mice were intraperitoneally injected with protoscoleces and imaging examination was performed at week 8 and week 16 to detect cyst change. During this period, mice were intraperitoneally injected with Ubenimex and intragastrically administered with Albendazole suspension. At last, the therapeutic effect was evaluated by morphological and pathological examination and liver function. Results The results revealed that the combined treatment could inhibit the growth and infiltration of cysts in BALB/c mice infected with E. multilocularis protoscoleces. The weight, number, invasion and fibrosis of cysts were reduced in mice treated with Ubenimex in combination with Albendazole. The same effect was achieved by the single Ubenimex treatment because of its inhibitory effect on LAP activity, but it was less effective in inhibiting the growth of cysts. The levels of ALT, AST, TBIL, DBIL, ALP, and γ-GT were reduced after the combined treatment, indicating that treatment with both Ubenimex and Albendazole could alleviate liver damage. Discussion This study suggests that the combined treatment with Ubenimex and Albendazole could be a potential therapeutic strategy for E. multilocularis infections.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
5
|
Chen KY, Cheng CJ, Chen YJ, Chiu CH, Wang LC. Protective effect of benzaldehyde combined with albendazole against brain injury induced by Angiostrongylus cantonensis infection in mice. Int J Antimicrob Agents 2023; 62:106963. [PMID: 37666435 DOI: 10.1016/j.ijantimicag.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Angiostrongylus cantonensis, also known as rat lungworm, is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis and eosinophilic meningoencephalitis, in humans. At present, the therapeutic strategy for cerebral angiostrongyliasis remains controversial. Benzaldehyde, an important bioactive constituent of Gastrodia elata (Tianma), reduces oxidative stress by inhibiting the production of reactive oxygen species. This study aimed to evaluate the therapeutic effect of benzaldehyde in combination with albendazole on angiostrongyliasis in animal models. First, the data from body weight monitoring and behavioural analyses demonstrated that benzaldehyde improved body weight and cognitive function changes after A. cantonensis infection. Next, blood‒brain barrier breakdown and pathological changes were reduced after benzaldehyde and albendazole treatment in BALB/c mice infected with A. cantonensis. Subsequently, four RNA-seq datasets were established from mouse brains that had undergone different treatments: normal, infection, infection + albendazole, and infection + albendazole + 3-hydroxybenzaldehyde groups. Ultimately, benzaldehyde was found to regulate cell apoptosis, oxidative stress and Sonic Hedgehog signalling in mouse brains infected with A. cantonensis. This study evaluated the therapeutic effect of benzaldehyde on angiostrongyliasis, and provided a potential therapeutic strategy for human angiostrongyliasis in the clinical setting. Moreover, the molecular mechanism of benzaldehyde in mouse brains infected with A. cantonensis was elucidated.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Zeng X, Shen J, Li D, Liu S, Feng Y, Yuan D, Wang L, Wu Z. CEBPα/miR-101b-3p promotes meningoencephalitis in mice infected with Angiostrongylus cantonensis by promoting microglial pyroptosis. Cell Commun Signal 2023; 21:31. [PMID: 36747241 PMCID: PMC9903543 DOI: 10.1186/s12964-023-01038-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/02/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angiostrongylus cantonensis (A. cantonensis) infection can induce acute inflammation, which causes meningoencephalitis and tissue mechanical injury to the brain. Parasite infection-induced microRNAs play important roles in anti-parasite immunity in non-permissive hosts. miR-101b-3p is highly expressed after A. cantonensis infection; however, the role of miR-101b-3p and the transcription regulation of miR-101b-3p in A. cantonensis infection remain poorly characterized. RESULTS In the present study, we found that miR-101b-3p inhibition alleviated inflammation infiltration and pyroptosis in A. cantonensis infection. In addition, we found that CCAAT/enhancer-binding protein alpha (CEBPα) directly bound to the - 6-k to - 3.5-k region upstream of miR-101b, and CEBPα activated miR-101b-3p expression in microglia. These data suggest the existence of a novel CEBPα/miR-101b-3p/pyroptosis pathway in A. cantonensis infection. Further investigation verified that CEBPα promotes pyroptosis by activating miR-101b-3p expression in microglia, and microglial pyroptosis further promoted inflammation. CONCLUSIONS Our results suggest that a CEBPα/miR-101b-3p/pyroptosis pathway may contribute to A. cantonensis infection-induced inflammation and highlight the pro-inflammatory effect of miR-101b-3p. Video Abstract.
Collapse
Affiliation(s)
- Xingda Zeng
- grid.12981.330000 0001 2360 039XDepartment of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080 China ,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Jia Shen
- grid.12981.330000 0001 2360 039XDepartment of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080 China ,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Dinghao Li
- grid.12981.330000 0001 2360 039XDepartment of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080 China ,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Shurui Liu
- grid.12981.330000 0001 2360 039XDepartment of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080 China ,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Ying Feng
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, 510006 China
| | - Dongjuan Yuan
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|