1
|
Elajaili HB, Woodcock LB, Hovey TA, Rinard GA, DeGraw S, Canny A, Dee NM, Kao JPY, Nozik ES, Eaton SS, Eaton GR. Imaging Reactive Oxygen Radicals in Excised Mouse Lung Trapped by Reaction with Hydroxylamine Probes Using 1 GHz Rapid Scan Electron Paramagnetic Resonance. Mol Imaging Biol 2024; 26:503-510. [PMID: 37821714 PMCID: PMC11006821 DOI: 10.1007/s11307-023-01860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Oxidative stress is proposed to be critical in acute lung disease, but methods to monitor radicals in lungs are lacking. Our goal is to develop low-frequency electron paramagnetic resonance (EPR) methods to monitor radicals that contribute to the disease. PROCEDURES Free radicals generated in a lipopolysaccharide-induced mouse model of acute respiratory distress syndrome reacted with cyclic hydroxylamines CPH (1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride) and DCP-AM-H (4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid), which were converted into the corresponding nitroxide radicals, CP• and DCP•. The EPR signals of the nitroxide radicals in excised lungs were imaged with a 1 GHz EPR spectrometer/imager that employs rapid scan technology. RESULTS The small numbers of nitroxides formed by reaction of the hydroxylamine with superoxide result in low signal-to-noise in the spectra and images. However, since the spectral properties of the nitroxides are known, we can use prior knowledge of the line shape and hyperfine splitting to fit the noisy data, yielding well-defined spectra and images. Two-dimensional spectral-spatial images are shown for lung samples containing (4.5 ± 0.5) ×1014 CP• and (9.9 ± 1.0) ×1014 DCP• nitroxide spins. These results suggest that a probe that accumulates in cells gives a stronger nitroxide signal than a probe that is more easily washed out of cells. CONCLUSION The nitroxide radicals in excised mouse lungs formed by reaction with hydroxylamine probes CPH and DCP-AM-H can be imaged at 1 GHz.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Tanden A Hovey
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - George A Rinard
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Samuel DeGraw
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Autumn Canny
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Nathan M Dee
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
2
|
Epel B, Kao JPY, Eaton SS, Eaton GR, Halpern HJ. Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance. Antioxid Redox Signal 2024; 40:850-862. [PMID: 36680741 PMCID: PMC11386996 DOI: 10.1089/ars.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status in vivo has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans. Recent Advances: Recent studies have demonstrated the feasibility of using low-frequency electron paramagnetic resonance (EPR) techniques for quantitative imaging of redox status in mammalian tissues in vivo. Rapid-scan (RS) EPR spectroscopy and imaging, new disulfide-dinitroxide spin probes, and novel analytic techniques have led to significant advances in direct, quantitative imaging of thiol redox status. Critical Issues: While novel RS EPR imaging coupled with first-generation molecular probes has demonstrated the feasibility of imaging thiol redox status in vivo, further technical advancements are desirable and ongoing. These include developing spin probes that are tailored for specific tissues with response kinetics tuned to the physiological environment. Equally critical are RS instrumentation with higher signal-to-noise ratio and minimal signal distortion, as well as optimized imaging protocols for image acquisition with sparsity adapted to image information content. Future Directions: Quantitative images of tissue glutathione promise to enable acquisition of a general image of mammalian and potentially human tissue health.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Halpern H, Pan X. Accurate reconstruction of 4D spectral-spatial images from sparse-view data in continuous-wave EPRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107654. [PMID: 38492546 DOI: 10.1016/j.jmr.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral-spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Woodcock LB, Legenzov EA, Dirda NDA, Kao JPY, Eaton GR, Eaton SS. Cyclic Disulfide-Bridged Dinitroxide Biradical for Measuring Thiol Redox Status by Electron Paramagnetic Resonance. J Phys Chem B 2023; 127:8762-8768. [PMID: 37811968 PMCID: PMC10990597 DOI: 10.1021/acs.jpcb.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Among low-molecular-weight thiols, glutathione (GSH) is the main antioxidant in the cell, and its concentration is an indicator of the redox status. A cyclic disulfide-linked dinitroxide was designed for monitoring GSH by electron-paramagnetic resonance (EPR) spectroscopy. Reaction of the disulfide with GSH and three other thiols was measured at 9.6 GHz (X-band) and shown to be of first order in thiols. It is proposed that the reaction of the disulfide with 1 equiv of thiolate produced a short-lived intermediate that reacts with 1 equiv of thiolate to produce the cleavage product. The equilibrium ratio of the cleaved and intact disulfide is a measure of the redox state. Since the long-term goal is to use the disulfide to probe physiology in vivo, the feasibility of EPR spectroscopy and imaging of the disulfide and its cleavage product was demonstrated at 1 GHz (L-band).
Collapse
Affiliation(s)
- Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Eric A. Legenzov
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nathaniel D. A. Dirda
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
5
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Qiao Z, Halpern H, Pan X. 4D-image reconstruction directly from limited-angular-range data in continuous-wave electron paramagnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107432. [PMID: 37058955 PMCID: PMC10197356 DOI: 10.1016/j.jmr.2023.107432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE We investigate and develop optimization-based algorithms for accurate reconstruction of four-dimensional (4D)-spectral-spatial (SS) images directly from data collected over limited angular ranges (LARs) in continuous-wave (CW) electron paramagnetic resonance imaging (EPRI). METHODS Basing on a discrete-to-discrete data model devised in CW EPRI employing the Zeeman-modulation (ZM) scheme for data acquisition, we first formulate the image reconstruction problem as a convex, constrained optimization program that includes a data fidelity term and also constraints on the individual directional total variations (DTVs) of the 4D-SS image. Subsequently, we develop a primal-dual-based DTV algorithm, simply referred to as the DTV algorithm, to solve the constrained optimization program for achieving image reconstruction from data collected in LAR scans in CW-ZM EPRI. RESULTS We evaluate the DTV algorithm in simulated- and real-data studies for a variety of LAR scans of interest in CW-ZM EPRI, and visual and quantitative results of the studies reveal that 4D-SS images can be reconstructed directly from LAR data, which are visually and quantitatively comparable to those obtained from data acquired in the standard, full-angular-range (FAR) scan in CW-ZM EPRI. CONCLUSION An optimization-based DTV algorithm is developed for accurately reconstructing 4D-SS images directly from LAR data in CW-ZM EPRI. Future work includes the development and application of the optimization-based DTV algorithm for reconstructions of 4D-SS images from FAR and LAR data acquired in CW EPRI employing schemes other than the ZM scheme. SIGNIFICANCE The DTV algorithm developed may be exploited potentially for enabling and optimizing CW EPRI with minimized imaging time and artifacts by acquiring data in LAR scans.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Shi Y, Eaton SS, Eaton GR. Rapid-scan EPR imaging of a phantom comprised of species with different linewidths and relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106593. [PMID: 31520789 PMCID: PMC6829054 DOI: 10.1016/j.jmr.2019.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
As a demonstration of the application of rapid-scan EPR to imaging at low frequency and magnetic field, a multi-compartment phantom containing six different samples was imaged. The samples were nitroxide radicals, trityl (substituted triarylmethyl) radicals, and the oxygen-sensitive solid lithium phthalocyanine (LiPc), all of which are useful for in vivo imaging. The 2D spectral-spatial image demonstration was performed at 250 MHz, with samples in sealed tubes of various sizes arranged in a 3D-printed plastic holder. Maximum gradients of 10 G/cm gave a spatial resolution of about 0.1 mm for the narrow trityl and LiPc signals and about 1 mm for the nitroxide. The importance of proper selection of resonator bandwidth and scan rate for obtaining accurate linewidth information is demonstrated for a case in which the phantom is composed of species with signal linewidths and relaxation times that differ by more than a factor of 10.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
7
|
Buchanan LA, Woodcock LB, Rinard GA, Quine RW, Shi Y, Eaton SS, Eaton GR. 250 MHz Rapid Scan Cross Loop Resonator. APPLIED MAGNETIC RESONANCE 2019; 50:333-345. [PMID: 30799909 PMCID: PMC6380496 DOI: 10.1007/s00723-018-1078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A 25 mm diameter 250 MHz crossed-loop resonator was designed for rapid scan electron paramagnetic resonance imaging. It has a saddle coil for the driven resonator and a fine wire, loop gap resonator for the sample resonator. There is good separation of E and B fields and high isolation between the two resonators, permitting a wide range of sample types to be measured. Applications to imaging of nitroxide, trityl, and LiPc samples illustrate the utility of the resonator. Using this resonator and a trityl sample the signal-to-noise of a rapid scan absorption spectrum is about 20 times higher than for a first-derivative CW spectrum.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| |
Collapse
|
8
|
Buchanan LA, Rinard GA, Quine RW, Eaton SS, Eaton GR. Tabletop 700 MHz electron paramagnetic resonance imaging spectrometer. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2018; 48B:e21384. [PMID: 30804714 PMCID: PMC6386469 DOI: 10.1002/cmr.b.21384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 06/05/2023]
Abstract
Low frequency electron paramagnetic resonance imaging is a powerful tool to non-invasively measure the physiological status of tumors. Here, we report on the design and functionality of a rapid scan and pulse table-top imaging spectrometer based around an arbitrary waveform generator and 25mm cross-loop resonator operating at 700 MHz. Two and four-dimensional rapid scan spectral-spatial images are presented. This table-top imager is a prototype for future pre-clinical imagers.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| |
Collapse
|
9
|
Tseytlin M. Full Cycle Rapid Scan EPR Deconvolution Algorithm. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:272-278. [PMID: 28666168 PMCID: PMC5568913 DOI: 10.1016/j.jmr.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 05/12/2023]
Abstract
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
10
|
Eaton SS, Shi Y, Woodcock L, Buchanan LA, McPeak J, Quine RW, Rinard GA, Epel B, Halpern HJ, Eaton GR. Rapid-scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:140-148. [PMID: 28579099 PMCID: PMC5523658 DOI: 10.1016/j.jmr.2017.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/12/2023]
Abstract
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Yilin Shi
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Lukas Woodcock
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Laura A Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Joseph McPeak
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Richard W Quine
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - George A Rinard
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Boris Epel
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
11
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Audran G, Bagryanskaya EG, Brémond P, Edeleva MV, Marque SRA, Parkhomenko DA, Rogozhnikova OY, Tormyshev VM, Tretyakov EV, Trukhin DV, Zhivetyeva SI. Trityl-based alkoxyamines as NMP controllers and spin-labels. Polym Chem 2016; 7:6490-6499. [PMID: 28989533 PMCID: PMC5627662 DOI: 10.1039/c6py01303a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, new applications of trityl-nitroxide biradicals were proposed. In the present study, attachment of a trityl radical to alkoxyamines was performed for the first time. The rate constants kd of C-ON bond homolysis in these alkoxyamines were measured and found to be equal to those for alkoxyamines without trityl. The electron paramagnetic resonance (EPR) spectra of the products of alkoxyamine homolysis (trityl-TEMPO and trityl-SG1 biradicals) were recorded, and the corresponding exchange interactions were estimated. The decomposition of trityl-alkoxyamine showed more than an 80% yield of biradicals, meaning that the C-ON bond homolysis is the main reaction. The suitability of these labelled initiators/controllers for polymerisation was exemplified by means of successful nitroxide-mediated polymerisation (NMP) of styrene. Thus, this is the first report of a spin-labelled alkoxyamine suitable for NMP.
Collapse
Affiliation(s)
- Gérard Audran
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Paul Brémond
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
| | - Mariya V. Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Sylvain R. A. Marque
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Dmitriy A. Parkhomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeny V. Tretyakov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Dmitry V. Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana I. Zhivetyeva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Biller JR, Mitchell DG, Tseytlin M, Elajaili H, Rinard GA, Quine RW, Eaton SS, Eaton GR. Rapid Scan Electron Paramagnetic Resonance Opens New Avenues for Imaging Physiologically Important Parameters In Vivo. J Vis Exp 2016. [PMID: 27768025 DOI: 10.3791/54068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH•, NO•). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.
Collapse
Affiliation(s)
- Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver; Magnetic Imaging Group, Applied Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology
| | | | - Mark Tseytlin
- Department of Radiology, Geisel School of Medicine, Dartmouth University; Department of Biochemistry, West Virginia University
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver
| | - George A Rinard
- Department of Electrical and Computer Engineering, University of Denver
| | | | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver;
| |
Collapse
|
14
|
Elajaili H, Biller JR, Rosen GM, Kao JPY, Tseytlin M, Buchanan LA, Rinard GA, Quine RW, McPeak J, Shi Y, Eaton SS, Eaton GR. Imaging disulfide dinitroxides at 250 MHz to monitor thiol redox status. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:77-82. [PMID: 26415686 PMCID: PMC4731354 DOI: 10.1016/j.jmr.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 05/12/2023]
Abstract
Measurement of thiol-disulfide redox status is crucial for characterization of tumor physiology. The electron paramagnetic resonance (EPR) spectra of disulfide-linked dinitroxides are readily distinguished from those of the corresponding monoradicals that are formed by cleavage of the disulfide linkage by free thiols. EPR spectra can thus be used to monitor the rate of cleavage and the thiol redox status. EPR spectra of (1)H,(14)N- and (2)H,(15)N-disulfide dinitroxides and the corresponding monoradicals resulting from cleavage by glutathione have been characterized at 250 MHz, 1.04 GHz, and 9 GHz and imaged by rapid-scan EPR at 250 MHz.
Collapse
Affiliation(s)
- Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Joshua R Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland, Baltimore, MD 21201, United States
| | - Mark Tseytlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Laura A Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - George A Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - Richard W Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80208, United States
| | - Joseph McPeak
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, United States.
| |
Collapse
|
15
|
Gorodetsky AA, Kirilyuk IA, Khramtsov VV, Komarov DA. Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH. Magn Reson Med 2015; 76:350-8. [PMID: 26301868 DOI: 10.1002/mrm.25867] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Electron paramagnetic resonance (EPR) imaging in the spectral-spatial domain with application of soluble paramagnetic probes provides an opportunity for spatially resolved functional measurements of living objects. The purpose of this study was to develop EPR methods for visualization of oxygenation and acidosis of ischemic myocardium. METHODS EPR oxygen measurements were performed using isotopically substituted (2) H,(15) N-dicarboxyproxyl. The radical has an EPR line width of 320 mG and oxygen-induced line broadening of 0.53 mG/mm Hg, providing oxygen sensitivity down to 5 μM. pH measurements were performed using previously developed pH-sensitive imidazoline nitroxide. The radical has an EPR spectrum with pH-dependable hyperfine splitting, pK = 6.6, providing pH sensitivity of approximately 0.05 U in the physiological range. RESULTS EPR imaging of isolated and perfused rat hearts was performed in the two-dimensional + spectral domain. The spatial resolution of the measurements was about 1.4 mm. Marked tissue hypoxia was observed in the ischemic area of the heart after occlusion of the left anterior descending coronary artery. Tissue oxygenation was partly restored upon reperfusion. EPR mapping of myocardial pH indicated acidosis of the ischemic area down to pH 6.7-6.8. CONCLUSION This study demonstrates the capability of low-field EPR and the nitroxide spin probes for mapping of myocardial oxygenation and pH. The developed approaches might be used for noninvasive investigation of microenvironment on living objects. Magn Reson Med 76:350-358, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Artem A Gorodetsky
- Vorozhtsov Institute of Organic Chemistry, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Igor A Kirilyuk
- Vorozhtsov Institute of Organic Chemistry, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Valery V Khramtsov
- Heart & Lung Research Institute, Ohio State University, Columbus, Ohio, USA.,Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Denis A Komarov
- Vorozhtsov Institute of Organic Chemistry, Novosibirsk, Russia.,Meshalkin State Research Institute of Circulation Pathology, Novosibirsk, Russia
| |
Collapse
|
16
|
Abstract
Rapid-scan electron paramagnetic resonance is based on continuous direct detection of the spin response as the magnetic field is scanned upfield and downfield through resonance thousands of times per second. The method provides improved signal-to-noise for a wide range of samples, including rapidly tumbling and immobilized radicals. This chapter provides an introduction to the method and practical examples of implementation for organic radicals.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|