1
|
Hobo F, Tanimoto Y, Endo Y, Matsuki Y, Takahashi H. 400 MHz/263 GHz ultra-low temperature MAS-DNP using a closed-cycle helium gas cooling system and a solid-state microwave source. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 373:107842. [PMID: 39946944 DOI: 10.1016/j.jmr.2025.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/17/2025]
Abstract
Dynamic nuclear polarization (DNP) is widely used in a wide range of applications in solid-state NMR nowadays due to recent advancements of magic-angle spinning (MAS) DNP. Conventionally, an MAS-DNP system employs a gyrotron as a microwave source and operates at ∼100 K using nitrogen gas. As an alternative, we present a 400 MHz/263 GHz MAS-DNP system utilizing a compact solid-state microwave source and an ultra-low temperature (ULT) helium MAS probe equipped with a cryogenic preamplifier. Compared to gyrotrons, solid-state microwave sources are compact, cost-effective, and frequency agile. The ULT compensates for the decreased DNP efficiency resulting from the lower microwave power of the solid-state source. Additionally, the large Boltzmann polarization at ULT and the improved signal-to-noise ratio provided by the cryogenic preamplifier enhance the sensitivity of the MAS-DNP system. The system is tested using a DNP standard sample of proline in a mixture of deuterated glycerol and partially deuterated water doped with AMUPol, achieving a DNP enhancement of 85 using a 2 mm-diameter rotor at a sample temperature of 30 K and microwave power of 160 mW. Experimental data show that the Boltzmann polarization and the cryogenic preamplifier contribute an additional sensitivity gain of 11× at 30 K compared to 100 K. Overall, the ULT-DNP related sensitivity gain of this system is estimated to be roughly twice that of a 100 K gyrotron system, although the DNP enhancement factor alone is smaller using a solid-state microwave source.
Collapse
Affiliation(s)
- Fumio Hobo
- JEOL Ltd., Akishima, Tokyo, 196-8558, Japan
| | | | - Yuki Endo
- JEOL Ltd., Akishima, Tokyo, 196-8558, Japan
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | | |
Collapse
|
2
|
Perrone B, Gunnarsson M, Bernin D, Sparr E, Topgaard D. Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101972. [PMID: 39357420 DOI: 10.1016/j.ssnmr.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the stratum corneum, the outer 10-20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig stratum corneum at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables 1H-1H spin diffusion monitored by 2D 1H-13C HETCOR to estimate 1-100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the stratum corneum and the lipids of the sebum.
Collapse
Affiliation(s)
| | | | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Emma Sparr
- Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Duong K, Moss E, Reichhardt C. Solid-state NMR compositional analysis of sputum from people with cystic fibrosis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101975. [PMID: 39489104 DOI: 10.1016/j.ssnmr.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
People with the genetic disease cystic fibrosis (CF) often have chronic airway infections and produce airway secretions called sputum. A better understanding of sputum composition is desired in order to track changes in response to CF therapeutics and to improve laboratory models for the study of CF airway infections. The glycosylated protein mucin is a primary component. Along with extracellular DNA, mucin gives rise to the high viscoelasticity of sputum, which inhibits airway clearance and is thought to promote chronic airway infections in people with CF. Past studies of sputum composition identified additional biomolecular components of sputum including other proteins, both glycosylated and not glycosylated, free amino acids, and lipids. Typically, studies of sputum, as well as other complex biological materials, have focused on soluble or isolated components. Solid-state NMR is not limited to the study of soluble components. Instead, it can provide molecular-level information about insoluble biological samples. Additionally, solid-state NMR can provide information about sample composition without requiring any processing of the sample, eliminating the possibility of misestimating certain components due to insolubility or potential sample loss in isolation steps. In this study, we used both 13C and 31P CPMAS to investigate the total composition of sputum samples obtained from six people with CF. We compared these spectra to those of commercially available mucin, DNA, and phospholipid samples. Lastly, we performed complementary biochemical analyses to identify specific proteins present in the sputum samples. Overall, our findings provide insight into the composition of unprocessed sputum samples from people with CF, which can be used as a benchmark for future investigations of CF and infections in the airways of people with CF. Further, this study provides opportunities to expand the solid-state NMR approach to include dynamic nuclear polarization (DNP) to obtain high-resolution information of sputum and similar biological samples that are not feasible to isotopically enrich.
Collapse
Affiliation(s)
- Kathy Duong
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Evan Moss
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Courtney Reichhardt
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States.
| |
Collapse
|
4
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips AH, Pitre A, Kümmerle R, Miller S, Nagy G, Leite W, Heller W, Stanley C, Perrone B, Kriwacki R. p14 ARF forms meso-scale assemblies upon phase separation with NPM1. Nat Commun 2024; 15:9531. [PMID: 39528457 PMCID: PMC11555371 DOI: 10.1038/s41467-024-53904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex were elusive. Here we show that p14ARF assembles into a gel-like meso-scale network upon phase separation with NPM1. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal portion of p14ARF. These hydrophobic interactions promote phase separation with NPM1, enhance p14ARF nucleolar partitioning, restrict NPM1 diffusion within condensates and nucleoli, and reduce cellular proliferation. Our structural analysis provides insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Qi Miao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mylene Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aila Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Shondra Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chris Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
| |
Collapse
|
6
|
Ahmed KS, Harris KJ. Significant 13C NMR signal enhancements in amino acids via adiabatic demagnetization and remagnetization cross polarization. Chem Commun (Camb) 2024; 60:13207-13210. [PMID: 39441136 DOI: 10.1039/d4cc03604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we report an improvement over Hartmann-Hahn cross polarization for NMR signal enhancement: adiabatic demagnetization/remagnetization transfers that provide up to a 9-fold experimental speedup for 13C NMR signals in amino acids over conventional means. The experiment proved insensitive to site type, and we also demonstrate a means for making it compatible with high-resolution spectroscopy.
Collapse
Affiliation(s)
- Kazi S Ahmed
- Chemistry Program, Louisiana Tech University, Ruston, Louisiana 71272, USA.
| | | |
Collapse
|
7
|
Guo C, Whitehead RD, Struppe J, Porat-Dahlerbruch G, Hassan A, Gronenborn AM, Alexandrescu AT, Teschke CM, Polenova T. Structural Model of Bacteriophage P22 Scaffolding Protein in a Procapsid by Magic-Angle Spinning NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621488. [PMID: 39554170 PMCID: PMC11565965 DOI: 10.1101/2024.11.01.621488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Icosahedral dsDNA viruses such as the tailed bacteriophages and herpesviruses have a conserved pathway to virion assembly that is initiated from a scaffolding protein driven procapsid formation. The dsDNA is actively packaged into procapsids, which undergo complex maturation reactions to form infectious virions. In bacteriophage P22, scaffolding protein (SP) directs the assembly of coat proteins into procapsids that have a T=7 icosahedral arrangement, en route to the formation of the mature P22 capsid. Other than the C-terminal helix-turn-helix involved in interaction with coat protein, the structure of the P22 303 amino acid scaffolding protein within the procapsid is not understood. Here, we present a structural model of P22 scaffolding protein encapsulated within the 23 MDa procapsid determined by magic angle spinning NMR spectroscopy. We took advantage of the 10-fold sensitivity gains afforded by the novel CPMAS CryoProbe to establish the secondary structure of P22 scaffolding protein and employed 19F MAS NMR experiments to probe its oligomeric state in the procapsid. Our results indicate that the scaffolding protein has both α-helical and disordered segments and forms a trimer of dimers when bound to the procapsid lattice. This work provides the first structural information for P22 SP beyond the C-terminal helix-turn-helix and demonstrates the power of MAS NMR to understand higher-order viral protein assemblies involving structural components that are inaccessible to other structural biology techniques.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Richard D. Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Jochem Struppe
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alia Hassan
- Bruker BioSpin Corporation, 8117 Fällanden, Switzerland
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh PA 15261, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Vallet A, Ayala I, Perrone B, Hassan A, Simorre JP, Bougault C, Schanda P. MAS NMR experiments of corynebacterial cell walls: Complementary 1H- and CPMAS CryoProbe-enhanced 13C-detected experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107708. [PMID: 38901173 DOI: 10.1016/j.jmr.2024.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear 13C13C and heteronuclear 1H15N, 1H13C and 15N13C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3-4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of 1H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | - Isabel Ayala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | | | - Alia Hassan
- Bruker Biospin, Fällanden, 8117, Switzerland
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | - Catherine Bougault
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France.
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
9
|
Amyx-Sherer K, Reichhardt C. Challenges and opportunities in elucidating the structures of biofilm exopolysaccharides: A case study of the Pseudomonas aeruginosa exopolysaccharide called Pel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:361-369. [PMID: 37919227 DOI: 10.1002/mrc.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Biofilm formation protects bacteria from antibiotic treatment and host immune responses, making biofilm infections difficult to treat. Within biofilms, bacterial cells are entangled in a self-produced extracellular matrix that typically includes exopolysaccharides. Molecular-level descriptions of biofilm matrix components, especially exopolysaccharides, have been challenging to attain due to their complex nature and lack of solubility and crystallinity. Solid-state nuclear magnetic resonance (NMR) has emerged as a key tool to determine the structure of biofilm matrix exopolysaccharides without degradative sample preparation. In this review, we discuss challenges of studying biofilm matrix exopolysaccharides and opportunities to develop solid-state NMR approaches to study these generally intractable materials. We specifically highlight investigations of the exopolysaccharide called Pel made by the opportunistic pathogen, Pseudomonas aeruginosa. We provide a roadmap for determining exopolysaccharide structure and discuss future opportunities to study such systems using solid-state NMR. The strategies discussed for elucidating biofilm exopolysaccharide structure should be broadly applicable to studying the structures of other glycans.
Collapse
Affiliation(s)
- Kristen Amyx-Sherer
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Porat-Dahlerbruch G, Struppe J, Polenova T. High-efficiency low-power 13C- 15N cross polarization in MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107649. [PMID: 38452523 PMCID: PMC11031345 DOI: 10.1016/j.jmr.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Biomolecular solid-state magic angle spinning (MAS) NMR spectroscopy frequently relies on selective 13C-15N magnetization transfers, for various kinds of correlation experiments. Introduced in 1998, spectrally induced filtering in combination with cross polarization (SPECIFIC-CP) is a selective heteronuclear magnetization transfer experiment widely used for biological applications. At MAS frequencies below 20 kHz, commonly used for 13C-detected MAS NMR experiments, SPECIFIC-CP transfer between amide 15N and 13Cα atoms (NCA) is typically performed with radiofrequency (rf) fields set higher than the MAS frequency for both 13C and 15N channels, and high-power 1H decoupling rf field is simultaneously applied. Here, we experimentally explore a broad range of NCA zero-quantum (ZQ) SPECIFIC-CP matching conditions at the MAS frequency of 14 kHz and compare the best high- and low-power matching conditions with respect to selectivity, robustness, and sensitivity at lower 1H decoupling rf fields. We show that low-power NCA SPECIFIC-CP matching condition gives rise to 20% sensitivity enhancement compared to high-power conditions, in 2D NCA spectra of microcrystalline assemblies of HIV-1 CACTD-SP1 protein with inositol hexakis-phosphate (IP6).
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
11
|
Gopinath T, Shin K, Tian Y, Im W, Struppe J, Perrone B, Hassan A, Marassi FM. Solid-state NMR MAS CryoProbe enables structural studies of human blood protein vitronectin bound to hydroxyapatite. J Struct Biol 2024; 216:108061. [PMID: 38185342 PMCID: PMC10939839 DOI: 10.1016/j.jsb.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ye Tian
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, PA 18015, USA
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | | | - Alia Hassan
- Bruker Switzerland AG, Fallanden, Switzerland
| | - Francesca M Marassi
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Zadorozhnyi R, Gronenborn AM, Polenova T. Integrative approaches for characterizing protein dynamics: NMR, CryoEM, and computer simulations. Curr Opin Struct Biol 2024; 84:102736. [PMID: 38048753 PMCID: PMC10922663 DOI: 10.1016/j.sbi.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Proteins are inherently dynamic and their internal motions are essential for biological function. Protein motions cover a broad range of timescales: 10-14-10 s, spanning from sub-picosecond vibrational motions of atoms via microsecond loop conformational rearrangements to millisecond large amplitude domain reorientations. Observing protein dynamics over all timescales and connecting motions and structure to biological mechanisms requires integration of multiple experimental and computational techniques. This review reports on state-of-the-art approaches for assessing dynamics in biological systems using recent examples of virus assemblies, enzymes, and molecular machines. By integrating NMR spectroscopy in solution and the solid state, cryo electron microscopy, and molecular dynamics simulations, atomistic pictures of protein motions are obtained, not accessible from any single method in isolation. This information provides fundamental insights into protein behavior that can guide the development of future therapeutics.
Collapse
Affiliation(s)
- Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States.
| |
Collapse
|
13
|
Paul S, Bouleau E, Reynard-Feytis Q, Arnaud JP, Bancel F, Rollet B, Dalban-Moreynas P, Reiter C, Purea A, Engelke F, Hediger S, De Paëpe G. Sustainable and cost-effective MAS DNP-NMR at 30 K with cryogenic sample exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107561. [PMID: 37837749 DOI: 10.1016/j.jmr.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.
Collapse
Affiliation(s)
- Subhradip Paul
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | - Florian Bancel
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | - Bertrand Rollet
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | | | | | - Sabine Hediger
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
14
|
Šmelko A, Blahut J, Reif B, Tošner Z. Performance of the cross-polarization experiment in conditions of radiofrequency field inhomogeneity and slow to ultrafast magic angle spinning (MAS). MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:199-215. [PMID: 37904859 PMCID: PMC10539755 DOI: 10.5194/mr-4-199-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/01/2023] [Indexed: 11/01/2023]
Abstract
In this paper, we provide an analytical description of the performance of the cross-polarization (CP) experiment, including linear ramps and adiabatic tangential sweeps, using effective Hamiltonians and simple rotations in 3D space. It is shown that radiofrequency field inhomogeneity induces a reduction in the transfer efficiency at increasing magic angle spinning (MAS) frequencies for both the ramp and the adiabatic CP experiments. The effect depends on the ratio of the dipolar coupling constant and the sample rotation frequency. In particular, our simulations show that for small dipolar couplings (1 kHz ) and ultrafast MAS (above 100 kHz ) the transfer efficiency is below 40 % when extended contact times up to 20 ms are used and relaxation losses are ignored. New recoupling and magnetization transfer techniques that are designed explicitly to account for inhomogeneous radiofrequency fields are needed.
Collapse
Affiliation(s)
- Andrej Šmelko
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at School of Natural Sciences, Department of Bioscience, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| |
Collapse
|
15
|
Cerofolini L, Vasa K, Bianconi E, Salobehaj M, Cappelli G, Bonciani A, Licciardi G, Pérez-Ràfols A, Padilla-Cortés L, Antonacci S, Rizzo D, Ravera E, Viglianisi C, Calderone V, Parigi G, Luchinat C, Macchiarulo A, Menichetti S, Fragai M. Combining Solid-State NMR with Structural and Biophysical Techniques to Design Challenging Protein-Drug Conjugates. Angew Chem Int Ed Engl 2023; 62:e202303202. [PMID: 37276329 DOI: 10.1002/anie.202303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Several protein-drug conjugates are currently being used in cancer therapy. These conjugates rely on cytotoxic organic compounds that are covalently attached to the carrier proteins or that interact with them via non-covalent interactions. Human transthyretin (TTR), a physiological protein, has already been identified as a possible carrier protein for the delivery of cytotoxic drugs. Here we show the structure-guided development of a new stable cytotoxic molecule based on a known strong binder of TTR and a well-established anticancer drug. This example is used to demonstrate the importance of the integration of multiple biophysical and structural techniques, encompassing microscale thermophoresis, X-ray crystallography and NMR. In particular, we show that solid-state NMR has the ability to reveal effects caused by ligand binding which are more easily relatable to structural and dynamical alterations that impact the stability of macromolecular complexes.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Maria Salobehaj
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Cappelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alice Bonciani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Licciardi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Anna Pérez-Ràfols
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Luis Padilla-Cortés
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Sabrina Antonacci
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Domenico Rizzo
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Lätsch L, Kaul CJ, Yakimov AV, Müller IB, Hassan A, Perrone B, Aghazada S, Berkson ZJ, De Baerdemaeker T, Parvulescu AN, Seidel K, Teles JH, Copéret C. NMR Signatures and Electronic Structure of Ti Sites in Titanosilicalite-1 from Solid-State 47/49Ti NMR Spectroscopy. J Am Chem Soc 2023. [PMID: 37418311 DOI: 10.1021/jacs.2c09867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Although titanosilicalite-1 (TS-1) is among the most successful oxidation catalysts used in industry, its active site structure is still debated. Recent efforts have mostly focused on understanding the role of defect sites and extraframework Ti. Here, we report the 47/49Ti signature of TS-1 and molecular analogues [Ti(OTBOS)4] and [Ti(OTBOS)3(OiPr)] using novel MAS CryoProbe to enhance the sensitivity. While the dehydrated TS-1 displays chemical shifts similar to those of molecular homologues, confirming the tetrahedral environment of Ti consistent with X-ray absorption spectroscopy, it is associated with a distribution of larger quadrupolar coupling constants, indicating an asymmetric environment. Detailed computational studies on cluster models highlights the high sensitivity of the NMR signatures (chemical shift and quadrupolar coupling constant) to small local structural changes. These calculations show that, while it will be difficult to distinguish mono- vs dinuclear sites, the sensitivity of the 47/49Ti NMR signature should enable distinguishing the Ti location among specific T site positions.
Collapse
Affiliation(s)
- Lukas Lätsch
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Christoph J Kaul
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Alexander V Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Imke B Müller
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Alia Hassan
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Barbara Perrone
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| | - Sadig Aghazada
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - Zachariah J Berkson
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
| | | | | | - Karsten Seidel
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - J Henrique Teles
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 2, CH-8093 Zurich, Switzerland
- Bruker Switzerland, Industriestrasse 26, CH-8117 Fällanden, Switzerland
| |
Collapse
|
17
|
Dwivedi N, Siddiqui MA, Srivastava S, Sinha N. 1 H- 13 C cross-polarization kinetics to probe hydration-dependent organic components of bone extracellular matrix. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:397-406. [PMID: 36946081 DOI: 10.1002/mrc.5347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state. In the present article, we employed the variable contact time cross-polarization (1 H-13 C CP) kinetics experiments to study the hydration-dependent atomic-level structural changes in the bone extracellular matrix (ECM). The natural abundant 13 C CP intensity of the bone ECM is measured by varying CP contact time and best fitted to the nonclassical kinetic model. Different relaxation parameters were measured by the best-fit equation corresponding to the different hydration conditions of the bone ECM. The associated changes in the measured parameters due to varying levels of hydration observed at different sites of collagen protein have provided its structural arrangements and interaction with water molecules in bone ECM. Overall, the present study reveals a better understanding of the kinetics of the organic part inside the bone ECM that will help in comprehending the disease-associated pathways.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Mohd Adnan Siddiqui
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| | - Seema Srivastava
- Department of Physics, Integral University, Lucknow, 226026, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
18
|
Zhang W, Hassan A, Struppe J, Monette M, Hung I, Gan Z, Martins V, Terskikh V, Huang Y. Overcoming challenges in 67Zn NMR: a new strategy of signal enhancement for MOF characterization. Chem Commun (Camb) 2023; 59:5205-5208. [PMID: 37042636 PMCID: PMC10155100 DOI: 10.1039/d3cc00716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
67 Zn solid-state NMR suffers from low sensitivity, limiting its ability to probe the Zn2+ surroundings in MOFs. We report a breakthrough in overcoming challenges in 67Zn NMR. Combining new cryogenic MAS probe technology and performing NMR experiments at a high magnetic field results in remarkable signal enhancement, yielding enhanced information for MOF characterization.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Alia Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | - Martine Monette
- Bruker Biospin Ltd., 2800 High Point Drive, Suite 206, Milton, Ontario L9T 6P4, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Vinicius Martins
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Yining Huang
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
19
|
Wong A. A roadmap to high-resolution standard microcoil MAS NMR spectroscopy for metabolomics. NMR IN BIOMEDICINE 2023; 36:e4683. [PMID: 34970795 DOI: 10.1002/nbm.4683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Current microcoil probe technology has emerged as a significant advancement in NMR applications to biofluids research. It has continued to excel as a hyphenated tool with other prominent microdevices, opening many new possibilities in multiple omics fields. However, this does not hold for biological samples such as intact tissue or organisms, due to the considerable challenges of incorporating the microcoil in a magic-angle spinning (MAS) probe without relinquishing the high-resolution spectral data. Not until 2012 did a microcoil MAS probe show promise in profiling the metabolome in a submilligram tissue biopsy with spectral resolution on par with conventional high-resolution MAS (HR-MAS) NMR. This result subsequently triggered a great interest in the possibility of NMR analysis with microgram tissues and striving toward the probe development of "high-resolution" capable microcoil MAS NMR spectroscopy. This review gives an overview of the issues and challenges in the probe development and summarizes the advancements toward metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Ghosh Biswas R, Soong R, Jenne A, Bastawrous M, Simpson MJ, Simpson AJ. SASSY NMR: Simultaneous Solid and Solution Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202216105. [PMID: 36588093 DOI: 10.1002/anie.202216105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Synergism between different phases gives rise to chemical, biological or environmental reactivity, thus it is increasingly important to study samples intact. Here, SASSY (SimultAneous Solid and Solution spectroscopY) is introduced to simultaneously observe (and differentiate) all phases in multiphase samples using standard, solid-state NMR equipment. When monitoring processes, the traditional approach of studying solids and liquids sequentially, can lead to information in the non-observed phase being missed. SASSY solves this by observing the full range of materials, from crystalline solids, through gels, to pure liquids, at full sensitivity in every scan. Results are identical to running separate 13 C CP-MAS solid-state and 13 C solution-state experiments back-to-back but requires only a fraction of the spectrometer time. After its introduction, SASSY is applied to process monitoring and finally to detect all phases in a living freshwater shrimp. SASSY is simple to implement and thus should find application across all areas of research.
Collapse
Affiliation(s)
- Rajshree Ghosh Biswas
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
21
|
Du Y, Struppe J, Perrone B, Hassan A, Codina A, Su Y. Efficient analysis of pharmaceutical drug substances and products using a solid-state NMR CryoProbe. Analyst 2023; 148:724-734. [PMID: 36722866 DOI: 10.1039/d2an01903e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is a high-resolution and versatile spectroscopic tool for characterizing pharmaceutical solids. However, the inherent low sensitivity of NMR remains a significant challenge in the analysis of natural abundance drug substances and products. Here, we report, for the first time, the application of a CPMAS CryoProbe™ to improve the sensitivity of 13C and 15N detection by approximately 5 to 6 times for solid-state analysis of a commercial pharmaceutical drug posaconazole (POSA). The sensitivity enhancement enables two-dimensional (2D) 13C-13C and 1H-15N correlation experiments, which are otherwise time-prohibitive using regular MAS probes, for resonance assignment and structural elucidation. These polarization transfer and correlation experiments reveal drug-drug and drug-polymer interactions in amorphous POSA and its amorphous solid dispersion formulation. Our results demonstrated that the CPMAS CryoProbe™ can be widely applied for routine pharmaceutical analysis and advanced structural investigations with significantly enhanced efficiency and throughput.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | | | | | - Alia Hassan
- Bruker Switzerland AG, 8117 Faellanden, Switzerland
| | | | - Yongchao Su
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
22
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
23
|
McCalpin SD, Fu R, Ravula T, Wu G, Ramamoorthy A. Magnetically aligned nanodiscs enable direct measurement of 17O residual quadrupolar coupling for small molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107341. [PMID: 36473327 PMCID: PMC11585078 DOI: 10.1016/j.jmr.2022.107341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The use of 17O in NMR spectroscopy for structural studies has been limited due to its low natural abundance, low gyromagnetic ratio, and quadrupolar relaxation. Previous solution 17O work has primarily focused on studies of liquids where the 17O quadrupolar coupling is averaged to zero by isotropic molecular tumbling, and therefore has ignored the structural information contained in this parameter. Here, we use magnetically aligned polymer nanodiscs as an alignment medium to measure residual quadrupolar couplings (RQCs) for 17O-labelled benzoic acid in the aqueous phase. We show that increasing the magnetic field strength improves spectral sensitivity and resolution and that each satellite peak of the expected pentet pattern resolves clearly at 18.8 T. We observed no significant dependence of the RQC magnitudes on the magnetic field strength. However, changing the orientation of the alignment medium alters the RQC by a consistent factor, suggesting that 17O RQCs measured in this way can provide reliable orientational information for elucidations of molecular structures.
Collapse
Affiliation(s)
- Samuel D McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Zhang C, Guo C, Russell RW, Quinn CM, Li M, Williams JC, Gronenborn AM, Polenova T. Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation. Nat Commun 2022; 13:6795. [PMID: 36357375 PMCID: PMC9649657 DOI: 10.1038/s41467-022-34026-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) and their associated proteins play essential roles in maintaining cell structure, organelle transport, cell motility, and cell division. Two motors, kinesin and cytoplasmic dynein link the MT network to transported cargos using ATP for force generation. Here, we report an all-atom NMR structure of nucleotide-free kinesin-1 motor domain (apo-KIF5B) in complex with paclitaxel-stabilized microtubules using magic-angle-spinning (MAS) NMR spectroscopy. The structure reveals the position and orientation of the functionally important neck linker and how ADP induces structural and dynamic changes that ensue in the neck linker. These results demonstrate that the neck linker is in the undocked conformation and oriented in the direction opposite to the KIF5B movement. Chemical shift perturbations and intensity changes indicate that a significant portion of ADP-KIF5B is in the neck linker docked state. This study also highlights the unique capability of MAS NMR to provide atomic-level information on dynamic regions of biological assemblies.
Collapse
Affiliation(s)
- Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mingyue Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| |
Collapse
|
25
|
Xue K, Sarkar R, Tošner Z, Reif B. Field and magic angle spinning frequency dependence of proton resonances in rotating solids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:47-61. [PMID: 36113917 DOI: 10.1016/j.pnmrs.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology, Am Fassberg. 11, Goettingen, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Praha 2, Czech Republic
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
26
|
Rizzo D, Cerofolini L, Giuntini S, Iozzino L, Pergola C, Sacco F, Palmese A, Ravera E, Luchinat C, Baroni F, Fragai M. Epitope Mapping and Binding Assessment by Solid-State NMR Provide a Way for the Development of Biologics under the Quality by Design Paradigm. J Am Chem Soc 2022; 144:10006-10016. [PMID: 35617699 PMCID: PMC9185746 DOI: 10.1021/jacs.2c03232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Multispecific biologics
are an emerging class of drugs, in which
antibodies and/or proteins designed to bind pharmacological targets
are covalently linked or expressed as fusion proteins to increase
both therapeutic efficacy and safety. Epitope mapping on the target
proteins provides key information to improve the affinity and also
to monitor the manufacturing process and drug stability. Solid-state
NMR has been here used to identify the pattern of the residues of
the programmed cell death ligand 1 (PD-L1) ectodomain that are involved
in the interaction with a new multispecific biological drug. This
is possible because the large size and the intrinsic flexibility of
the complexes are not limiting factors for solid-state NMR.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Luisa Iozzino
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Carlo Pergola
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Francesca Sacco
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Angelo Palmese
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Baroni
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
28
|
Shen J, Terskikh V, Struppe J, Hassan A, Monette M, Hung I, Gan Z, Brinkmann A, Wu G. Solid-state 17O NMR study of α-d-glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chem Sci 2022; 13:2591-2603. [PMID: 35340864 PMCID: PMC8890099 DOI: 10.1039/d1sc06060k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
We report synthesis and solid-state 17O NMR characterization of α-d-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-d-glucose/NaCl/H2O (2/1/1) cocrystals under static and magic-angle-spinning (MAS) conditions at five moderate, high, and ultrahigh magnetic fields: 14.1, 16.4, 18.8, 21.1, and 35.2 T. Complete 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were determined for each of the six oxygen-containing functional groups in α-d-glucose. Paramagnetic Cu(ii) doping was found to significantly shorten the spin-lattice relaxation times for both 1H and 17O nuclei in these compounds. A combination of the paramagnetic Cu(ii) doping, new CPMAS CryoProbe technology, and apodization weighted sampling led to a sensitivity boost for solid-state 17O NMR by a factor of 6-8, which made it possible to acquire high-quality 2D 17O multiple-quantum (MQ) MAS spectra for carbohydrate compounds. The unprecedented spectral resolution offered by 2D 17O MQMAS spectra permitted detection of a key structural difference for a single hydrogen bond between two types of crystallographically distinct α-d-glucose molecules. This work represents the first case where all oxygen-containing functional groups in a carbohydrate molecule are site-specifically 17O-labeled and fully characterized by solid-state 17O NMR. Gauge Including Projector Augmented Waves (GIPAW) DFT calculations were performed to aid 17O and 13C NMR signal assignments for a complex crystal structure where there are six crystallographically distinct α-d-glucose molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Jochem Struppe
- Bruker Biospin Corporation 15 Fortune Drive, Billerica MA 01821 USA
| | | | - Martine Monette
- Bruker Biospin Ltd. 2800 High Point Drive, Suite 206 Milton Ontario L9T 6P4 Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee Florida 32310 USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee Florida 32310 USA
| | - Andreas Brinkmann
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Gang Wu
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
29
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
30
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
31
|
Holmes JB, Liu V, Caulkins BG, Hilario E, Ghosh RK, Drago VN, Young RP, Romero JA, Gill AD, Bogie PM, Paulino J, Wang X, Riviere G, Bosken YK, Struppe J, Hassan A, Guidoulianov J, Perrone B, Mentink-Vigier F, Chang CEA, Long JR, Hooley RJ, Mueser TC, Dunn MF, Mueller LJ. Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proc Natl Acad Sci U S A 2022; 119:e2109235119. [PMID: 34996869 PMCID: PMC8764694 DOI: 10.1073/pnas.2109235119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.
Collapse
Affiliation(s)
- Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Bethany G Caulkins
- Department of Chemistry, University of California, Riverside, CA 92521
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rittik K Ghosh
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Robert P Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jennifer A Romero
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Adam D Gill
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Paul M Bogie
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Yuliana K Bosken
- Department of Biochemistry, University of California, Riverside, CA 92521
| | | | - Alia Hassan
- Bruker Switzerland AG 8117 Fällanden, Switzerland
| | | | | | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Richard J Hooley
- Department of Chemistry, University of California, Riverside, CA 92521
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Michael F Dunn
- Department of Biochemistry, University of California, Riverside, CA 92521;
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521;
| |
Collapse
|
32
|
Ha M, Nader S, Pawsey S, Struppe J, Monette M, Mansy SS, Boekhoven J, Michaelis VK. Racing toward Fast and Effective 17O Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy of N-Formyl-MLF-OH and Associated Building Blocks. J Phys Chem B 2021; 125:11916-11926. [PMID: 34694819 DOI: 10.1021/acs.jpcb.1c07397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state 1H, 13C, and 15N nuclear magnetic resonance (NMR) spectroscopy has been an essential analytical method in studying complex molecules and biomolecules for decades. While oxygen-17 (17O) NMR is an ideal and robust candidate to study hydrogen bonding within secondary and tertiary protein structures for example, it continues to elude many. We discuss an improved multiple-turnover labeling procedure to develop a fast and cost-effective method to 17O label fluoroenylmethyloxycarbonyl (Fmoc)-protected amino acid building blocks. This approach allows for inexpensive ($0.25 USD/mg) insertion of 17O labels, an important barrier to overcome for future biomolecular studies. The 17O NMR results of these building blocks and a site-specific strategy for labeled N-acetyl-MLF-OH and N-formyl-MLF-OH tripeptides are presented. We showcase growth in NMR development for maximizing sensitivity gains using emerging sensitivity enhancement techniques including population transfer, high-field dynamic nuclear polarization, and cross-polarization magic-angle spinning cryoprobes.
Collapse
Affiliation(s)
- Michelle Ha
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Serge Nader
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shane Pawsey
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Martine Monette
- Bruker BioSpin Ltd., Bruker Corporation, 555 Steeles Avenue E, Milton, Ontario L9T 1Y6, Canada
| | - Sheref S Mansy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching 85748, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, Garching 85748, Germany
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
33
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Rizzo D, Cerofolini L, Pérez-Ràfols A, Giuntini S, Baroni F, Ravera E, Luchinat C, Fragai M. Evaluation of the Higher Order Structure of Biotherapeutics Embedded in Hydrogels for Bioprinting and Drug Release. Anal Chem 2021; 93:11208-11214. [PMID: 34339178 PMCID: PMC8382223 DOI: 10.1021/acs.analchem.1c01850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Biocompatible hydrogels for tissue regeneration/replacement and drug release with specific architectures can be obtained by three-dimensional bioprinting techniques. The preservation of the higher order structure of the proteins embedded in the hydrogels as drugs or modulators is critical for their biological activity. Solution nuclear magnetic resonance (NMR) experiments are currently used to investigate the higher order structure of biotherapeutics in comparability, similarity, and stability studies. However, the size of pores in the gel, protein-matrix interactions, and the size of the embedded proteins often prevent the use of this methodology. The recent advancements of solid-state NMR allow for the comparison of the higher order structure of the matrix-embedded and free isotopically enriched proteins, allowing for the evaluation of the functionality of the material in several steps of hydrogel development. Moreover, the structural information at atomic detail on the matrix-protein interactions paves the way for a structure-based design of these biomaterials.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Giotto
Biotech, S.R.L, Via Madonna
del piano 6, Sesto Fiorentino, Florence 50019, Italy
| | - Stefano Giuntini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Fabio Baroni
- Analytical
Development Biotech Department, Merck Serono
S.p.a, Merck KGaA, Guidonia, Rome 00012, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
35
|
El Hariri El Nokab M, Sebakhy KO. Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1494. [PMID: 34200088 PMCID: PMC8228666 DOI: 10.3390/nano11061494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.
Collapse
Affiliation(s)
- Mustapha El Hariri El Nokab
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Khaled O. Sebakhy
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Tiwari N, Wi S, Mentink-Vigier F, Sinha N. Mechanistic Insights into the Structural Stability of Collagen-Containing Biomaterials Such as Bones and Cartilage. J Phys Chem B 2021; 125:4757-4766. [PMID: 33929847 PMCID: PMC8151626 DOI: 10.1021/acs.jpcb.1c01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural stability of various collagen-containing biomaterials such as bones and cartilage is still a mystery. Despite the spectroscopic development of several decades, the detailed mechanism of collagen interaction with citrate in bones and glycosaminoglycans (GAGs) in the cartilage extracellular matrix (ECM) in its native state is unobservable. We present a significant advancement to probe the collagen interactions with citrate and GAGs in the ECM of native bones and cartilage along with specific/non-specific interactions inside the collagen assembly at the nanoscopic level through natural-abundance dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy. The detected molecular-level interactions between citrate-collagen and GAG-collagen inside the native bone and cartilage matrices and other backbone and side-chain interactions in the collagen assembly are responsible for the structural stability and other biomechanical properties of these important classes of biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi – 221005, INDIA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | | | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow – 226014, INDIA
| |
Collapse
|
37
|
Matsuki Y, Kobayashi T, Fukazawa J, Perras FA, Pruski M, Fujiwara T. Efficiency analysis of helium-cooled MAS DNP: case studies of surface-modified nanoparticles and homogeneous small-molecule solutions. Phys Chem Chem Phys 2021; 23:4919-4926. [PMID: 33620367 DOI: 10.1039/d0cp05658h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the growing number of successful applications of dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR in structural biology and materials science, the nuclear polarizations achieved by current MAS DNP instrumentation are still considerably lower than the theoretical maximum. The method could be significantly strengthened if experiments were performed at temperatures much lower than those currently widely used (∼100 K). Recently, the prospects of helium (He)-cooled MAS DNP have been increased with the instrumental developments in MAS technology that uses cold helium gas for sample cooling. Despite the additional gains in sensitivity that have been observed with He-cooled MAS DNP, the performance of the technique has not been evaluated in the case of surfaces and interfaces that benefit the most from DNP. Herein, we studied the efficiency of DNP at temperatures between ∼30 K and ∼100 K for organically functionalized silica material and a homogeneous solution of small organic molecules at a magnetic field B0 = 16.4 T. We recorded the changes in signal enhancement, paramagnet-induced quenching and depolarization effects, DNP build-up rate, and Boltzmann polarization. For these samples, the increases in MAS-induced depolarization and DNP build-up times at around 30 K were not as severe as anticipated. In the case of the surface species, we determined that MAS DNP at 30 K provided ∼10 times higher sensitivity than MAS DNP at 90 K, which corresponds to the acceleration of experiments by multiplicative factors of up to 100.
Collapse
Affiliation(s)
- Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Kobayashi
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Jun Fukazawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Frédéric A Perras
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA and Department of Chemistry, Iowa State University, Ames, Iowa 50011-3020, USA
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan and Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Tiwari N, Wegner S, Hassan A, Dwivedi N, Rai R, Sinha N. Probing short and long-range interactions in native collagen inside the bone matrix by BioSolids CryoProbe. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:99-107. [PMID: 32761649 DOI: 10.1002/mrc.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone. We report here approximately a fourfold sensitivity enhancement in the natural abundance 13 C spectrum compared with the room temperature conventional solid-state NMR probe. With the advantage of sensitivity enhancement, we have been able to perform natural abundance 15 N cross-polarization magic angle spinning (CPMAS) and two-dimensional (2D) 1 H-13 C heteronuclear correlation (HETCOR) experiments of native collagen within a reasonable timeframe. Due to high sensitivity, 2D 1 H/13 C HETCOR experiments have helped in detecting several short and long-range interactions of native collagen assembly, thus significantly expanding the scope of the method to such challenging biomaterials.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Alia Hassan
- Bruker BioSpin Corporation, Fällanden, Switzerland
| | - Navneet Dwivedi
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Department of Physics, Integral University, Lucknow, 226026, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
39
|
Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat Commun 2021; 12:676. [PMID: 33514729 PMCID: PMC7846594 DOI: 10.1038/s41467-021-21065-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.
Collapse
|
40
|
Lau CYJ, Fontana F, Mandemaker LDB, Wezendonk D, Vermeer B, Bonvin AMJJ, de Vries R, Zhang H, Remaut K, van den Dikkenberg J, Medeiros-Silva J, Hassan A, Perrone B, Kuemmerle R, Gelain F, Hennink WE, Weingarth M, Mastrobattista E. Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides. Commun Chem 2020; 3:164. [PMID: 36703336 PMCID: PMC9814929 DOI: 10.1038/s42004-020-00417-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.
Collapse
Affiliation(s)
- Chun Yin Jerry Lau
- grid.5477.10000000120346234Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Federico Fontana
- grid.413503.00000 0004 1757 9135IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Laurens D. B. Mandemaker
- grid.5477.10000000120346234Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Dennie Wezendonk
- grid.5477.10000000120346234Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Benjamin Vermeer
- grid.5477.10000000120346234NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- grid.5477.10000000120346234NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Renko de Vries
- grid.4818.50000 0001 0791 5666Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Heyang Zhang
- grid.5342.00000 0001 2069 7798Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- grid.5342.00000 0001 2069 7798Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Joep van den Dikkenberg
- grid.5477.10000000120346234Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - João Medeiros-Silva
- grid.5477.10000000120346234NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alia Hassan
- grid.481597.60000 0004 0452 3124Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Barbara Perrone
- grid.481597.60000 0004 0452 3124Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- grid.481597.60000 0004 0452 3124Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Fabrizio Gelain
- grid.413503.00000 0004 1757 9135IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1, 71013 San Giovanni Rotondo, Italy ,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell’Ospedale Maggiore 3, 20162 Milan, Italy
| | - Wim E. Hennink
- grid.5477.10000000120346234Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus Weingarth
- grid.5477.10000000120346234NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Enrico Mastrobattista
- grid.5477.10000000120346234Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
41
|
Calculation of the energy transferred by radiation damping from nuclear spin system to receiver coil in NMR. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Li X, Porcino M, Martineau-Corcos C, Guo T, Xiong T, Zhu W, Patriarche G, Péchoux C, Perronne B, Hassan A, Kümmerle R, Michelet A, Zehnacker-Rentien A, Zhang J, Gref R. Efficient incorporation and protection of lansoprazole in cyclodextrin metal-organic frameworks. Int J Pharm 2020; 585:119442. [PMID: 32445910 DOI: 10.1016/j.ijpharm.2020.119442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
Abstract
Lansoprazole (LPZ) is an acid pump inhibitor, which readily degrades upon acidic or basic conditions and under heating. We investigated here LPZ stability upon incorporation in particles made of cyclodextrin metal-organic frameworks (CD-MOFs). LPZ loaded CD-MOFs were successfully synthesized, reaching high LPZ payloads of 23.2 ± 2.1 wt%, which correspond to a molar ratio of 1:1 between LPZ and γ-CD. The homogeneity of LPZ loaded CD-MOFs in terms of component distribution was confirmed by elemental mapping by STEM-EDX. Both CTAB, the surfactant used in the CD-MOFs synthesis, and LPZ compete for their inclusion in the CD cavities. CTAB allowed obtaining regular cubic particles of around 5 µm with 15 wt% residual CTAB amounts. When LPZ was incorporated, the residual CTAB amount was less than 0.1 wt%, suggesting a higher affinity of LPZ for the CDs than CTAB. These findings were confirmed by molecular simulations. Vibrational circular dichroism studies confirmed the LPZ incorporation inside the CDs. Solid-state NMR showed that LPZ was located in the CDs and that it remained intact even after three years storage. Remarkably, the CD-MOFs matrix protected the drug upon thermal decomposition. This study highlights the interest of CD-MOFs for the incorporation and protection of LPZ.
Collapse
Affiliation(s)
- Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Marianna Porcino
- Université d'Orléans, CEMHTI UPR CNRS 3079, F-45071 Orléans, France
| | - Charlotte Martineau-Corcos
- Université d'Orléans, CEMHTI UPR CNRS 3079, F-45071 Orléans, France; Université Paris Saclay, ILV UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 78035 Versailles, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Ting Xiong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 330004 Nanchang, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 330004 Nanchang, China
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Alia Hassan
- Bruker Biospin Corporation, 8117 Fällanden, Switzerland
| | | | | | - Anne Zehnacker-Rentien
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201210 Shanghai, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, 330004 Nanchang, China
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
| |
Collapse
|
43
|
Sahoo BR, Cox SJ, Ramamoorthy A. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chem Commun (Camb) 2020; 56:4627-4639. [PMID: 32300761 PMCID: PMC7254607 DOI: 10.1039/d0cc01551b] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), soluble oligomers of amyloid-β (Aβ) are emerging as a crucial entity in driving disease progression as compared to insoluble amyloid deposits. The lacuna in establishing the structure to function relationship for Aβ oligomers prevents the development of an effective treatment for AD. While the transient and heterogeneous properties of Aβ oligomers impose many challenges for structural investigation, an effective use of a combination of NMR techniques has successfully identified and characterized them at atomic-resolution. Here, we review the successful utilization of solution and solid-state NMR techniques to probe the aggregation and structures of small and large oligomers of Aβ. Biophysical studies utilizing the commonly used solution and 19F based NMR experiments to identify the formation of small size early intermediates and to obtain their structures, and dock-lock mechanism of fiber growth at atomic-resolution are discussed. In addition, the use of proton-detected magic angle spinning (MAS) solid-state NMR experiments to obtain high-resolution insights into the aggregation pathways and structures of large oligomers and other aggregates is also presented. We expect these NMR based studies to be valuable for real-time monitoring of the depletion of monomers and the formation of toxic oligomers and high-order aggregates under a variety of conditions, and to solve the high-resolution structures of small and large size oligomers for most amyloid proteins, and therefore to develop inhibitors and drugs.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|