1
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
2
|
Ha M, Nader S, Pawsey S, Struppe J, Monette M, Mansy SS, Boekhoven J, Michaelis VK. Racing toward Fast and Effective 17O Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy of N-Formyl-MLF-OH and Associated Building Blocks. J Phys Chem B 2021; 125:11916-11926. [PMID: 34694819 DOI: 10.1021/acs.jpcb.1c07397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state 1H, 13C, and 15N nuclear magnetic resonance (NMR) spectroscopy has been an essential analytical method in studying complex molecules and biomolecules for decades. While oxygen-17 (17O) NMR is an ideal and robust candidate to study hydrogen bonding within secondary and tertiary protein structures for example, it continues to elude many. We discuss an improved multiple-turnover labeling procedure to develop a fast and cost-effective method to 17O label fluoroenylmethyloxycarbonyl (Fmoc)-protected amino acid building blocks. This approach allows for inexpensive ($0.25 USD/mg) insertion of 17O labels, an important barrier to overcome for future biomolecular studies. The 17O NMR results of these building blocks and a site-specific strategy for labeled N-acetyl-MLF-OH and N-formyl-MLF-OH tripeptides are presented. We showcase growth in NMR development for maximizing sensitivity gains using emerging sensitivity enhancement techniques including population transfer, high-field dynamic nuclear polarization, and cross-polarization magic-angle spinning cryoprobes.
Collapse
Affiliation(s)
- Michelle Ha
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Serge Nader
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shane Pawsey
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Martine Monette
- Bruker BioSpin Ltd., Bruker Corporation, 555 Steeles Avenue E, Milton, Ontario L9T 1Y6, Canada
| | - Sheref S Mansy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching 85748, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, Garching 85748, Germany
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Long Z, Park SH, Opella SJ. Effects of deuteration on solid-state NMR spectra of single peptide crystals and oriented protein samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106613. [PMID: 31677452 PMCID: PMC7326366 DOI: 10.1016/j.jmr.2019.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Extensive deuteration can be used to simplify NMR spectra by "diluting" and minimizing the effects of the abundant 1H nuclei. In solution-state NMR and magic angle spinning solid-state NMR of proteins, perdeuteration has been widely applied and its effects are well understood. Oriented sample solid-state NMR of proteins, however, is at a much earlier stage of development. In spite of the promise of the approach, the effects of sample deuteration are largely unknown. Here we map out the effects of perdeuteration on solid-state NMR spectra of aligned samples by closely examining differences in results obtained on fully protiated and perdeuterated samples, where all of the carbon sites have either 1H or 2H bonded to them, respectively. The 2H and 15N labeled samples are back-exchanged in 1H2O solution so that the amide 15N sites have a bonded 1H. Line-widths in the 15N chemical shift, 1H chemical shift, and 1H-15N dipolar coupling frequency dimensions were compared for peptide single crystals as well as membrane proteins aligned along with the phospholipids in bilayers with their normals perpendicular to the direction of the magnetic field. Remarkably, line-width differences were not found between fully protiated and perdeuterated samples. However, in the absence of effective 1H-1H homonuclear decoupling, the line-widths in the 1H-15N heteronuclear dipolar coupling frequency dimension were greatly narrowed in the perdeuterated samples. In proton-driven spin diffusion (PDSD) experiments, no effects of perdeuteration were observed. In contrast, in mismatched Hartmann-Hahn experiments, perdeuteration enhances cross-peak intensities by allowing more efficient spin-exchange with less polarization transfer back to the carbon-bound 1H. Here we show that in oriented sample solid-state NMR, the effects of perdeuteration can be exploited in experiments where 1H-1H homonuclear decoupling cannot be applied. These data also provide evidence for the possible contribution of direct 15N-15N dilute-spin mixing mechanism in proton-driven spin diffusion experiments.
Collapse
Affiliation(s)
- Zheng Long
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, United States
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, United States.
| |
Collapse
|
4
|
Paluch P, Pawlak T, Ławniczak K, Trébosc J, Lafon O, Amoureux JP, Potrzebowski MJ. Simple and Robust Study of Backbone Dynamics of Crystalline Proteins Employing 1H- 15N Dipolar Coupling Dispersion. J Phys Chem B 2018; 122:8146-8156. [PMID: 30070484 DOI: 10.1021/acs.jpcb.8b04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new solid-state multidimensional NMR approach based on the cross-polarization with variable-contact pulse sequence [ Paluch , P. ; Pawlak , T. ; Amoureux , J.-P. ; Potrzebowski , M. J. J. Magn. Reson. 233 , 2013 , 56 ], with 1H inverse detection and very fast magic angle spinning (νR = 60 kHz), dedicated to the measurement of local molecular motions of 1H-15N vectors. The introduced three-dimensional experiments, 1H-15N-1H and hCA(N)H, are particularly useful for the study of molecular dynamics of proteins and other complex structures. The applicability and power of this methodology have been revealed by employing as a model sample the GB-1 small protein doped with Na2CuEDTA. The results clearly prove that the dispersion of 1H-15N dipolar coupling constants well correlates with higher order structure of the protein. Our approach complements the conventional studies and offers a fast and reasonably simple method.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Karol Ławniczak
- Department of Theoretical Physics, Faculty of Physics and Applied Informatics , University of Łódź , Pomorska 149/153 , PL-90236 Łódź , Poland
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Olivier Lafon
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France.,Bruker France , 34 rue de l'Industrie , F-67166 Wissembourg , France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| |
Collapse
|
5
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
6
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Rajput L, Banik M, Yarava JR, Joseph S, Pandey MK, Nishiyama Y, Desiraju GR. Exploring the salt-cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering. IUCRJ 2017; 4:466-475. [PMID: 28875033 PMCID: PMC5571809 DOI: 10.1107/s205225251700687x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/08/2017] [Indexed: 05/14/2023]
Abstract
There has been significant recent interest in differentiating multicomponent solid forms, such as salts and cocrystals, and, where appropriate, in determining the position of the proton in the X-H⋯A-YX-⋯H-A+-Y continuum in these systems, owing to the direct relationship of this property to the clinical, regulatory and legal requirements for an active pharmaceutical ingredient (API). In the present study, solid forms of simple cocrystals/salts were investigated by high-field (700 MHz) solid-state NMR (ssNMR) using samples with naturally abundant 15N nuclei. Four model compounds in a series of prototypical salt/cocrystal/continuum systems exhibiting {PyN⋯H-O-}/{PyN+-H⋯O-} hydrogen bonds (Py is pyridine) were selected and prepared. The crystal structures were determined at both low and room temperature using X-ray diffraction. The H-atom positions were determined by measuring the 15N-1H distances through 15N-1H dipolar interactions using two-dimensional inversely proton-detected cross polarization with variable contact-time (invCP-VC) 1H→15N→1H experiments at ultrafast (νR ≥ 60-70 kHz) magic angle spinning (MAS) frequency. It is observed that this method is sensitive enough to determine the proton position even in a continuum where an ambiguity of terminology for the solid form often arises. This work, while carried out on simple systems, has implications in the pharmaceutical industry where the salt/cocrystal/continuum condition of APIs is considered seriously.
Collapse
Affiliation(s)
- Lalit Rajput
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Manas Banik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | | - Sumy Joseph
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Manoj Kumar Pandey
- RIKEN CLST–JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India
| | - Yusuke Nishiyama
- RIKEN CLST–JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Gautam R. Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
9
|
Applications of NMR to membrane proteins. Arch Biochem Biophys 2017; 628:92-101. [PMID: 28529197 DOI: 10.1016/j.abb.2017.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction. Recent advances in NMR instrumentation, spectroscopic methods, computational methods, and sample preparations are driving exciting new efforts in membrane protein structural biology.
Collapse
|
10
|
Saurel O, Iordanov I, Nars G, Demange P, Le Marchand T, Andreas LB, Pintacuda G, Milon A. Local and Global Dynamics in Klebsiella pneumoniae Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution. J Am Chem Soc 2017; 139:1590-1597. [DOI: 10.1021/jacs.6b11565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Saurel
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Iordan Iordanov
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Guillaume Nars
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Pascal Demange
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Tanguy Le Marchand
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Loren B. Andreas
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Guido Pintacuda
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Alain Milon
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
11
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
12
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
13
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016; 55:6638-41. [DOI: 10.1002/anie.201511609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
14
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
15
|
Nishiyama Y, Malon M, Potrzebowski MJ, Paluch P, Amoureux JP. Accurate NMR determination of C-H or N-H distances for unlabeled molecules. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:15-21. [PMID: 26169913 DOI: 10.1016/j.ssnmr.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/19/2015] [Accepted: 06/28/2015] [Indexed: 06/04/2023]
Abstract
Cross-Polarization with Variable Contact-time (CP-VC) is very efficient at ultra-fast MAS (νR ≥ 60 kHz) to measure accurately the dipolar interactions corresponding to C-H or N-H short distances, which are very useful for resonance assignment and for analysis of dynamics. Here, we demonstrate the CP-VC experiment with (1)H detection. In the case of C-H distances, we compare the CP-VC signals with direct ((13)C) and indirect ((1)H) detection and find that the latter allows a S/N gain of ca. 2.5, which means a gain of ca. 6 in experimental time. The main powerful characteristics of CP-VC methods are related to the ultra-fast spinning speed and to the fact that most of the time only the value of the dipolar peak separation has to be used to obtain the information. As a result, CP-VC methods are: (i) easy to set up and to use, and robust with respect to (ii) rf-inhomogeneity thus allowing the use of full rotor samples, (iii) rf mismatch, and (iv) offsets and chemical shift anisotropies. It must be noted that the CP-VC 2D method with indirect (1)H detection requires the proton resolution and is thus mainly applicable to small or perdeuterated molecules. We also show that an analysis of the dynamics can even be performed, with a reasonable experimental time, on unlabeled samples with (13)C or even (15)N natural abundance.
Collapse
Affiliation(s)
- Y Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - M Malon
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - M J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, 90-363 Lodz, Poland
| | - P Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, 90-363 Lodz, Poland
| | - J P Amoureux
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France.
| |
Collapse
|
16
|
Paluch P, Pawlak T, Jeziorna A, Trébosc J, Hou G, Vega AJ, Amoureux JP, Dracinsky M, Polenova T, Potrzebowski MJ. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 2015; 17:28789-801. [PMID: 26451400 PMCID: PMC4890705 DOI: 10.1039/c5cp04475h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Tomasz Pawlak
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Agata Jeziorna
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille North of France, 59652 Villeneuve d'Ascq, France
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille North of France, 59652 Villeneuve d'Ascq, France and Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo nam. 2, Prague, Czech Republic.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | - Marek J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, PL-90-363 Łodz, Poland.
| |
Collapse
|
17
|
Gupta R, Hou G, Polenova T, Vega AJ. RF inhomogeneity and how it controls CPMAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:17-26. [PMID: 26422256 PMCID: PMC4674349 DOI: 10.1016/j.ssnmr.2015.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 05/09/2023]
Abstract
In this report we discuss the effect of radiofrequency field (RF) inhomogeneity on cross-polarization (CP) under magic-angle spinning (MAS) by reviewing the dependence of the CP-detected signal intensity as a function of the position in the sample space. We introduce a power-function model to quantify the position-dependent RF-amplitude profile. The applicability of this model is experimentally verified by nutation spectra obtained by direct signal detection, as well as by CPMAS signal detection, in two commercial MAS probes with different degrees of RF inhomogeneity. A conclusion is that substantial sections of a totally filled rotor, even in a probe with rather good homogeneity, do not contribute at all to the detected spectra. The consequence is that in CPMAS-based recoupling experiments, such as the CP-with-variable-contact-time (CPVC), spatial selectivity of the Hartmann-Hahn matching condition overcomes complications that could be caused by RF inhomogeneity permitting determination of accurate spectral parameters even in cases with high inhomogeneity.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
19
|
Zhang R, Ramamoorthy A. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions. J Chem Phys 2015; 142:204201. [PMID: 26026440 PMCID: PMC4449354 DOI: 10.1063/1.4921381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/08/2015] [Indexed: 01/30/2023] Open
Abstract
Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
20
|
Insights into the structure and dynamics of measles virus nucleocapsids by 1H-detected solid-state NMR. Biophys J 2015; 107:941-6. [PMID: 25140429 DOI: 10.1016/j.bpj.2014.05.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022] Open
Abstract
(1)H-detected solid-state nuclear magnetic resonance (NMR) experiments are recorded on both intact and trypsin-cleaved sedimented measles virus (MeV) nucleocapsids under ultra-fast magic-angle spinning. High-resolution (1)H,(15)N-fingerprints allow probing the degree of molecular order and flexibility of individual capsid proteins, providing an exciting atomic-scale complement to electro microscopy (EM) studies of the same systems.
Collapse
|
21
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
22
|
Paluch P, Trébosc J, Nishiyama Y, Potrzebowski MJ, Malon M, Amoureux JP. Theoretical study of CP-VC: a simple, robust and accurate MAS NMR method for analysis of dipolar C-H interactions under rotation speeds faster than ca. 60 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:67-77. [PMID: 25662360 DOI: 10.1016/j.jmr.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We show that Cross-Polarization with Variable Contact-time (CP-VC) allows an accurate determination of C-H dipolar interactions, which permits an easy detailed analysis of bond lengths and local dynamics, e.g. in biomolecules. The method presents a large dipolar scaling factor of 1/√2, leading to a better determination of dipolar interactions, especially for long C-H distances, and it allows the observation of very small local details such as those related either to CH(2) three spin systems, or even to hydrogen bonds. CP-VC is very simple to set up and very robust with respect to most experimental parameters, such as: rf-offsets, chemical-shift anisotropies, imperfect Hartmann-Hahn setting, and rf-inhomogeneity. The only required condition is the use of a sufficiently fast MAS spinning speed of at least ca. 60 kHz.
Collapse
Affiliation(s)
- P Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz 90-363, Poland
| | - J Trébosc
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - Y Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - M J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz 90-363, Poland
| | - M Malon
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - J P Amoureux
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France; Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
23
|
Zhang R, Damron J, Vosegaard T, Ramamoorthy A. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:37-44. [PMID: 25486635 PMCID: PMC4286468 DOI: 10.1016/j.jmr.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 05/04/2023]
Abstract
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Joshua Damron
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States.
| |
Collapse
|
24
|
Das BB, Park SH, Opella SJ. Membrane protein structure from rotational diffusion. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:229-45. [PMID: 24747039 PMCID: PMC4201901 DOI: 10.1016/j.bbamem.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
Abstract
The motional averaging of powder pattern line shapes is one of the most fundamental aspects of sold-state NMR. Since membrane proteins in liquid crystalline phospholipid bilayers undergo fast rotational diffusion, all of the signals reflect the angles of the principal axes of their dipole-dipole and chemical shift tensors with respect to the axis defined by the bilayer normal. The frequency span and sign of the axially symmetric powder patterns that result from motional averaging about a common axis provide sufficient structural restraints for the calculation of the three-dimensional structure of a membrane protein in a phospholipid bilayer environment. The method is referred to as rotationally aligned (RA) solid-state NMR and demonstrated with results on full-length, unmodified membrane proteins with one, two, and seven trans-membrane helices. RA solid-state NMR is complementary to other solid-state NMR methods, in particular oriented sample (OS) solid-state NMR of stationary, aligned samples. Structural distortions of membrane proteins from the truncations of terminal residues and other sequence modifications, and the use of detergent micelles instead of phospholipid bilayers have also been demonstrated. Thus, it is highly advantageous to determine the structures of unmodified membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. RA solid-state NMR provides a general method for obtaining accurate and precise structures of membrane proteins under near-native conditions.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA.
| |
Collapse
|