1
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Mendelman N, Meirovitch E. SRLS Analysis of 15N- 1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. J Phys Chem B 2021; 125:805-816. [PMID: 33449683 DOI: 10.1021/acs.jpcb.0c10124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on amide (N-H) NMR relaxation from the protein S100A1 analyzed with the slowly relaxing local structure (SRLS) approach. S100A1 comprises two calcium-binding "EF-hands" (helix-loop-helix motifs) connected by a linker. The dynamic structure of this protein, in both calcium-free and calcium-bound form, is described as the restricted local N-H motion coupled to isotropic protein tumbling. The restrictions are given by a rhombic potential, u (∼10 kT), the local motion by a diffusion tensor with rate constant D2 (∼109 s-1), and principal axis tilted from the N-H bond at angle β (10-20°). This parameter combination provides a physically insightful picture of the dynamic structure of S100A1 from the N-H bond perspective. Calcium binding primarily affects the C-terminal EF-hand, among others slowing down the motion of helices III and IV approximately 10-fold. Overall, it brings about significant changes in the shape of the local potential, u, and the orientation of the local diffusion axis, β. Conformational entropy derived from u makes an unfavorable entropic contribution to the free energy of calcium binding estimated at 8.6 ± 0.5 kJ/mol. The N-terminal EF-hand undergoes moderate changes. These findings provide new insights into the calcium-binding process. The same data were analyzed previously with the extended model-free (EMF) method, which is a simple limit of SRLS. In that interpretation, the protein tumbles anisotropically. Locally, calcium binding increases ordering in the loops of S100A1 and conformational exchange (Rex) in the helices of its N-terminal EF-hand. These are very unusual features. We show that they most likely stem from problematic data-fitting, oversimplifications inherent in EMF, and experimental imperfections. Rex is shown to be mainly a fit parameter. By reanalyzing the experimental data with SRLS, which is largely free of these deficiencies, we obtain-as delineated above-physically-relevant structural, kinetic, geometric, and binding information.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
4
|
Acevedo LA, Korson NE, Williams JM, Nicholson LK. Tuning a timing device that regulates lateral root development in rice. JOURNAL OF BIOMOLECULAR NMR 2019; 73:493-507. [PMID: 31407206 PMCID: PMC7141409 DOI: 10.1007/s10858-019-00258-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Peptidyl Prolyl Isomerases (PPIases) accelerate cis-trans isomerization of prolyl peptide bonds. In rice, the PPIase LRT2 is essential for lateral root initiation. LRT2 displays in vitro isomerization of a highly conserved W-P peptide bond (104W-P105) in the natural substrate OsIAA11. OsIAA11 is a transcription repressor that, in response to the plant hormone auxin, is targeted to ubiquitin-mediated proteasomal degradation via specific recognition of the cis isomer of its 104W-P105 peptide bond. OsIAA11 controls transcription of specific genes, including its own, that are required for lateral root development. This auxin-responsive negative feedback circuit governs patterning and development of lateral roots along the primary root. The ability to tune LRT2 activity via mutagenesis is crucial for understanding and modeling the role of this bimodal switch in the auxin circuit and lateral root development. We present characterization of the thermal stability and isomerization rates of several LRT2 mutants acting on the OsIAA11 substrate. The thermally stable mutants display activities lower than that of wild-type (WT) LRT2. These include binding diminished but catalytically active P125K, binding incompetent W128A, and binding capable but catalytically incompetent H133Q mutations. Additionally, LRT2 homologs hCypA from human, TaCypA from Triticum aestivum (wheat) and PPIB from E. coli were shown to have 110, 50 and 60% of WT LRT2 activity on the OsIAA11 substrate. These studies identify several thermally stable LRT2 mutants with altered activities that will be useful for establishing relationships between cis-trans isomerization, auxin circuit dynamics, and lateral root development in rice.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan E Korson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Justin M Williams
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Tchaicheeyan O, Mendelman N, Zerbetto M, Meirovitch E. Local Ordering at Mobile Sites in Proteins: Combining Perspectives from NMR Relaxation and Molecular Dynamics. J Phys Chem B 2019; 123:2745-2755. [DOI: 10.1021/acs.jpcb.8b10801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Oren Tchaicheeyan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Boswell ZK, Latham MP. Methyl-Based NMR Spectroscopy Methods for Uncovering Structural Dynamics in Large Proteins and Protein Complexes. Biochemistry 2018; 58:144-155. [PMID: 30336000 DOI: 10.1021/acs.biochem.8b00953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NMR spectroscopy is particularly adept at site-specifically monitoring dynamic processes in proteins, such as protein folding, domain movements, ligand binding, and side-chain rotations. By coupling the favorable spectroscopic properties of highly dynamic side-chain methyl groups with transverse-relaxation-optimized spectroscopy (TROSY), it is now possible to routinely study such dynamic processes in high-molecular-weight proteins and complexes approaching 1 MDa. In this Perspective, we describe many elegant methyl-based NMR experiments that probe slow (second) to fast (picosecond) dynamics in large systems. To demonstrate the power of these methods, we also provide interesting examples of studies that utilized each methyl-based NMR technique to uncover functionally important dynamics. In many cases, the NMR experiments are paired with site-directed mutagenesis and/or other biochemical assays to put the dynamics and function into context. Our vision of the future of structural biology involves pairing methyl-based NMR spectroscopy with biochemical studies to advance our knowledge of the motions large proteins and macromolecular complexes use to choreograph complex functions. Such studies will be essential in elucidating the critical structural dynamics that underlie function and characterizing alterations in these processes that can lead to human disease.
Collapse
Affiliation(s)
- Zachary K Boswell
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79423 , United States
| | - Michael P Latham
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79423 , United States
| |
Collapse
|
7
|
Paluch P, Pawlak T, Ławniczak K, Trébosc J, Lafon O, Amoureux JP, Potrzebowski MJ. Simple and Robust Study of Backbone Dynamics of Crystalline Proteins Employing 1H- 15N Dipolar Coupling Dispersion. J Phys Chem B 2018; 122:8146-8156. [PMID: 30070484 DOI: 10.1021/acs.jpcb.8b04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new solid-state multidimensional NMR approach based on the cross-polarization with variable-contact pulse sequence [ Paluch , P. ; Pawlak , T. ; Amoureux , J.-P. ; Potrzebowski , M. J. J. Magn. Reson. 233 , 2013 , 56 ], with 1H inverse detection and very fast magic angle spinning (νR = 60 kHz), dedicated to the measurement of local molecular motions of 1H-15N vectors. The introduced three-dimensional experiments, 1H-15N-1H and hCA(N)H, are particularly useful for the study of molecular dynamics of proteins and other complex structures. The applicability and power of this methodology have been revealed by employing as a model sample the GB-1 small protein doped with Na2CuEDTA. The results clearly prove that the dispersion of 1H-15N dipolar coupling constants well correlates with higher order structure of the protein. Our approach complements the conventional studies and offers a fast and reasonably simple method.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Karol Ławniczak
- Department of Theoretical Physics, Faculty of Physics and Applied Informatics , University of Łódź , Pomorska 149/153 , PL-90236 Łódź , Poland
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Olivier Lafon
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France.,Bruker France , 34 rue de l'Industrie , F-67166 Wissembourg , France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| |
Collapse
|
8
|
Rabbani S, Fiege B, Eris D, Silbermann M, Jakob RP, Navarra G, Maier T, Ernst B. Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain: Engineering a minimalistic allosteric system. J Biol Chem 2018; 293:1835-1849. [PMID: 29180452 PMCID: PMC5798311 DOI: 10.1074/jbc.m117.802942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design.
Collapse
Affiliation(s)
- Said Rabbani
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Brigitte Fiege
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Deniz Eris
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Marleen Silbermann
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Roman Peter Jakob
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Giulio Navarra
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Timm Maier
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Ernst
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| |
Collapse
|
9
|
Rozentur-Shkop E, Goobes G, Chill JH. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP. JOURNAL OF BIOMOLECULAR NMR 2016; 66:243-257. [PMID: 27844185 DOI: 10.1007/s10858-016-0073-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J(15N,13Cα) couplings. This concept was realized using a unidirectional (H)NCO 13C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J(15N,13Cα) couplings were acquired for WIP residues 2-65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16-23 and 45-60, and a helical tendency at residues 28-42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP2-65 conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein-protein interactions that stabilize the unfolded state. We conclude that J-couplings are a useful measureable in characterizing structural ensembles in IDPs, and that the proposed experiment provides a practical method for accurately performing such measurements, once again emphasizing the power of NMR in studying IDP behavior.
Collapse
Affiliation(s)
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
10
|
Fenwick RB, Schwieters CD, Vögeli B. Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions. J Am Chem Soc 2016; 138:8412-21. [PMID: 27331619 PMCID: PMC5055379 DOI: 10.1021/jacs.6b01447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synchronization of native state motions as they transition between microstates influences catalysis kinetics, mediates allosteric interactions, and reduces the conformational entropy of proteins. However, it has proven difficult to describe native microstates because they are usually minimally frustrated and may interconvert on the micro- to millisecond time scale. Direct observation of concerted equilibrium fluctuations would therefore be an important tool for describing protein native states. Here we propose a strategy that relates NMR cross-correlated relaxation (CCR) rates between dipolar interactions to residual dipolar couplings (RDCs) of individual consecutive H(N)-N and H(α)-C(α) bonds, which act as a proxy for the peptide planes and the side chains, respectively. Using Xplor-NIH ensemble structure calculations restrained with the RDC and CCR data, we observe collective motions on time scales slower than nanoseconds in the backbone for GB3. To directly access the correlations from CCR, we develop a structure-free data analysis. The resulting dynamic correlation map is consistent with the ensemble-restrained simulations and reveals a complex network. In general, we find that the bond motions are on average slightly correlated and that the local environment dominates many observations. Despite this, some patterns are typical over entire secondary structure elements. In the β-sheet, nearly all bonds are weakly correlated, and there is an approximately binary alternation in correlation intensity corresponding to the solvent exposure/shielding alternation of the side chains. For α-helices, there is also a weak correlation in the H(N)-N bonds. The degree of correlation involving H(α)-C(α) bonds is directly affected by side-chain fluctuations, whereas loops show complex and nonuniform behavior.
Collapse
Affiliation(s)
- R. Bryn Fenwick
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Spain
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Building 12A Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Beat Vögeli
- Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
12
|
Paluch P, Pawlak T, Jeziorna A, Trébosc J, Hou G, Vega AJ, Amoureux JP, Dracinsky M, Polenova T, Potrzebowski MJ. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 2015; 17:28789-801. [PMID: 26451400 PMCID: PMC4890705 DOI: 10.1039/c5cp04475h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Tomasz Pawlak
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Agata Jeziorna
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille North of France, 59652 Villeneuve d'Ascq, France
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille North of France, 59652 Villeneuve d'Ascq, France and Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo nam. 2, Prague, Czech Republic.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Marek J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| |
Collapse
|
13
|
Gairí M, Dyachenko A, González MT, Feliz M, Pons M, Giralt E. An optimized method for (15)N R(1) relaxation rate measurements in non-deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 62:209-20. [PMID: 25947359 PMCID: PMC4451471 DOI: 10.1007/s10858-015-9937-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/27/2015] [Indexed: 05/20/2023]
Abstract
(15)N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. (15)N CSA/(1)H-(15)N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of (15)N R1 rates through (1)H-(15)N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable (15)N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on (15)N R1 rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during (15)N R1 measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.
Collapse
Affiliation(s)
- Margarida Gairí
- />NMR Facility, Scientific and Technological Centers, University of Barcelona (CCiTUB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Andrey Dyachenko
- />Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - M. Teresa González
- />NMR Facility, Scientific and Technological Centers, University of Barcelona (CCiTUB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Miguel Feliz
- />NMR Facility, Scientific and Technological Centers, University of Barcelona (CCiTUB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Miquel Pons
- />Biomolecular NMR Laboratory and Organic Chemistry Department, University of Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- />Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Torchia DA. NMR studies of dynamic biomolecular conformational ensembles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:14-32. [PMID: 25669739 PMCID: PMC4325279 DOI: 10.1016/j.pnmrs.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 05/06/2023]
Abstract
Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: "Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?" This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA.
Collapse
Affiliation(s)
- Dennis A Torchia
- National Institutes of Health (NIH), 5 Memorial Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Elazari-Shalom H, Shaked H, Esteban-Martin S, Salvatella X, Barda-Saad M, Chill JH. New insights into the role of the disordered WIP N-terminal domain revealed by NMR structural characterization. FEBS J 2015; 282:700-14. [DOI: 10.1111/febs.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hadassa Shaked
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| | - Santiago Esteban-Martin
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Barcelona Supercomputing Center; Spain
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Institute for Research in Biomedicine IRB Barcelona; Spain
- ICREA; Barcelona Spain
| | - Mira Barda-Saad
- Mina and Everard Goodman Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Jordan H. Chill
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
16
|
Mura C, McAnany CE. An introduction to biomolecular simulations and docking. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.935372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Tossavainen H, Kukkurainen S, Määttä JAE, Kähkönen N, Pihlajamaa T, Hytönen VP, Kulomaa MS, Permi P. Chimeric Avidin--NMR structure and dynamics of a 56 kDa homotetrameric thermostable protein. PLoS One 2014; 9:e100564. [PMID: 24959850 PMCID: PMC4069078 DOI: 10.1371/journal.pone.0100564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Chimeric avidin (ChiAVD) is a product of rational protein engineering remarkably resistant to heat and harsh conditions. In quest of the fundamentals behind factors affecting stability we have elucidated the solution NMR spectroscopic structure of the biotin–bound form of ChiAVD and characterized the protein dynamics through 15N relaxation and hydrogen/deuterium (H/D) exchange of this and the biotin–free form. To surmount the challenges arising from the very large size of the protein for NMR spectroscopy, we took advantage of its high thermostability. Conventional triple resonance experiments for fully protonated proteins combined with methyl–detection optimized experiments acquired at 58°C were adequate for the structure determination of this 56 kDa protein. The model–free parameters derived from the 15N relaxation data reveal a remarkably rigid protein at 58°C in both the biotin–bound and the free forms. The H/D exchange experiments indicate a notable increase in hydrogen protection upon biotin binding.
Collapse
Affiliation(s)
- Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sampo Kukkurainen
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Juha A. E. Määttä
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- BioMediTech, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Niklas Kähkönen
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- BioMediTech, Tampere, Finland
| | - Tero Pihlajamaa
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vesa P. Hytönen
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- BioMediTech, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Markku S. Kulomaa
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- BioMediTech, Tampere, Finland
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
18
|
De novoinference of protein function from coarse-grained dynamics. Proteins 2014; 82:2443-54. [DOI: 10.1002/prot.24609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 01/04/2023]
|
19
|
Structural basis of conformational transitions in the active site and 80's loop in the FK506-binding protein FKBP12. Biochem J 2014; 458:525-36. [PMID: 24405377 PMCID: PMC3940039 DOI: 10.1042/bj20131429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive set of NMR doublings exhibited by the immunophilin FKBP12 (FK506-binding protein 12) arose from a slow transition to the cis-peptide configuration at Gly89 near the tip of the 80′s loop, the site for numerous protein-recognition interactions for both FKBP12 and other FKBP domain proteins. The 80′s loop also exhibited linebroadening, indicative of microsecond to millisecond conformational dynamics, but only in the trans-peptide state. The G89A variant shifted the trans–cis peptide equilibrium from 88:12 to 33:67, whereas a proline residue substitution induced fully the cis-peptide configuration. The 80′s loop conformation in the G89P crystal structure at 1.50 Å resolution differed from wild-type FKBP12 primarily at residues 88, 89 and 90, and it closely resembled that reported for FKBP52. Structure-based chemical-shift predictions indicated that the microsecond to millisecond dynamics in the 80′s loop probably arose from a concerted main chain (ψ88 and ϕ89) torsion angle transition. The indole side chain of Trp59 at the base of the active-site cleft was reoriented ~90o and the adjacent backbone was shifted in the G89P crystal structure. NOE analysis of wild-type FKBP12 demonstrated that this indole populates the perpendicular orientation at 20%. The 15N relaxation analysis was consistent with the indole reorientation occurring in the nanosecond timeframe. Recollection of the G89P crystal data at 1.20 Å resolution revealed a weaker wild-type-like orientation for the indole ring. Differences in the residues that underlie the Trp59 indole ring and altered interactions linking the 50′s loop to the active site suggested that reorientation of this ring may be disfavoured in the other six members of the FKBP domain family that bear this active-site tryptophan residue. Extensive resonance doubling arises from a cis–trans peptide transition at Gly89, whereas linebroadening appears due to a concerted shift in the neighbouring torsion angles. The active site Trp59 ring adopts a perpendicular orientation at a population of 20%.
Collapse
|
20
|
Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein. Biophys J 2014; 105:481-93. [PMID: 23870269 DOI: 10.1016/j.bpj.2013.05.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/30/2013] [Accepted: 05/20/2013] [Indexed: 01/07/2023] Open
Abstract
WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIP(C), a C-terminal domain fragment of WIP that includes residues 407-503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIP(C) and the high occurrence (25%) of proline residues, we employed 5D-NMR(13)C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, (15)N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446-456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468-478. The (13)C-detected approach allows chemical-shift assignment in the WIP(C) polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIP(C). Thus, we conclude that the disordered WIP(C) fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function.
Collapse
Affiliation(s)
- Noam Y Haba
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Posey LA, Hendricks RJ, Beck WF. Dynamic Stokes Shift of the Time-Resolved Phosphorescence Spectrum of ZnII-Substituted Cytochrome c. J Phys Chem B 2013; 117:15926-34. [DOI: 10.1021/jp405611w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lynmarie A. Posey
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ryan J. Hendricks
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Shapiro YE, Meirovitch E. The time correlation function perspective of NMR relaxation in proteins. J Chem Phys 2013; 139:084107. [PMID: 24006974 DOI: 10.1063/1.4818877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the (15)N-(1)H bond). So far we applied SRLS to (15)N-H relaxation from seven different proteins within the scope of the commonly used data-fitting paradigm. Here, we solve the SRLS Smoluchowski equation using typical best-fit parameters as input, to obtain the corresponding generic time correlation functions (TCFs). The following new information is obtained. For actual rhombic local ordering and main ordering axis pointing along C(i-1)(α)-C(i)(α), the measurable TCF is dominated by the (K,K') = (-2,2), (2,2), and (0,2) components (K is the order of the rank 2 local ordering tensor), determined largely by the local motion. Global diffusion axiality affects the analysis significantly when the ratio between the parallel and perpendicular components exceeds approximately 1.5. Local diffusion axiality has a large and intricate effect on the analysis. Mode-coupling becomes important when the ratio between the global and local motional rates falls below 0.01. The traditional method of analysis--model-free (MF)--represents a simple limit of SRLS. The conditions under which the MF and SRLS TCFs are the same are specified. The validity ranges of wobble-in-a-cone and rotation on the surface of a cone as local motions are determined. The evolution of the intricate Smoluchowski operator from the simple diffusion operator for a sphere reorienting in isotropic medium is delineated. This highlights the fact that SRLS is an extension of the established stochastic theories for treating restricted motions. This study lays the groundwork for TCF-based comparison between mesoscopic SRLS and atomistic molecular dynamics.
Collapse
Affiliation(s)
- Yury E Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | |
Collapse
|
23
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
24
|
Hsieh KY, Bendeif EE, Gansmuller A, Pillet S, Woike T, Schaniel D. Structure and dynamics of guest molecules confined in a mesoporous silica matrix: Complementary NMR and PDF characterisation. RSC Adv 2013. [DOI: 10.1039/c3ra45347b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Mollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra CM, Emsley L, Blackledge M. Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation. J Phys Chem Lett 2012; 3:3657-62. [PMID: 26291002 DOI: 10.1021/jz3016233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Solid-state NMR can provide atomic-resolution information about protein motions occurring on a vast range of time scales under similar conditions to those of X-ray diffraction studies and therefore offers a highly complementary approach to characterizing the dynamic fluctuations occurring in the crystal. We compare experimentally determined dynamic parameters, spin relaxation, chemical shifts, and dipolar couplings, to values calculated from a 200 ns MD simulation of protein GB1 in its crystalline form, providing insight into the nature of structural dynamics occurring within the crystalline lattice. This simulation allows us to test the accuracy of commonly applied procedures for the interpretation of experimental solid-state relaxation data in terms of dynamic modes and time scales. We discover that the potential complexity of relaxation-active motion can lead to significant under- or overestimation of dynamic amplitudes if different components are not taken into consideration.
Collapse
Affiliation(s)
- Luca Mollica
- †Protein Dynamics and Flexibility, Institut de Biologie Structurale, CEA, CNRS, UJF-Grenoble 1, 41 Rue Jules Horowitz, Grenoble 38027, France
| | - Maria Baias
- ‡CNRS/ENS-Lyon/UCB-Lyon 1, Centre de RMN à Très Hauts Champs, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Józef R Lewandowski
- §Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Benjamin J Wylie
- ⊥Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Lindsay J Sperling
- #Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Chad M Rienstra
- ∥Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lyndon Emsley
- ‡CNRS/ENS-Lyon/UCB-Lyon 1, Centre de RMN à Très Hauts Champs, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Martin Blackledge
- †Protein Dynamics and Flexibility, Institut de Biologie Structurale, CEA, CNRS, UJF-Grenoble 1, 41 Rue Jules Horowitz, Grenoble 38027, France
| |
Collapse
|
26
|
Kührová P, De Simone A, Otyepka M, Best RB. Force-field dependence of chignolin folding and misfolding: comparison with experiment and redesign. Biophys J 2012; 102:1897-906. [PMID: 22768946 DOI: 10.1016/j.bpj.2012.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 02/21/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022] Open
Abstract
We study the folding of the designed hairpin chignolin, using simulations with four different force fields. Interestingly, we find a misfolded, out-of-register, structure comprising 20-50% of the ordered structures with three force fields, but not with a fourth. A defining feature of the misfold is that Gly-7 adopts a β(PR) conformation rather than α(L). By reweighting, we show that differences between the force fields can mostly be attributed to differences in glycine properties. Benchmarking against NMR data suggests that the preference for β(PR) is not a force-field artifact. For chignolin, we show that including the misfold in the ensemble results in back-recalculated NMR observables in slightly better agreement with experiment than parameters calculated from a folded ensemble only. For comparison, we show by NMR and circular dichroism spectroscopy that the G7K mutant of chignolin, in which formation of this misfold is impossible, is well folded with stability similar to the wild-type and does not populate the misfolded state in simulation. Our results highlight the complexity of interpreting NMR data for small, weakly structured, peptides in solution, as well as the importance of accurate glycine parameters in force fields, for a correct description of turn structures.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
27
|
Tollinger M, Sivertsen A, Meier BH, Ernst M, Schanda P. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy. J Am Chem Soc 2012; 134:14800-7. [PMID: 22908968 PMCID: PMC3557925 DOI: 10.1021/ja303591y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Indexed: 02/04/2023]
Abstract
We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr-Purcell-Meiboom-Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.
Collapse
Affiliation(s)
- Martin Tollinger
- Institut für Organische
Chemie, Universität Innsbruck, 6020
Innsbruck, Austria
| | - Astrid
C. Sivertsen
- CEA, Institut de Biologie Structurale
Jean-Pierre Ebel, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- CNRS, Institut
de Biologie Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz,
38027 Grenoble Cedex 1, France
- Université
Joseph Fourier−Grenoble 1, Institut de Biologie
Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz, 38027
Grenoble Cedex 1, France
| | - Beat H. Meier
- Physical
Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse
10, 8093
Zürich, Switzerland
| | - Matthias Ernst
- Physical
Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse
10, 8093
Zürich, Switzerland
| | - Paul Schanda
- CEA, Institut de Biologie Structurale
Jean-Pierre Ebel, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- CNRS, Institut
de Biologie Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz,
38027 Grenoble Cedex 1, France
- Université
Joseph Fourier−Grenoble 1, Institut de Biologie
Structurale Jean-Pierre Ebel, Grenoble, 41 rue Jules Horowitz, 38027
Grenoble Cedex 1, France
| |
Collapse
|
28
|
DiCostanzo AC, Thompson JR, Peterson FC, Volkman BF, Ramirez-Alvarado M. Tyrosine residues mediate fibril formation in a dynamic light chain dimer interface. J Biol Chem 2012; 287:27997-8006. [PMID: 22740699 DOI: 10.1074/jbc.m112.362921] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light chain amyloidosis is an incurable protein misfolding disease where monoclonal immunoglobulin light chains misfold and deposit as amyloid fibrils, causing organ failure and death. Previously, we determined that amyloidogenic light chains AL-09 and AL-103 do not form fibrils at pH 10 (tyrosine pK(a)). There are three tyrosine residues (32, 91, and 96) clustered in the dimer interface, interacting differently in the two light chain proteins due to their two different dimer conformations. These tyrosines may be ionized at pH 10, causing repulsion and inhibiting fibril formation. Here, we characterize single and double Tyr-to-Phe mutations in AL-09 and AL-103. All AL-09 Tyr-to-Phe mutants form fibrils at pH 10, whereas none of the AL-103 mutants form fibrils at pH 10. NMR studies suggest that although both AL-09 and AL-103 present conformational heterogeneity, only AL-09 favors dimer conformations where tyrosine residues mediate crucial interactions for amyloid formation.
Collapse
Affiliation(s)
- Ara Celi DiCostanzo
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|