1
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
2
|
Enomoto A, Ichikawa K. Research and Development of Preclinical Overhauser-Enhanced Magnetic Resonance Imaging. Antioxid Redox Signal 2022; 37:1094-1110. [PMID: 35369734 DOI: 10.1089/ars.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Imaging free radicals, including reactive oxygen species and reactive nitrogen species, can be useful for understanding the pathology of diseases in animal disease models, as they are related to various physiological functions or diseases. Among the methods used for imaging free radicals, Overhauser-enhanced magnetic resonance imaging (OMRI) has a short image acquisition time and high spatial resolution. Therefore, OMRI is used to obtain various biological parameters. In this study, we review the methodology for improving the biological OMRI system and its applications. Recent Advances: The sensitivity of OMRI systems has been enhanced significantly to allow the visualization of various biological parameters, such as redox state, partial oxygen pressure, and pH, in different body parts of small animals, using spin probes. Furthermore, both endogenous free radicals and exogenous free radicals present in drugs can be visualized using OMRI. Critical Issues: To acquire accurate biological parameters at a high resolution, it is essential to increase the electron paramagnetic resonance (EPR) excitation efficiency and achieve a high enhancement factor. In addition, the size and magnetic field strength also need to be optimized for the measurement target. Future Directions: The advancement of in vivo OMRI techniques will be useful for understanding the pathology, diagnosis, and evaluation of therapeutic effects of drugs in various disease models. Antioxid. Redox Signal. 37, 1094-1110.
Collapse
Affiliation(s)
- Ayano Enomoto
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Kazuhiro Ichikawa
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| |
Collapse
|
3
|
Chen EY, Tse D, Hou H, Schreiber WA, Schaner PE, Kmiec MM, Hebert KA, Kuppusamy P, Swartz HM, Williams BB. Evaluation of a Refined Implantable Resonator for Deep-Tissue EPR Oximetry in the Clinic. APPLIED MAGNETIC RESONANCE 2021; 52:1321-1342. [PMID: 34744319 PMCID: PMC8570533 DOI: 10.1007/s00723-021-01376-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 05/04/2023]
Abstract
OBJECTIVES (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.
Collapse
Affiliation(s)
- Eunice Y. Chen
- Section of Otolaryngology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dan Tse
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Wilson A. Schreiber
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Philip E. Schaner
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Maciej M. Kmiec
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Kendra A. Hebert
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Harold M. Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Benjamin B. Williams
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States and Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
4
|
Enomoto A, Qian C, Devasahayam N, Kishimoto S, Oshima N, Blackman B, Swenson RE, Mitchell JB, Koretsky AP, Krishna MC. Wireless implantable coil with parametric amplification for in vivo electron paramagnetic resonance oximetric applications. Magn Reson Med 2018; 80:2288-2298. [PMID: 29603378 DOI: 10.1002/mrm.27185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop an implantable wireless coil with parametric amplification capabilities for time-domain electron paramagnetic resonance (EPR) spectroscopy operating at 300 MHz. METHODS The wireless coil and lithium phthalocyanine (LiPc), a solid paramagnetic probe, were each embedded individually in a biocompatible polymer polydimethoxysiloxane (PDMS). EPR signals from the LiPc embedded in PDMS (LiPc/PDMS) were generated by a transmit-receive surface coil tuned to 300 MHz. Parametric amplification was configured with an external pumping coil tuned to 600 MHz and placed between the surface coil resonator and the wireless coil. RESULTS Phantom studies showed significant enhancement in signal to noise using the pumping coil. However, no influence of the pumping coil on the oxygen-dependent EPR spectral linewidth of LiPc/PDMS was observed, suggesting the validity of parametric amplification of EPR signals for oximetry by implantation of the encapsulated wireless coil and LiPc/PDMS in deep regions of live objects. In vivo studies demonstrate the feasibility of this approach to longitudinally monitor tissue pO2 in vivo and also monitor acute changes in response to pharmacologic challenges. The encapsulated wireless coil and LiPc/PDMS engendered no host immune response when implanted for ∼3 weeks and were found to be well tolerated. CONCLUSIONS This approach may find applications for monitoring tissue oxygenation to better understand the pathophysiology associated with wound healing, organ transplantation, and ischemic diseases.
Collapse
Affiliation(s)
- Ayano Enomoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, Maryland.,Department of Radiology, Michigan State University, East Lansing, Michigan
| | | | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Rolf E Swenson
- Image Probe Development Center, NHLBI, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Chakhoyan A, Guillamo JS, Collet S, Kauffmann F, Delcroix N, Lechapt-Zalcman E, Constans JM, Petit E, MacKenzie ET, Barré L, Bernaudin M, Touzani O, Valable S. FMISO-PET-derived brain oxygen tension maps: application to glioblastoma and less aggressive gliomas. Sci Rep 2017; 7:10210. [PMID: 28860608 PMCID: PMC5579277 DOI: 10.1038/s41598-017-08646-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/17/2017] [Indexed: 11/27/2022] Open
Abstract
Quantitative imaging modalities for the analysis of hypoxia in brain tumors are lacking. The objective of this study was to generate absolute maps of tissue ptO2 from [18F]-FMISO images in glioblastoma and less aggressive glioma patients in order to quantitatively assess tumor hypoxia. An ancillary objective was to compare estimated ptO2 values to other biomarkers: perfusion weighted imaging (PWI) and tumor metabolism obtained from 1H-MR mono-voxel spectroscopy (MRS). Ten patients with glioblastoma (GBM) and three patients with less aggressive glioma (nGBM) were enrolled. All patients had [18F]-FMISO and multiparametric MRI (anatomic, PWI, MRS) scans. A non-linear regression was performed to generate ptO2 maps based on normal appearing gray (NAGM) and white matter (NAWM) for each patient. As expected, a marked [18F]-FMISO uptake was observed in GBM patients. The ptO2 based on patient specific calculations was notably low in this group (4.8 ± 1.9 mmHg, p < 0.001) compared to all other groups (nGBM, NAGM and NAWM). The rCBV was increased in GBM (1.4 ± 0.2 when compared to nGBM tumors 0.8 ± 0.4). Lactate (and lipid) concentration increased in GBM (27.8 ± 13.8%) relative to nGBM (p < 0.01). Linear, nonlinear and ROC curve analyses between ptO2 maps, PWI-derived rCBV maps and MRS-derived lipid and lactate concentration strengthens the robustness of our approaches.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | - Jean-Sebastien Guillamo
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France.,CHU de Caen, Service de Neurologie, 14000, Caen, France
| | - Solène Collet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | | | | | - Emmanuèle Lechapt-Zalcman
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France.,CHU de Caen, Service d'Anatomie-Pathologique, 14000, Caen, France
| | - Jean-Marc Constans
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France.,CHU de Caen, Service de Radiologie, 14000, Caen, France
| | - Edwige Petit
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | - Eric T MacKenzie
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, 14000, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, 14000, Caen, France.
| |
Collapse
|
6
|
Caston RM, Schreiber W, Hou H, Williams BB, Chen EY, Schaner PE, Jarvis LA, Flood AB, Petryakov SV, Kmiec MM, Kuppusamy P, Swartz HM. Development of the Implantable Resonator System for Clinical EPR Oximetry. Cell Biochem Biophys 2017; 75:275-283. [PMID: 28687906 DOI: 10.1007/s12013-017-0809-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/06/2017] [Indexed: 11/24/2022]
Abstract
Hypoxic tumors are more resistant to radiotherapy and chemotherapy, which decreases the efficacy of these common forms of treatment. We have been developing implantable paramagnetic particulates to measure oxygen in vivo using electron paramagnetic resonance. Once implanted, oxygen can be measured repeatedly and non-invasively in superficial tissues (<3 cm deep), using an electron paramagnetic resonance spectrometer and an external surface-loop resonator. To significantly extend the clinical applications of electron paramagnetic resonance oximetry, we developed an implantable resonator system to obtain measurements at deeper sites. This system has been used to successfully obtain oxygen measurements in animal studies for several years. We report here on recent developments needed to meet the regulatory requirements to make this technology available for clinical use. radio frequency heating is discussed and magnetic resonance compatibility testing of the device has been carried out by a Good Laboratory Practice-certified laboratory. The geometry of the implantable resonator has been modified to meet our focused goal of verifying safety and efficacy for the proposed use of intracranial measurements and also for future use in tissue sites other than the brain. We have encapsulated the device within a smooth cylindrical-shaped silicone elastomer to prevent tissues from adhering to the device and to limit perturbation of tissue during implantation and removal. We have modified the configuration for simultaneously measuring oxygen at multiple sites by developing a linear array of oxygen sensing probes, which each provide independent measurements. If positive results are obtained in additional studies which evaluate biocompatibility and chemical characterization, we believe the implantable resonator will be at a suitable stage for initial testing in human subjects.
Collapse
Affiliation(s)
- Rose M Caston
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA.
| | - Wilson Schreiber
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Huagang Hou
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Benjamin B Williams
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Eunice Y Chen
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Philip E Schaner
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Lesley A Jarvis
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Ann Barry Flood
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Sergey V Petryakov
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Maciej M Kmiec
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Periannan Kuppusamy
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| | - Harold M Swartz
- EPR Center for the Study of Viable Systems at Dartmouth College, Hanover, USA
| |
Collapse
|
7
|
Chakhoyan A, Corroyer-Dulmont A, Leblond MM, Gérault A, Toutain J, Chazaviel L, Divoux D, Petit E, MacKenzie ET, Kauffmann F, Delcroix N, Bernaudin M, Touzani O, Valable S. Carbogen-induced increases in tumor oxygenation depend on the vascular status of the tumor: A multiparametric MRI study in two rat glioblastoma models. J Cereb Blood Flow Metab 2017; 37:2270-2282. [PMID: 27496553 PMCID: PMC5464716 DOI: 10.1177/0271678x16663947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélien Corroyer-Dulmont
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Marine M Leblond
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélie Gérault
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Jérôme Toutain
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Laurent Chazaviel
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Didier Divoux
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Edwige Petit
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Eric T MacKenzie
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - François Kauffmann
- 4 Normandie Univ, Esplanade de la Paix, Caen, France.,6 UMR6139 LMNO, Avenue de Côte de Nacre, Caen, France
| | - Nicolas Delcroix
- 3 UNICAEN, GIP CYCERON, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Myriam Bernaudin
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Omar Touzani
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Samuel Valable
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| |
Collapse
|
8
|
Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR Oximetry of Changes in Intracerebral Oxygen Tension During Induced Thromboembolism. Cell Biochem Biophys 2017; 75:285-294. [PMID: 28434138 DOI: 10.1007/s12013-017-0798-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cerebral tissue oxygenation (oxygen tension, pO2) is a critical parameter that is closely linked to brain metabolism, function, and pathophysiology. In this work, we have used electron paramagnetic resonance oximetry with a deep-tissue multi-site oxygen-sensing probe, called implantable resonator, to monitor temporal changes in cerebral pO2 simultaneously at four sites in a rabbit model of ischemic stroke induced by embolic clot. The pO2 values in healthy brain were not significantly different among the four sites measured over a period of 4 weeks. During exposure to 15% O2 (hypoxia), a sudden and significant decrease in pO2 was observed in all four sites. On the other hand, brief exposure to breathing carbogen gas (95% O2 + 5% CO2) showed a significant increase in the cerebral pO2 from baseline value. During ischemic stroke, induced by embolic clot in the left brain, a significant decline in the pO2 of the left cortex (ischemic core) was observed without any change in the contralateral sites. While the pO2 in the non-infarct regions returned to baseline at 24-h post-stroke, pO2 in the infarct core was consistently lower compared to the baseline and other regions of the brain. The results demonstrated that electron paramagnetic resonance oximetry with the implantable resonator can repeatedly and simultaneously report temporal changes in cerebral pO2 at multiple sites. This oximetry approach can be used to develop interventions to rescue hypoxic/ischemic tissue by modulating cerebral pO2 during hypoxic and stroke injury.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Nadeem Khan
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Sangeeta Gohain
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Clifford J Eskey
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Harold M Swartz
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA.
| |
Collapse
|
9
|
Swartz HM. Using Stable Free Radicals to Obtain Unique and Clinically Useful Data In Vivo in Human Subjects. RADIATION PROTECTION DOSIMETRY 2016; 172:3-15. [PMID: 27886997 PMCID: PMC6061194 DOI: 10.1093/rpd/ncw323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
This paper attempts to: (1) provide a critical overview of the challenges and opportunities to extend electron paramagnetic resonance (EPR) into practical applications in human subjects, based on EPR measurements made in vivo; (2) summarize the clinical applications of EPR for improving treatments in cancer, wound healing and diabetic care, emphasizing EPR's unique capability to measure tissue oxygen repeatedly and with particular sensitivity to hypoxia and (3) summarize the capabilities of in vivo EPR to measure radiation dose for triage and medical guidance after a large-scale radiation exposure. The conclusion is that while still at a relatively early stage of its development and availability, clinical applications of EPR already have demonstrated significant value and the field is likely to grow in both the extent of its applications and its impact on significant problems.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems at Dartmouth, Department of Radiology, Geisel School of Medicine at Dartmouth, HB 7785 One Medical Center Drive, Lebanon, NH 03756, USA
- Division of Radiation Oncology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
10
|
Hou HG, Khan N, Du GX, Hodge S, Swartz HM. Temporal variation in the response of tumors to hyperoxia with breathing carbogen and oxygen. Med Gas Res 2016; 6:138-146. [PMID: 27867481 PMCID: PMC5110141 DOI: 10.4103/2045-9912.191359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The effect of hyperoxygenation with carbogen (95% O2 + 5% CO2) and 100% oxygen inhalation on partial pressure of oxygen (pO2) of radiation-induced fibrosarcoma (RIF-1) tumor was investigated. RIF-1 tumors were innoculated in C3H mice, and aggregates of oximetry probe, lithium phthalocyanine (LiPc), was implanted in each tumor. A baseline tumor pO2 was measured by electron paramagnetic resonance (EPR) oximetry for 20 minutes in anesthetized mice breathing 30% O2 and then the gas was switched to carbogen or 100 % oxygen for 60 minutes. These experiments were repeated for 10 days. RIF-1 tumors were hypoxic with a baseline tissue pO2 of 6.2–8.3 mmHg in mice breathing 30% O2. Carbogen and 100% oxygen significantly increased tumor pO2 on days 1 to 5, with a maximal increase at approximately 32–45 minutes on each day. However, the extent of increase in pO2 from the baseline declined significantly on day 5 and day 10. The results provide quantitative information on the effect of hyperoxic gas inhalation on tumor pO2 over the course of 10 days. EPR oximetry can be effectively used to repeatedly monitor tumor pO2 and test hyperoxic methods for potential clinical applications.
Collapse
Affiliation(s)
- Hua-Gang Hou
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Gai-Xin Du
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sassan Hodge
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Harold M Swartz
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
11
|
Swartz HM, Williams BB, Hou H, Khan N, Jarvis LA, Chen EY, Schaner PE, Ali A, Gallez B, Kuppusamy P, Flood AB. Direct and Repeated Clinical Measurements of pO2 for Enhancing Cancer Therapy and Other Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 923:95-104. [PMID: 27526130 PMCID: PMC5989722 DOI: 10.1007/978-3-319-38810-6_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The first systematic multi-center study of the clinical use of EPR oximetry has begun, with funding as a PPG from the NCI. Using particulate oxygen sensitive EPR, materials in three complementary forms (India Ink, "OxyChips", and implantable resonators) the clinical value of the technique will be evaluated. The aims include using repeated measurement of tumor pO2 to monitor the effects of treatments on tumor pO2, to use the measurements to select suitable subjects for the type of treatment including the use of hyperoxic techniques, and to provide data that will enable existing clinical techniques which provide data relevant to tumor pO2 but which cannot directly measure it to be enhanced by determining circumstances where they can give dependable information about tumor pO2.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA.
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA.
| | - Benjamin B Williams
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Nadeem Khan
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Lesley A Jarvis
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Eunice Y Chen
- Department of Surgery, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Philip E Schaner
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Arif Ali
- Department of Radiation Oncology, Emory Medical School, Atlanta, GA, USA
| | - Bernard Gallez
- Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| | - Ann B Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive Lebanon, Lebanon, NH, USA
| |
Collapse
|
12
|
Svagan A, Bender Koch C, Hedenqvist M, Nilsson F, Glasser G, Baluschev S, Andersen M. Liquid-core nanocellulose-shell capsules with tunable oxygen permeability. Carbohydr Polym 2016; 136:292-9. [DOI: 10.1016/j.carbpol.2015.09.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 01/18/2023]
|
13
|
Khan N, Hou H, Swartz HM, Kuppusamy P. Direct and Repeated Measurement of Heart and Brain Oxygenation Using In Vivo EPR Oximetry. Methods Enzymol 2015; 564:529-52. [PMID: 26477264 DOI: 10.1016/bs.mie.2015.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low level of oxygen (hypoxia) is a critical factor that defines the pathological consequence of several pathophysiologies, particularly ischemia, that usually occur following the blockage of a blood vessel in vital organs, such as brain and heart, or abnormalities in the microvasculature, such as peripheral vascular disease. Therefore, methods that can directly and repeatedly quantify oxygen levels in the brain and heart will significantly improve our understanding of ischemic pathologies. Importantly, such oximetry capability will facilitate the development of strategies to counteract low levels of oxygen and thereby improve outcome following stroke or myocardial infarction. In vivo electron paramagnetic resonance (EPR) oximetry has the capability to monitor tissue oxygen levels in real time. The method has largely been tested and used in experimental animals, although some clinical measurements have been performed. In this chapter, a brief overview of the methodology to repeatedly quantify oxygen levels in the brain and heart of experimental animal models, ranging from mice to swine, is presented. EPR oximetry requires a one-time placement of an oxygen-sensitive probe in the tissue of interest, while the rest of the procedure for reliable, accurate, and repeated measurements of pO2 (partial pressure of oxygen) is noninvasive and can be repeated as often as desired. A multisite oximetry approach can be used to monitor pO2 at many sites simultaneously. Building on significant advances in the application of EPR oximetry in experimental animal models, spectrometers have been developed for use in human subjects. Initial feasibility of pO2 measurement in solid tumors of patients has been successfully demonstrated.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Huagang Hou
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Harold M Swartz
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.
| |
Collapse
|
14
|
Thews O, Vaupel P. Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol 2015; 191:875-82. [PMID: 26135917 DOI: 10.1007/s00066-015-0867-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/06/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Inspiratory hyperoxia reduces tumor hypoxia, which is responsible for limited radiosensitivity of tumors. However, very little is known about the heterogeneity of intratumoral oxygenation during this supportive treatment. The study analyzes whether local hypoxia is still present during normobaric and hyperbaric inspiratory hyperoxia and whether the addition of CO2 to the inspiratory gas affects the spatial pO2 distribution. MATERIAL AND METHODS Tumor oxygenation of experimental DS-sarcomas in rats was assessed by polarographic needle electrodes at 1 and 2 atm (bar) environmental pressure during pure O2 or carbogen (95 % O2 + 5 % CO2) breathing. Up to 320 individual pO2 measurements were performed in a strictly oriented grid resulting in an oxygenation profile in a horizontal tumor layer. RESULTS In the experimental tumors used the oxygenation showed pronounced heterogeneities with closely adjacent hypoxic and oxygenated regions. This heterogeneity was still visible under normobaric hyperoxia where large confluent hypoxic regions were detectable. At 1 atm, the addition of CO2 improved tumor oxygenation significantly (at least in large tumors). At 2 atm, only very small local regions of hypoxia were detected. However, under this condition hypercapnia had no impact on tumor oxygenation. CONCLUSIONS The data show that even under hyperbaric hyperoxia, hypoxic regions are detectable despite the average pO2 increased by a factor of 100. The results also clearly indicate that the oxygenation pattern improves disproportionally with increasing environmental pressure.
Collapse
Affiliation(s)
- Oliver Thews
- Institute of Physiology, University of Halle, Magdeburger Str. 6, 06112, Halle (Saale), Germany.
| | - Peter Vaupel
- Department of Radiooncology and Radiotherapy, Tumor Pathophysiology Section, University Medical Center, 55131, Mainz, Germany
| |
Collapse
|
15
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
16
|
Khan N, Hou H, Eskey CJ, Moodie K, Gohain S, Du G, Hodge S, Culp WC, Kuppusamy P, Swartz HM. Deep-tissue oxygen monitoring in the brain of rabbits for stroke research. Stroke 2015; 46:e62-6. [PMID: 25613304 DOI: 10.1161/strokeaha.114.007324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nadeem Khan
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.).
| | - Huagang Hou
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Clifford J Eskey
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Karen Moodie
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Sangeeta Gohain
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Gaixin Du
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Sassan Hodge
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - William C Culp
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Periannan Kuppusamy
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| | - Harold M Swartz
- From the Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH (N.K., H.H., S.G., G.D., S.H., P.K., H.M.S.); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH (N.K., H.H., S.G., P.K., H.M.S.); Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH (C.J.E.); Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH (K.M.); and Department of Radiology, Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock (W.C.C.)
| |
Collapse
|
17
|
Clarke RH, Moosa S, Anzivino M, Wang Y, Floyd DH, Purow BW, Lee KS. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS One 2014; 9:e111199. [PMID: 25350400 PMCID: PMC4211739 DOI: 10.1371/journal.pone.0111199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM.
Collapse
Affiliation(s)
- Ryon H. Clarke
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Shayan Moosa
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Matthew Anzivino
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Yi Wang
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Desiree Hunt Floyd
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Benjamin W. Purow
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Kevin S. Lee
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
18
|
Hou H, Krishnamurthy Nemani V, Du G, Montano R, Song R, Gimi B, Swartz HM, Eastman A, Khan N. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry. Int J Cancer 2014; 136:1688-96. [PMID: 25111969 DOI: 10.1002/ijc.29132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/08/2022]
Abstract
Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rivera BK, Naidu SK, Subramanian K, Joseph M, Hou H, Khan N, Swartz HM, Kuppusamy P. Real-time, in vivo determination of dynamic changes in lung and heart tissue oxygenation using EPR oximetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:81-86. [PMID: 24729218 DOI: 10.1007/978-1-4939-0620-8_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The use of electron paramagnetic resonance (EPR) oximetry for oxygen measurements in deep tissues (>1 cm) is challenging due to the limited penetration depth of the microwave energy. To overcome this limitation, implantable resonators, having a small (0.5 mm diameter) sensory loop containing the oxygen-sensing paramagnetic material connected by a pair of twisted copper wire to a coupling loop (8-10 mm diameter), have been developed, which enable repeated measurements of deep-tissue oxygen levels (pO2, partial pressure of oxygen) in the brain and tumors of rodents. In this study, we have demonstrated the feasibility of measuring dynamic changes in pO2 in the heart and lung of rats using deep-tissue implantable oxygen sensors. The sensory loop of the resonator contained lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) crystals embedded in polydimethylsiloxane (PDMS) polymer and was implanted in the myocardial tissue or lung pleura. The external coupling loop was secured subcutaneously above chest. The rats were exposed to different breathing gas mixtures while undergoing EPR measurements. The results demonstrated that implantable oxygen sensors provide reliable measurements of pO2 in deep tissues such as heart and lung under adverse conditions of cardiac and respiratory motions.
Collapse
Affiliation(s)
- Brian K Rivera
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Shan K Naidu
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kamal Subramanian
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew Joseph
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Geisel School of Medicine at Dartmouth, 48 Lafayette Street, Lebanon, NH, 03766, USA
| | - Nadeem Khan
- EPR Center for the Study of Viable Systems, Department of Radiology, Geisel School of Medicine at Dartmouth, 48 Lafayette Street, Lebanon, NH, 03766, USA
| | - Harold M Swartz
- EPR Center for the Study of Viable Systems, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Periannan Kuppusamy
- EPR Center for the Study of Viable Systems, Department of Radiology, Geisel School of Medicine at Dartmouth, 48 Lafayette Street, Lebanon, NH, 03766, USA.
| |
Collapse
|
20
|
Hou H, Li H, Dong R, Khan N, Swartz H. Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators. Magn Reson Imaging 2014; 32:563-9. [PMID: 24629514 DOI: 10.1016/j.mri.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/17/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE Electron paramagnetic resonance (EPR) oximetry using variable length multi-probe implantable resonator (IR), was used to investigate the temporal changes in the ischemic and contralateral brain pO2 during stroke in rats. MATERIAL AND METHODS The EPR signal to noise ratio (S/N) of the IR with four sensor loops at a depth of up to 11 mm were compared with direct implantation of lithium phthalocyanine (LiPc, oximetry probe) deposits in vitro. These IRs were used to follow the temporal changes in pO2 at two sites in each hemisphere during ischemia induced by left middle cerebral artery occlusion (MCAO) in rats breathing 30% O2 or 100% O2. RESULTS The S/N ratios of the IRs were significantly greater than the LiPc deposits. A similar pO2 at two sites in each hemisphere prior to the onset of ischemia was observed in rats breathing 30% O2. However, a significant decline in the pO2 of the left cortex and striatum occurred during ischemia, but no change in the pO2 of the contralateral brain was observed. A significant increase in the pO2 of only the contralateral non-ischemic brain was observed in the rats breathing 100% O2. No significant difference in the infarct volume was evident between the animals breathing 30% O2 or 100% O2 during ischemia. CONCLUSIONS EPR oximetry with IRs can repeatedly assess temporal changes in the brain pO2 at four sites simultaneously during stroke. This oximetry approach can be used to test and develop interventions to rescue ischemic tissue by modulating cerebral pO2 during stroke.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, 48 Lafayette Street, Lebanon, NH 03766; Norris Cotton Cancer Center, One Medical Center Drive, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | - Hongbin Li
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, 48 Lafayette Street, Lebanon, NH 03766; Norris Cotton Cancer Center, One Medical Center Drive, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ruhong Dong
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, 48 Lafayette Street, Lebanon, NH 03766; Norris Cotton Cancer Center, One Medical Center Drive, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, 48 Lafayette Street, Lebanon, NH 03766; Norris Cotton Cancer Center, One Medical Center Drive, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Harold Swartz
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, 48 Lafayette Street, Lebanon, NH 03766; Norris Cotton Cancer Center, One Medical Center Drive, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
21
|
Swartz HM, Williams BB, Zaki BI, Hartford AC, Jarvis LA, Chen EY, Comi RJ, Ernstoff MS, Hou H, Khan N, Swarts SG, Flood AB, Kuppusamy P. Clinical EPR: unique opportunities and some challenges. Acad Radiol 2014; 21:197-206. [PMID: 24439333 DOI: 10.1016/j.acra.2013.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe, and regulatory constraints. This article describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry) and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface-loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766.
| | - Benjamin B Williams
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Bassem I Zaki
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Alan C Hartford
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Lesley A Jarvis
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Eunice Y Chen
- Department of Surgery, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Richard J Comi
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Marc S Ernstoff
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Nadeem Khan
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Steven G Swarts
- Dept. of Radiation Oncology, University of Florida, Gainesville, FL
| | - Ann B Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| |
Collapse
|
22
|
Skeletal muscle and glioma oxygenation by carbogen inhalation in rats: a longitudinal study by EPR oximetry using single-probe implantable oxygen sensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:97-103. [PMID: 24729220 PMCID: PMC4301407 DOI: 10.1007/978-1-4939-0620-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The feasibility of EPR oximetry using a single-probe implantable oxygen sensor (ImOS) was tested for repeated measurement of pO₂ in skeletal muscle and ectopic 9L tumors in rats. The ImOS (50 mm length) were constructed using nickel-chromium alloy wires, with lithium phthalocyanine (LiPc, oximetry probe) crystals loaded in the sensor loop and coated with AF 2400(®) Teflon. These ImOS were implanted into the skeletal muscle in the thigh and subcutaneous 9L tumors. Dynamic changes in tissue pO₂ were assessed by EPR oximetry at baseline, during tumor growth, and repeated hyperoxygenation with carbogen breathing. The mean skeletal muscle pO₂ of normal rats was stable and significantly increased during carbogen inhalation in experiments repeated for 12 weeks. The 9L tumors were hypoxic with a tissue pO₂ of 12.8 ± 6.4 mmHg on day 1; however, the response to carbogen inhalation varied among the animals. A significant increase in the glioma pO₂ was observed during carbogen inhalation on day 9 and day 14 only. In summary, EPR oximetry with ImOS allowed direct and longitudinal oxygen measurements in deep muscle tissue and tumors. The heterogeneity of 9L tumors in response to carbogen highlights the need to repeatedly monitor pO₂ to confirm tumor oxygenation so that such changes can be taken into account in planning therapies and interpreting results.
Collapse
|
23
|
Swartz HM, Hou H, Khan N, Jarvis LA, Chen EY, Williams BB, Kuppusamy P. Advances in probes and methods for clinical EPR oximetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:73-79. [PMID: 24729217 DOI: 10.1007/978-1-4939-0620-8_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA.
| | - Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 48 Lafayette Street, HB 7785, Lebanon, NH, 03766, USA
| | - Nadeem Khan
- EPR Center for the Study of Viable Systems, Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 48 Lafayette Street, HB 7785, Lebanon, NH, 03766, USA
| | - Lesley A Jarvis
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Eunice Y Chen
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Benjamin B Williams
- EPR Center for the Study of Viable Systems, Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 48 Lafayette Street, HB 7785, Lebanon, NH, 03766, USA
| | - Periannan Kuppusamy
- EPR Center for the Study of Viable Systems, Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 48 Lafayette Street, HB 7785, Lebanon, NH, 03766, USA
| |
Collapse
|
24
|
Larsen BE, Sandvik JA, Karlsen J, Pettersen EO, Melvik JE. Oxygen consumption in T-47D cells immobilized in alginate. Cell Prolif 2013; 46:469-81. [PMID: 23869767 DOI: 10.1111/cpr.12041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/06/2013] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. MATERIALS AND METHODS T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. RESULTS At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. CONCLUSIONS The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration.
Collapse
Affiliation(s)
- B E Larsen
- School of Pharmacy, Universiy of Oslo, Oslo, 0316, Norway.
| | | | | | | | | |
Collapse
|
25
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179. [PMID: 23391148 PMCID: PMC3633145 DOI: 10.1667/rr2811.1;10.1667/rr2811.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Sriram P. Mupparaju
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
| | - Jean P. Lariviere
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Sassan Hodge
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jiang Gui
- Community and Family Medicine, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Harold M. Swartz
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Nadeem Khan
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
- Address for correspondence: EPR Center for Viable Systems, 716 Vail, Geisel School of Medicine, Hanover, NH 03755;
| |
Collapse
|
26
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179:343-51. [PMID: 23391148 DOI: 10.1667/rr2811.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | | | | | | | | |
Collapse
|