1
|
Patra B, Agarwal V, Nishiyama Y, Sinha N. Probing Spatial Proximities Between Protons of Collagen Protein in Native Bone Using 2D 1H Multiple Quantum Experiments Under Fast MAS NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:268-274. [PMID: 39743659 DOI: 10.1002/mrc.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
Collapse
Affiliation(s)
- Bijaylaxmi Patra
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, India
| | | | - Neeraj Sinha
- Centre of Biomedical Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Van der Meijden RHM, Scholten MH, Nijhuis WH, Sakkers RJB, Sommerdijk N, Akiva A. Correlative Raman spectroscopy and electron microscopy identifies glycogen rich deposits correlated with local structural defects in long bones of type IV osteogenesis imperfecta patients. J Struct Biol 2024; 216:108142. [PMID: 39442776 DOI: 10.1016/j.jsb.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone disease occurring in approximately 1 in 10,000 births, usually as a result of genetic mutation. OI patients suffer from increased fracture risk and - depending on the severity of the disease - deformation of the limbs, which can even lead to perinatal death. Despite extensive studies, the way in which the genetic mutation is translated into structural and compositional anomalies of the tissue is still an open question. Different observations have been reported, ranging from no structural (or chemical) differences to completely chaotic bone structure and composition. Here, we investigated bone samples from two adolescent OI-IV patients, focusing on the bone structure and chemistry in naturally occurring fractures. The exposed fracture plane allows the investigation of the structure and composition of the weakest bone plane. We do so by combining scanning electron microscopy (SEM) imaging with chemical information from Raman microscopy. The exposed fracture planes show different regions within the same tissue, displaying normal osteonal structures next to disorganized osteons and totally disordered structures, while the collagen mineralization in all cases is similar to that of a healthy bone. In addition, we also detected significant amounts of depositions of glycogen-rich, organic, globules of 250-1000 nm in size. These depositions point to a role of cellular disfunction in the disorganization of the collagen in qualitative OI. Overall, our results unite multiple, sometimes contradicting views from the literature on qualitative OI.
Collapse
Affiliation(s)
- R H M Van der Meijden
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - M H Scholten
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - W H Nijhuis
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - R J B Sakkers
- Department of Orthopedic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - N Sommerdijk
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands.
| | - A Akiva
- Department of Medical BioSciences, Radboudumc, 6525 GA Nijmegen, the Netherlands; Electron Microscopy Center, Radboudumc, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Dwivedi N, Patra B, Mentink-Vigier F, Wi S, Sinha N. Unveiling Charge-Pair Salt-Bridge Interaction Between GAGs and Collagen Protein in Cartilage: Atomic Evidence from DNP-Enhanced ssNMR at Natural Isotopic Abundance. J Am Chem Soc 2024; 146:23663-23668. [PMID: 38980938 PMCID: PMC11572119 DOI: 10.1021/jacs.4c05539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when 13C and 15N isotopes are at natural abundance. In this communication, this limitation is overcome by taking advantage of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) experiments to obtain two-dimensional (2D) 15N-13C and 13C-13C correlations on native samples at natural abundance. These experiments unveiled inter-residue correlations in the aliphatic regions of the collagen protein previously unobserved. Additionally, our findings provide direct evidence of charge-pair salt-bridge interactions between negatively charged GAGs and positively charged arginine (Arg) residues of collagen protein. We also identified potential hydrogen bonding interactions between hydroxyproline (Hyp) and GAGs, offering atomic insights into the biochemical interactions within the extracellular matrix of native cartilage. Our approach may provide a new avenue for the structural characterization of other native systems.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
| | - Bijaylaxmi Patra
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad −201002, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow – 226014, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad −201002, India
| |
Collapse
|
4
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
5
|
Dwivedi N, Siddiqui MA, Srivastava S, Sinha N. 1 H- 13 C cross-polarization kinetics to probe hydration-dependent organic components of bone extracellular matrix. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:397-406. [PMID: 36946081 DOI: 10.1002/mrc.5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state. In the present article, we employed the variable contact time cross-polarization (1 H-13 C CP) kinetics experiments to study the hydration-dependent atomic-level structural changes in the bone extracellular matrix (ECM). The natural abundant 13 C CP intensity of the bone ECM is measured by varying CP contact time and best fitted to the nonclassical kinetic model. Different relaxation parameters were measured by the best-fit equation corresponding to the different hydration conditions of the bone ECM. The associated changes in the measured parameters due to varying levels of hydration observed at different sites of collagen protein have provided its structural arrangements and interaction with water molecules in bone ECM. Overall, the present study reveals a better understanding of the kinetics of the organic part inside the bone ECM that will help in comprehending the disease-associated pathways.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| | - Seema Srivastava
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
6
|
Wang H, Falcoz S, Morales J, Berteau JP. Investigating bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 2023; 25:9336-9348. [PMID: 36920434 DOI: 10.1039/d2cp03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bones are connective tissues mainly made of collagen proteins with calcium phosphate deposits. They undergo constant remodeling, including destroying existing bones tissues (known as bone resorption) and rebuilding new ones. Bone remodeling has been well-described in mammals, but it is not the case in fish. Here, we focused on the mobile phase of the bone vascular system by carefully preserving moisture in adult Atlantic herring intermuscular bones. We detected pore water with high ionic strength and soluble degraded peptides whose 1H-transverse relaxation times, T2s, exceed 15 milliseconds. With favorable T2s, we incorporated a solution state spinlock scheme into the INEPT techniques to unequivocally demonstrate collagen degradation. In addition, we detected a substantial amount of inorganic phosphate in solution with 31P-NMR in the considerable background of solid hydroxyapatite calcium phosphate by saturation recovery experiment. It is consistent with the idea that bone resorption degrades bone collagen and releases calcium ions and phosphate ions in the pore water with increased ionic strength. Our report is the first to probe the resorption process in the heterogenous bone microstructure with a rigorous characterization of 1H and 13C relaxation behavior and direct assignments. In addition, we contribute to the fish bones literature by investigating fish bone remodeling using NMR for the first time.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jorge Morales
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York 10031, USA.,Nanosciences Initiative, City University of New York - Advanced Science Research Center, New York 10031, USA
| |
Collapse
|
7
|
Kababya S, Ben Shir I, Schmidt A. From molecular level to macroscopic properties: A solid-state NMR biomineralization and biomimetic exploration. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Dwivedi N, Dubey R, Srivastava S, Sinha N. Unraveling Water-Mediated 31P Relaxation in Bone Mineral. ACS OMEGA 2022; 7:16678-16688. [PMID: 35601291 PMCID: PMC9118412 DOI: 10.1021/acsomega.2c01133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/15/2022] [Indexed: 06/09/2023]
Abstract
Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions. Many of the interactions among the different components are poorly understood. Recently, solid-state nuclear magnetic resonance (ssNMR) has become a popular spectroscopic tool for studying bone. In this article, we present a study probing the interaction of water molecules with amorphous and crystalline parts of the bone mineral through 31P ssNMR relaxation parameters (T 1 and T 2) and dynamics (correlation time). The method was developed to selectively measure the 31P NMR relaxation parameters and dynamics of the crystalline apatitic core and the amorphous surface layer of the bone mineral. The measured 31P correlation times (in the range of 10-6-10-7 s) indicated the different dynamic behaviors of both the mineral components. Additionally, we observed that dehydration affected the apatitic core region more significantly, while H-D exchange showed changes in the amorphous surface layer to a greater extent. Overall, the present work provides a significant understanding of the relaxation and dynamics of bone mineral components inside the bone matrix.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Richa Dubey
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Seema Srivastava
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Neeraj Sinha
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
9
|
Shekar SC, Zhao W, Fernando LD, Hung I, Wang T. A 13C three-dimensional DQ-SQ-SQ correlation experiment for high-resolution analysis of complex carbohydrates using solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107148. [PMID: 35121490 DOI: 10.1016/j.jmr.2022.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Complex carbohydrates are the key components of the protective cell walls of microbial pathogens and the bioenergy reservoir in plants and algae. Structural characterization of these polymorphic molecules requires assistance from multidimensional 13C correlation approaches. To facilitate the analysis of carbohydrate structure using solid-state NMR, we present a three-dimensional (3D) 13C-13C-13C experiment that includes a double-quantum (DQ) dimension and is thus free of the cube's body diagonal. The enhanced resolution supports the unambiguous resonance assignment of many polysaccharides in plant and fungal cell walls using uniformly 13C-labeled cells of spruce and Aspergillus fumigatus. Long-range structural restraints were effectively obtained to revisit our understanding of the spatial organization of plant cellulose microfibrils. The method is widely applicable to the investigations of cellular carbohydrates and carbon-based biomaterials.
Collapse
Affiliation(s)
- S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
10
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
11
|
Yang H, Yu Z, Ji S, Huo Q, Yan J, Gao Y, Niu Y, Xu M, Liu Y. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches. J Control Release 2021; 341:443-456. [PMID: 34748870 DOI: 10.1016/j.jconrel.2021.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Bone tissues are the main metastatic sites of many cancers, and bone metastasis is an important cause of death. When bone metastasis occurs, dynamic interactions between tumor cells and bone tissues promote changes in the tumor-bone microenvironments that are conducive to tumor growth and progression, which also promote several related diseases, including pathological fracture, bone pain, and hypercalcemia. Accordingly, it has obvious clinical benefits for improving the cure rate and reducing the occurrence of related diseases through targeting bone microenvironments for the treatment and early detection of cancer bone metastasis niches. In this review, we briefly analyzed the relationship between bone microstructures and tumor metastasis, as well as microenvironmental changes in osteoblasts, osteoclasts, immune cells, and extracellular and bone matrixes caused when metastatic tumor cells colonize bones. We also discuss novel designs in nanodrugs for inhibiting tumor proliferation and migration through targeting to tumor bone metastases and abnormal bone-microenvironment components. In addition, related researches on the early detection of bone and multi-organ metastases by nanoprobes are also introduced. And we look forward to provide some useful proposals and enlightenments on nanotechnology-based drug delivery and probes for the treatment and early detection of bone metastasis.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China; School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Juanzhu Yan
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yue Gao
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China.
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
12
|
Viani A, Mácová P, Machová D, Mali G. Technical Note: Post-burial alteration of bones: Quantitative characterization with solid-state 1H MAS NMR. Forensic Sci Int 2021; 323:110783. [PMID: 33878550 DOI: 10.1016/j.forsciint.2021.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/28/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022]
Abstract
The identification of markers of the modifications occurring in human bones after death and of the sedimentary and post-sedimentary processes affecting their state of preservation, is of interest for several scientific disciplines. A new index, obtained from spectral deconvolution of the 1H MAS NMR spectra of bones, relating the number of organic protons to the amount of hydrogen nuclei in the OH- groups of bioapatite, is proposed as indicator of the state of preservation of the organic fraction. In the osteological material from three different archaeological sites, this index resulted positively correlated with the extent of collagen loss derived from infrared spectroscopy. Its sensitivity to changes in the physical and chemical characteristics of bone allows to identify distinct diagenetic pathways specific to each site and to distinguish different trajectories within the same site.
Collapse
Affiliation(s)
- Alberto Viani
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic.
| | - Petra Mácová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Dita Machová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
13
|
Zeng P, Fu Y, Pang Y, He T, Wu Y, Tang R, Qin A, Kong X. Solid-State Nuclear Magnetic Resonance Identifies Abnormal Calcium Phosphate Formation in Diseased Bones. ACS Biomater Sci Eng 2021; 7:1159-1168. [PMID: 33617226 DOI: 10.1021/acsbiomaterials.0c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crystallites of calcium phosphate (CaP) in bones consist of hydroxyl apatite (HA) and amorphous calcium phosphate (ACP). These nanoscale structures of CaP are sculptured by biological bone formation and resorption processes and are one of the crucial factors that determine the overall strength of the constructs. We used one- and two-dimensional 1H-31P solid-state nuclear magnetic resonance (SSNMR) to investigate the nanoscopic structural changes of CaP. Two quantitative measurables are deduced based on the heterogeneous linewidth of 31P signal and the ratio of ACP to HA, which characterize the mineral crystallinity and the relative proportion of ACP, respectively. We analyzed bones from different murine models of osteopetrosis and osteoporosis and from human samples with osteoporosis and osteoarthritis. It shows that the ACP content increases notably in osteopetrotic bones that are characterized by defective osteoclastic resorption, whereas the overall crystallinity increases in osteoporotic bones that are marked by overactive osteoclastic resorption. Similar pathological characteristics are observed for the sclerotic bones of late-stage osteoarthritis, as compared to those of the osteopetrotic bones. These findings suggest that osteoclast-related bone diseases not only alter the bone density macroscopically but also lead to abnormal formation of CaP crystallites. The quantitative measurement by SSNMR provides a unique perspective on the pathology of bone diseases at the nanoscopic level.
Collapse
Affiliation(s)
- Pingmei Zeng
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yao Fu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Tian He
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuanyuan Wu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ruikang Tang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xueqian Kong
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
14
|
Mosiman DS, Sutrisno A, Fu R, Mariñas BJ. Internalization of Fluoride in Hydroxyapatite Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2639-2651. [PMID: 33533604 DOI: 10.1021/acs.est.0c07398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilation of fluoride to bulk apatite lattice sites in addition to surface lattice sites. Pellets of HAP nanoparticles (NPs) were packed into a fixed-bed media filter to treat solutions containing 30 mg-F/L (1.58 mM) at pH 8, yielding an uptake of 15.97 ± 0.03 mg-F/g-HAP after 864 h. Solid-state 19F and 13C magic-angle spinning nuclear magnetic resonance spectroscopy demonstrated that all removed fluoride is apatitic. A transmission electron microscopy analysis of particle size distribution, morphology, and crystal habit resulted in the development of a model to quantify adsorption and total fluoride capacity. Low- and high-estimate median adsorption capacities were 2.40 and 6.90 mg-F/g-HAP, respectively. Discrepancies between experimental uptake and adsorption capacity indicate the range of F- that internalizes to satisfy conservation of mass. The model was developed to demonstrate that F- internalization in HAP NPs occurs under environmentally relevant conditions and as a tool to understand the extent of F- internalization in HAP NPs of any kind.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Andre Sutrisno
- NMR/EPR Laboratory, School of Chemical Sciences NMR Facility, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Mosiman DS, Chen YS, Yang L, Hawkett B, Ringer SP, Mariñas BJ, Cairney JM. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. SMALL METHODS 2021; 5:e2000692. [PMID: 34927889 DOI: 10.1002/smtd.202000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi-Sheng Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Limei Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brian Hawkett
- Key Centre for Polymer Colloids School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Simon P Ringer
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
16
|
Coppel Y, Prigent Y, Grégoire G. Characterization of hydrogenated dentin components by advanced 1H solid-state NMR experiments. Acta Biomater 2021; 120:156-166. [PMID: 32860946 DOI: 10.1016/j.actbio.2020.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 12/20/2022]
Abstract
Collecting information about molecular organisation on biological materials such as bone and dentin represents a major challenge in attaining a better understanding of their mechanical properties. To that end, solid state Nuclear Magnetic Resonance (ssNMR) spectroscopic study is an appropriate strategy to provide atomic structural details on these amorphous composite materials. However, species like water molecules and hydroxyl groups are usually observed through 1H magic angle spinning (MAS) ssNMR that suffers from poor resolution due to strong signal overlapping, making their identification difficult. This paper proposes a set of ssNMR experiments for 1H characterization of the main components of human dentin, based on homo- and hetero-nuclear dipolar couplings and composed mostly of fast 1D experiments. The 1H assignment is assisted by straightforward sample modifications: vacuum drying, deuterium exchange and demineralization. These experiments allow the hydrogen signal edition of dentin species like water molecules, HPO42- and OH- groups, depending on their localization (bound to the organic phase, linked to apatite or at the interface) and their dynamic behaviour. This ssNMR toolbox has the potential to provide important structural and dynamic information on chemical and physical modifications of biomaterials. STATEMENT OF SIGNIFICANCE: Molecular characterisation of apatitic biomaterials by biophysical techniques is extremely difficult due to their complex and amorphous nature. It is, however, crucial to obtain such information if we want to understand their mechanical properties in relation to their physical state, for example their hydration levels. In this article we used a set of solid state NMR experiments and sample modifications to distinguish 1H signal of human dentin components with a particular attention to water molecules, known for their major role in biomaterial structuring.
Collapse
Affiliation(s)
- Yannick Coppel
- Laboratoire de Chimie de Coordination UPR8241, CNRS, 205 Rte de Narbonne, F-31077, Toulouse Cedex 04, France.
| | - Yann Prigent
- Institut de Chimie de Toulouse (ICT) - FR 2599, Faculté des Sciences et de l'Ingénierie, Université Toulouse III, 31062 Toulouse, France
| | - Geneviève Grégoire
- Faculté d'Odontologie, Toulouse Cedex 31062; Unité de Recherche Biomatériaux Innovants et Interfaces EA4462/URB2i, Université Paris, 92120, France
| |
Collapse
|
17
|
Manning JH, Walkley B, Provis JL, Patwardhan SV. Mimicking Biosintering: The Identification of Highly Condensed Surfaces in Bioinspired Silica Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:561-568. [PMID: 33372796 PMCID: PMC7815198 DOI: 10.1021/acs.langmuir.0c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interfacial interactions between inorganic surfaces and organic additives are vital to develop new complex nanomaterials. Learning from biosilica materials, composite nanostructures have been developed, which exploit the strength and directionality of specific polyamine additive-silica surface interactions. Previous interpretations of these interactions are almost universally based on interfacial charge matching and/or hydrogen bonding. In this study, we analyzed the surface chemistry of bioinspired silica (BIS) materials using solid-state nuclear magnetic resonance (NMR) spectroscopy as a function of the organic additive concentration. We found significant additional association between the additives and fully condensed (Q4) silicon species compared to industrial silica materials, leading to more overall Q4 concentration and higher hydrothermal stability, despite BIS having a shorter synthesis time. We posit that the polyfunctionality and catalytic activity of additives in the BIS synthesis lead to both of these surface phenomena, contrasting previous studies on monofunctional surfactants used in most other artificial templated silica syntheses. From this, we propose that additive polyfunctionality can be used to generate tailored artificial surfaces in situ and provide insights into the process of biosintering in biosilica systems, highlighting the need for more in-depth simulations on interfacial interactions at silica surfaces.
Collapse
Affiliation(s)
- Joseph
R. H. Manning
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
- Department
of Chemical Engineering, The University
of Bath, Bath BA2 7AY, U.K.
- Department
of Chemistry, University College London, London WC1E 6BT, U.K.
| | - Brant Walkley
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
- Department
of Materials Science and Engineering, The
University of Sheffield, Sheffield S1 3JD, U.K.
| | - John L. Provis
- Department
of Materials Science and Engineering, The
University of Sheffield, Sheffield S1 3JD, U.K.
| | - Siddharth V. Patwardhan
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
18
|
Ben Shir I, Kababya S, Zax DB, Schmidt A. Resilient Intracrystalline Occlusions: A Solid-State NMR View of Local Structure as It Tunes Bulk Lattice Properties. J Am Chem Soc 2020; 142:13743-13755. [PMID: 32689791 PMCID: PMC7586327 DOI: 10.1021/jacs.0c03590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/30/2022]
Abstract
In many marine organisms, biomineralization-the crystallization of calcium-based ionic lattices-demonstrates how regulated processes optimize for diverse functions, often via incorporation of agents from the precipitation medium. We study a model system consisting of l-aspartic acid (Asp) which when added to the precipitation solution of calcium carbonate crystallizes the thermodynamically disfavored polymorph vaterite. Though vaterite is at best only kinetically stable, that stability is tunable, as vaterite grown with Asp at high concentration is both thermally and temporally stable, while vaterite grown at 10-fold lower Asp concentration, yet 2-fold less in the crystal, spontaneously transforms to calcite. Solid-state NMR shows that Asp is sparsely occluded within vaterite and calcite. CP-REDOR NMR reveals that each Asp is embedded in a perturbed occlusion shell of ∼8 disordered carbonates which bridge to the bulk. In both the as-deposited vaterites and the evolved calcite, the perturbed shell contains two sets of carbonate species distinguished by their proximity to the amine and identifiable based on 13C chemical shifts. The embedding shell and the occluded Asp act as an integral until which minimally rearranges even as the bulk undergoes extensive reorganization. The resilience of these occlusion units suggests that large Asp-free domains drive the vaterite to calcite transformation-which are retarded by the occlusion units, resulting in concentration-dependent lattice stability. Understanding the structure and properties of the occlusion unit, uniquely amenable to ssNMR, thus appears to be a key to explaining other macroscopic properties, such as hardness.
Collapse
Affiliation(s)
- Ira Ben Shir
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shifi Kababya
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David B. Zax
- Department
of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Asher Schmidt
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
19
|
Buntkowsky G, Vogel M. Small Molecules, Non-Covalent Interactions, and Confinement. Molecules 2020; 25:E3311. [PMID: 32708283 PMCID: PMC7397022 DOI: 10.3390/molecules25143311] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/27/2022] Open
Abstract
This review gives an overview of current trends in the investigation of small guest molecules, confined in neat and functionalized mesoporous silica materials by a combination of solid-state NMR and relaxometry with other physico-chemical techniques. The reported guest molecules are water, small alcohols, and carbonic acids, small aromatic and heteroaromatic molecules, ionic liquids, and surfactants. They are taken as characteristic role-models, which are representatives for the typical classes of organic molecules. It is shown that this combination delivers unique insights into the structure, arrangement, dynamics, guest-host interactions, and the binding sites in these confined systems, and is probably the most powerful analytical technique to probe these systems.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64295 Darmstadt, Germany
| |
Collapse
|
20
|
Gervais C, Bonhomme C, Laurencin D. Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101663. [PMID: 32325374 DOI: 10.1016/j.ssnmr.2020.101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Materials containing a calcium phosphate component have been the subject of much interest to NMR spectroscopists, especially in view of understanding the structure and properties of mineralized tissues like bone and teeth, and of developing synthetic biomaterials for bone regeneration. Here, we present a selection of recent developments in their structural characterization using advanced solid state NMR experiments, highlighting the level of insight which can now be accessed.
Collapse
Affiliation(s)
- Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | | |
Collapse
|
21
|
Kołodziejska B, Kaflak A, Kolmas J. Biologically Inspired Collagen/Apatite Composite Biomaterials for Potential Use in Bone Tissue Regeneration-A Review. MATERIALS 2020; 13:ma13071748. [PMID: 32283608 PMCID: PMC7179041 DOI: 10.3390/ma13071748] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Type I collagen and nanocrystalline-substituted hydroxyapatite are the major components of a natural composite—bone tissue. Both of these materials also play a significant role in orthopedic surgery and implantology; however, their separate uses are limited; apatite is quite fragile, while collagen’s mechanical strength is very poor. Therefore, in biomaterial engineering, a combination of collagen and hydroxyapatite is used, which provides good mechanical properties with high biocompatibility and osteoinduction. In addition, the porous structure of the composites enables their use not only as bone defect fillers, but also as a drug release system providing controlled release of drugs directly to the bone. This feature makes biomimetic collagen–apatite composites a subject of research in many scientific centers. The review focuses on summarizing studies on biological activity, tested in vitro and in vivo.
Collapse
|
22
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 PMCID: PMC11688153 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
23
|
Gourgas O, Cole GB, Muiznieks LD, Sharpe S, Cerruti M. Effect of the Ionic Concentration of Simulated Body Fluid on the Minerals Formed on Cross-Linked Elastin-Like Polypeptide Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15364-15375. [PMID: 31729882 DOI: 10.1021/acs.langmuir.9b02542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deposition of calcium phosphate minerals on the elastin-rich medial layers of arteries can cause severe cardiovascular complications. There are no available treatments for medial calcification, and the mechanism of mineral formation on elastin layers is still unknown. We recently developed an in vitro model of medial calcification using cross-linked elastin-like polypeptide (ELP) membranes immersed in simulated body fluid (SBF). While mineral phase evolution matched that observed in a mouse model of medial calcification, the long incubation required was a practical limitation of this model. Using higher SBF ion concentrations could be a solution to speed up mineral deposition, but its effect on the mineralization process is still not well understood. Here we analyze mineral formation and phase transformation on ELP membranes immersed in high concentration SBF. We show that while mineral deposition is significantly accelerated in these conditions, the chemistry and morphology of the minerals deposited on the ELP membranes and the overall mineralization process are strongly affected. Overall, this work suggests that while the use of low concentration SBF in this in vitro model is more appropriate to study medial calcification associated with the loss of calcification inhibitors, higher SBF ion concentration may be more relevant to study medial calcification in patients with life-threatening diseases such as chronic kidney disease.
Collapse
Affiliation(s)
- Ophélie Gourgas
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Gregory B Cole
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
- Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Lisa D Muiznieks
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
| | - Simon Sharpe
- Molecular Medicine , Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
- Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| |
Collapse
|
24
|
Azaïs T, Von Euw S, Ajili W, Auzoux-Bordenave S, Bertani P, Gajan D, Emsley L, Nassif N, Lesage A. Structural description of surfaces and interfaces in biominerals by DNP SENS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:2-11. [PMID: 31216494 DOI: 10.1016/j.ssnmr.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Biological mineralized tissues are hybrid materials with complex hierarchical architecture composed of biominerals often embedded in an organic matrix. The atomic-scale comprehension of surfaces and organo-mineral interfaces of these biominerals is of paramount importance to understand the ultrastructure, the formation mechanisms as well as the biological functions of the related biomineralized tissue. In this communication we demonstrate the capability of DNP SENS to reveal the fine atomic structure of biominerals, and more specifically their surfaces and interfaces. For this purpose, we studied two key examples belonging to the most significant biominerals family in nature: apatite in bone and aragonite in nacreous shell. As a result, we demonstrate that DNP SENS is a powerful approach for the study of intact biomineralized tissues. Signal enhancement factors are found to be up to 40 and 100, for the organic and the inorganic fractions, respectively, as soon as impregnation time with the radical solution is long enough (between 12 and 24 h) to allow an efficient radical penetration into the calcified tissues. Moreover, ions located at the biomineral surface are readily detected and identified through 31P or 13C HETCOR DNP SENS experiments. Noticeably, we show that protonated anions are preponderant at the biomineral surfaces in the form of HPO42- for bone apatite and HCO32- for nacreous aragonite. Finally, we demonstrate that organo-mineral interactions can be probed at the atomic level with high sensitivity. In particular, reliable 13C-{31P} REDOR experiments are achieved in a few hours, leading to the determination of distances, molar proportion and binding mode of citrate bonded to bone mineral in native compact bone. According to our results, only 80% of the total amount of citrate in bone is directly interacting with bone apatite through two out of three carboxylic groups.
Collapse
Affiliation(s)
- Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France.
| | - Stanislas Von Euw
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Widad Ajili
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Stéphanie Auzoux-Bordenave
- Sorbonne Université, UMR BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, MNHN/CNRS-7208/IRD-207/UPMC, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Place de la Croix 29900 Concarneau, France
| | - Philippe Bertani
- Laboratoire de RMN et Biophysique des Membranes, UMR 7177 Chimie Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - David Gajan
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Anne Lesage
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
25
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
26
|
Varghese S, Halling PJ, Häussinger D, Wimperis S. Two-dimensional 1H and 1H-detected NMR study of a heterogeneous biocatalyst using fast MAS at high magnetic fields. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:7-11. [PMID: 29587153 DOI: 10.1016/j.ssnmr.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) is a powerful tool for investigating atomic-scale structure in heterogeneous or composite materials where long-range order is absent. In this work solid-state 1H and 1H-detected NMR experiments were performed with fast magic angle spinning (νR = 75 kHz) and at high magnetic fields (B0 = 20 T) and used to gain structural insight into a heterogeneous biocatalyst consisting of an enzyme, human carbonic anhydrase II (hCA II), covalently immobilized on epoxy-functionalized silica. Two-dimensional 1H-1H NOESY-type correlation experiments were able to provide information on 1H environments in silica, epoxy-silica and the immobilized enzyme. Two distinct signals originating from water protons were observed: water associated with the surface of the silica and the water associated with the immobilized enzyme. Additional two-dimensional 1H-1H double-single quantum (DQ-SQ) correlation experiments suggested that the immobilized enzyme is not in close contact with the silica surface. Most significantly, comparison of two-dimensional 1H-15N spectra of the immobilized enzyme and the solution-state enzyme confirmed that the structural integrity of the protein is well preserved upon covalent immobilization.
Collapse
Affiliation(s)
- Sabu Varghese
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Peter J Halling
- WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, CH-4056, Basel, Switzerland
| | - Stephen Wimperis
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
27
|
Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018; 360:360/6388/eaao2189. [PMID: 29724924 DOI: 10.1126/science.aao2189] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/08/2018] [Indexed: 01/01/2023]
Abstract
The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone's principal components-mineral and collagen-has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.
Collapse
Affiliation(s)
- Natalie Reznikov
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Matthew Bilton
- Department of Physics, University of York, Heslington, York, UK.,4D LABS, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Leonardo Lari
- Department of Physics, University of York, Heslington, York, UK.,York JEOL Nanocentre, Science Park, York, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Faculty of Engineering, Imperial College London, London, UK.
| | - Roland Kröger
- Department of Physics, University of York, Heslington, York, UK.
| |
Collapse
|
28
|
Pestryaev EM. Oscillating Free Induction Decay in Polymer Systems: Theoretical Analysis. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abstract
Abstract
Effects of interfaces on hydrogen-bonded liquids play major roles in nature and technology. Despite their importance, a fundamental understanding of these effects is still lacking. In large parts, this shortcoming is due to the high complexity of these systems, leading to an interference of various interactions and effects. Therefore, it is advisable to take gradual approaches, which start from well designed and defined model systems and systematically increase the level of intricacy towards more complex mimetics. Moreover, it is necessary to combine insights from a multitude of methods, in particular, to link novel preparation strategies and comprehensive experimental characterization with inventive computational and theoretical modeling. Such concerted approach was taken by a group of preparative, experimentally, and theoretically working scientists in the framework of Research Unit FOR 1583 funded by the Deutsche Forschungsgemeinschaft (German Research Foundation). This special issue summarizes the outcome of this collaborative research. In this introductory article, we give an overview of the covered topics and the main results of the whole consortium. The following contributions are review articles or original works of individual research projects.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Institut für Physikalische Chemie , Technische Universität Darmstadt , 64287 Darmstadt , Germany
| | - Michael Vogel
- Institut für Festkörperphysik , Technische Universität Darmstadt , 64295 Darmstadt , Germany
| | - Roland Winter
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| |
Collapse
|
30
|
Abstract
The bone remodelling cycle replaces old and damaged bone and is a highly regulated, lifelong process essential for preserving bone integrity and maintaining mineral homeostasis. During the bone remodelling cycle, osteoclastic resorption is tightly coupled to osteoblastic bone formation. The remodelling cycle occurs within the basic multicellular unit and comprises five co-ordinated steps; activation, resorption, reversal, formation and termination. These steps occur simultaneously but asynchronously at multiple different locations within the skeleton. Study of rare human bone disease and animal models have helped to elucidate the cellular and molecular mechanisms that regulate the bone remodelling cycle. The key signalling pathways controlling osteoclastic bone resorption and osteoblastic bone formation are receptor activator of nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin and canonical Wnt signalling. Cytokines, growth factors and prostaglandins act as paracrine regulators of the cycle, whereas endocrine regulators include parathyroid hormone, vitamin D, calcitonin, growth hormone, glucocorticoids, sex hormones, and thyroid hormone. Disruption of the bone remodelling cycle and any resulting imbalance between bone resorption and formation leads to metabolic bone disease, most commonly osteoporosis. The advances in understanding the cellular and molecular mechanisms underlying bone remodelling have also provided targets for pharmacological interventions which include antiresorptive and anabolic therapies. This review will describe the remodelling process and its regulation, discuss osteoporosis and summarize the commonest pharmacological interventions used in its management.
Collapse
Affiliation(s)
- J S Kenkre
- 1 Section of Investigative Medicine, Imperial College London, London, UK
| | - Jhd Bassett
- 2 Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
31
|
Brodrecht M, Kumari B, Breitzke H, Gutmann T, Buntkowsky G. Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
A series of novel functionalized mesoporous silica-based materials with well-defined pore diameters, surface functionalization and surface morphology is synthesized by co-condensation or grafting techniques and characterized by solid-state NMR spectroscopy, DNP enhanced solid state-NMR and thermodynamic techniques. These materials are employed as host-systems for small-guest molecules like water, small alcohols, carbonic acids, small aromatic molecules, binary mixtures and others. The phase-behavior of these confined guests is studied by combinations of one dimensional solid-state NMR techniques (1H MAS, 2H-line shape analysis, 13C CPMAS) and two-dimensional correlation experiments like 1H-29Si- solid-state HETCOR.
Collapse
Affiliation(s)
- Martin Brodrecht
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Bharti Kumari
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Torsten Gutmann
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt , Alarich-Weiss-Str. 8 , D-64287 Darmstadt , Germany
| |
Collapse
|
32
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Abueidda DW, Sabet FA, Jasiuk IM. Modeling of Stiffness and Strength of Bone at Nanoscale. J Biomech Eng 2017; 139:2613840. [DOI: 10.1115/1.4036314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/08/2022]
Abstract
Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen–mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.
Collapse
Affiliation(s)
- Diab W. Abueidda
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W Green Street, Urbana, IL 61801 e-mail:
| | - Fereshteh A. Sabet
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W Green Street, Urbana, IL 61801 e-mail:
| | - Iwona M. Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W Green Street, Urbana, IL 61801 e-mail:
| |
Collapse
|
34
|
Moran RF, Dawson DM, Ashbrook SE. Exploiting NMR spectroscopy for the study of disorder in solids. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1256604] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Robert F. Moran
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Daniel M. Dawson
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Sharon E. Ashbrook
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
35
|
Interfacial Ca 2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat Commun 2017; 8:14104. [PMID: 28128197 PMCID: PMC5290151 DOI: 10.1038/ncomms14104] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023] Open
Abstract
The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.
Collapse
|
36
|
Role of cortical bone in hip fracture. BONEKEY REPORTS 2017; 6:867. [PMID: 28277562 DOI: 10.1038/bonekey.2016.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/03/2016] [Indexed: 12/23/2022]
Abstract
In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die in situ without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.
Collapse
|
37
|
Kaflak A, Chmielewski D, Kolodziejski W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
38
|
Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. Enhancing NMR Sensitivity of Natural-Abundance Low-γ Nuclei by Ultrafast Magic-Angle-Spinning Solid-State NMR Spectroscopy. Chemphyschem 2016; 17:2962-2966. [PMID: 27310287 PMCID: PMC5831690 DOI: 10.1002/cphc.201600637] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/18/2022]
Abstract
Although magic-angle-spinning (MAS) solid-state NMR spectroscopy has been able to provide piercing atomic-level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio natural-abundance 13 C NMR spectrum of a small amount of sample (≈2.0 mg) by using multiple-contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T1ρ of protons. The use of MCP for fast 2D 1 H/13 C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomic-resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Yitian Chen
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
39
|
Dagys L, Klimavicius V, Balevicius V. Processing of CP MAS kinetics: Towards NMR crystallography for complex solids. J Chem Phys 2016. [DOI: 10.1063/1.4962579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Mroue KH, Xu J, Zhu P, Morris MD, Ramamoorthy A. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy. Phys Chem Chem Phys 2016; 18:18687-91. [PMID: 27374353 DOI: 10.1039/c6cp03506j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging.
Collapse
Affiliation(s)
- Kamal H Mroue
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
41
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
42
|
Werner M, Heil A, Rothermel N, Breitzke H, Groszewicz PB, Thankamony AS, Gutmann T, Buntkowsky G. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:73-78. [PMID: 26411982 DOI: 10.1016/j.ssnmr.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the (13)C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by (15)N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the (15)N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance (15)N nuclei, rendering expensive labeling of peptides unnecessary.
Collapse
Affiliation(s)
- Mayke Werner
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Andreas Heil
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Niels Rothermel
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Pedro Braga Groszewicz
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Aany Sofia Thankamony
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Torsten Gutmann
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany.
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
43
|
Jantschke A, Koers E, Mance D, Weingarth M, Brunner E, Baldus M. Insight into the Supramolecular Architecture of Intact Diatom Biosilica from DNP-Supported Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:15069-73. [DOI: 10.1002/anie.201507327] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/23/2023]
|
44
|
Jantschke A, Koers E, Mance D, Weingarth M, Brunner E, Baldus M. Einblick in die supramolekulare Architektur von intaktem Diatomeen-Biosilikat mithilfe DNP-verstärkter Festkörper-NMR-Spektroskopie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|