1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
4
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Kramer RH, Miller EW, Abdelfattah A, Baker B. Fluorescent Reporters for Sensing Membrane Potential: Tools for Bioelectricity. Bioelectricity 2022; 4:108-116. [PMID: 39350779 PMCID: PMC11441357 DOI: 10.1089/bioe.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard H Kramer
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Ahmed Abdelfattah
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Bradley Baker
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
6
|
Shapira Z, Degani-Katzav N, Yudovich S, Grupi A, Weiss S. Optical probing of local membrane potential with fluorescent polystyrene beads. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939044 PMCID: PMC8651512 DOI: 10.1016/j.bpr.2021.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The study of electrical activity in single cells and local circuits of excitable cells, such as neurons, requires an easy-to-use, high-throughput methodology that allows for the measurement of membrane potential. Investigating the electrical properties in specific subcompartments of neurons, or in a specific type of neurons, introduces additional complexity. An optical voltage-imaging technique that allows high spatial and temporal resolution could be an ideal solution. However, most valid voltage-imaging techniques are nonspecific. Those that are more site-directed require a lot of preliminary work and specific adaptations, among other drawbacks. Here, we explore a new method for membrane voltage imaging, based on Förster resonance energy transfer between fluorescent polystyrene (FPS) beads and dipicrylamine. Not only has it been shown that fluorescence intensity correlates with membrane potential, but more importantly, the membrane potential from individual particles can be detected. Among other advantages, FPS beads can be synthesized with surface functional groups and can be targeted to specific proteins by conjugation of recognition molecules. Therefore, in the presence of dipicrylamine, FPS beads represent single-particle detectors of membrane potential that can be localized to specific membrane compartments. This new and easily accessible platform for targeted optical voltage imaging can further elucidate the mechanisms of neuronal electrical activity.
Collapse
Affiliation(s)
- Zehavit Shapira
- Department of Physics
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Nurit Degani-Katzav
- Department of Physics
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Yudovich
- Department of Physics
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Asaf Grupi
- Department of Physics
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Weiss
- Department of Physics
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
- Department of Chemistry and Biochemistry
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California
- Corresponding author
| |
Collapse
|
7
|
Crawford J, Liu S, Tao F. A Multidisciplinary Approach to Simultaneously Monitoring Real-Time Neuronal Activity and Pain Behaviors During Optogenetic Stimulation of Brain Neurons in Freely Moving Mice. J Pain Res 2021; 14:3503-3509. [PMID: 34785947 PMCID: PMC8590449 DOI: 10.2147/jpr.s334256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Highlighted by the current opioid epidemic, identifying novel therapies to treat chronic trigeminal neuropathic pain is a critical need. To develop these treatments, it is necessary to have viable targets in the brain to act on. Historically, neural tracing studies have been extremely useful in determining connections between brain areas but do not provide information about the functionality of these connections. Combining optogenetics and behavioral observation allows researchers to determine whether a particular brain area is involved in the regulation of such behavior. The addition of multi-channel electrophysiological recording provides information on real-time neuronal activity in the specific neuronal pathway. Methods Male C57/BL/6J mice (8-week-old) underwent either chronic constriction injury of infraorbital nerve (CCI-ION) or a sham surgery and were injected with either channelrhodopsin (ChR2) or a control virus in the hypothalamic A11 nucleus. Two weeks after CCI-ION, they were tested in real-time place preference (RTPP), while neuronal activity in the spinal trigeminal nucleus caudalis (Sp5C) was recorded. Results Optogenetic excitation of the A11 neurons results in more time spent in the stimulation chamber during RTPP testing. Additionally, stimulation of the A11 results in a greater number of neuronal activity increase in the Sp5C in animals with the injection of AAV carrying ChR2 compared to animals injected with a control virus or that underwent a sham surgery. Conclusion In vivo multi-channel electrophysiological recording, optogenetic stimulation, and behavioral observation can be combined in a mouse model of chronic trigeminal neuropathic pain to validate brain areas involved in the modulation of such pain.
Collapse
Affiliation(s)
- Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
8
|
Tsutsui H, Mizutani N, Okamura Y. Engineering voltage sensing phosphatase (VSP). Methods Enzymol 2021; 654:85-114. [PMID: 34120726 DOI: 10.1016/bs.mie.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensing phosphatase (VSP), consists of a voltage sensor domain (VSD) like that found in voltage-gated ion channels and a phosphoinositide (PIP) phosphatase region exhibiting remarkable structural similarity to a tumor suppressor enzyme, PTEN. Membrane depolarization activates the enzyme activity through tight coupling between the VSD and enzyme region. The VSD of VSP has a unique nature; it is a self-contained module that can be transferred to other proteins, conferring voltage sensitivity. Thanks to this nature, numerous versions of gene-encoded voltage indicators (GEVIs) have been developed through combination of a fluorescent protein with the VSD of VSP. In addition, VSP itself can also serve as a tool to alter PIP levels in cells. Cellular levels of PIPs, PI(4,5)P2 in particular, can be acutely and transiently reduced using a simple voltage protocol after heterologous expression of VSP. Recent progress in our understanding of the molecular structure and mechanisms underlying VSP facilitates optimization of its molecular properties for its use as a molecular tool.
Collapse
Affiliation(s)
- Hidekazu Tsutsui
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
| | - Natsuki Mizutani
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Rhee JK, Leong LM, Mukim MSI, Kang BE, Lee S, Bilbao-Broch L, Baker BJ. Biophysical Parameters of GEVIs: Considerations for Imaging Voltage. Biophys J 2020; 119:1-8. [PMID: 32521239 PMCID: PMC7335909 DOI: 10.1016/j.bpj.2020.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) continue to evolve, resulting in many different probes with varying strengths and weaknesses. Developers of new GEVIs tend to highlight their positive features. A recent article from an independent laboratory has compared the signal/noise ratios of a number of GEVIs. Such a comparison can be helpful to investigators eager to try to image the voltage of excitable cells. In this perspective, we will present examples of how the biophysical features of GEVIs affect the imaging of excitable cells in an effort to assist researchers when considering probes for their specific needs.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Lee Min Leong
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Md Sofequl Islam Mukim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bok Eum Kang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Laura Bilbao-Broch
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
10
|
Grupi A, Ashur I, Degani-Katzav N, Yudovich S, Shapira Z, Marzouq A, Morgenstein L, Mandel Y, Weiss S. Interfacing the Cell with "Biomimetic Membrane Proteins". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903006. [PMID: 31765076 DOI: 10.1002/smll.201903006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins mediate a myriad of cellular processes and are the target of many therapeutic drugs. Enhancement and extension of the functional scope of membrane proteins can be realized by membrane incorporation of engineered nanoparticles designed for specific diagnostic and therapeutic applications. In contrast to hydrophobic insertion of small amphiphilic molecules, delivery and membrane incorporation of particles on the nanometric scale poses a crucial barrier for technological development. In this perspective, the transformative potential of biomimetic membrane proteins (BMPs), current state of the art, and the barriers that need to be overcome in order to advance the field are discussed.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Idan Ashur
- Agricultural Research Organization, The Volcani Center, Institute of Agricultural Engineering, Rishon LeZion, 7505101, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adan Marzouq
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lion Morgenstein
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yossi Mandel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Kannan M, Vasan G, Pieribone VA. Optimizing Strategies for Developing Genetically Encoded Voltage Indicators. Front Cell Neurosci 2019; 13:53. [PMID: 30863283 PMCID: PMC6399427 DOI: 10.3389/fncel.2019.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Genetically encoded optical indicators of neuronal activity enable unambiguous recordings of input-output activity patterns from identified cells in intact circuits. Among them, genetically encoded voltage indicators (GEVIs) offer additional advantages over calcium indicators as they are direct sensors of membrane potential and can adeptly report subthreshold events and hyperpolarization. Here, we outline the major GEVI designs and give an account of properties that need to be carefully optimized during indicator engineering. While designing the ideal GEVI, one should keep in mind aspects such as membrane localization, signal size, signal-to-noise ratio, kinetics and voltage dependence of optical responses. Using ArcLight and derivatives as prototypes, we delineate how a probe should be optimized for the former properties and developed along other areas in a need-based manner. Finally, we present an overview of the GEVI engineering process and lend an insight into their discovery, delivery and diagnosis.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Grenier V, Daws BR, Liu P, Miller EW. Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators. J Am Chem Soc 2019; 141:1349-1358. [PMID: 30628785 DOI: 10.1021/jacs.8b11997] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methods for optical measurement of voltage dynamics in living cells are attractive because they provide spatial resolution surpassing traditional electrode-based measurements and temporal resolution exceeding that of widely used Ca2+ imaging. Chemically synthesized voltage-sensitive dyes that use photoinduced electron transfer as a voltage-sensing trigger offer high voltage sensitivity and fast-response kinetics, but targeting chemical indicators to specific cells remains an outstanding challenge. Here, we present a new family of readily functionalizable, fluorescein-based voltage-sensitive fluorescent dyes (sarcosine-VoltageFluors) that can be covalently attached to a genetically encoded cell surface receptor to achieve voltage imaging from genetically defined neurons. We synthesized four new VoltageFluor derivatives that possess carboxylic acid functionality for simple conjugation to flexible tethers. The best of this new group of dyes was conjugated via a polyethylene glycol (PEG) linker to a small peptide (SpyTag, 13 amino acids) that directs binding and formation of a covalent bond with its binding partner, SpyCatcher (15 kDa). The new VoltageSpy dyes effectively label cells expressing cell-surface SpyCatcher, display good voltage sensitivity, and maintain fast-response kinetics. In cultured neurons, VoltageSpy dyes enable robust, single-trial optical detection of action potentials at neuronal soma with sensitivity exceeding genetically encoded voltage indicators. Importantly, genetic targeting of chemically synthesized dyes enables VoltageSpy to report on action potentials in axons and dendrites in single trials, tens to hundreds of micrometers away from the cell body. Genetic targeting of synthetic voltage indicators with VoltageSpy enables voltage imaging with low nanomolar dye concentration and offers a promising method for allying the speed and sensitivity of synthetic indicators with the enhanced cellular resolution of genetically encoded probes.
Collapse
|
14
|
Luo F, Wei Y, Wang Z, Luo M, Hu J. Genetically Encoded Neural Activity Indicators. BRAIN SCIENCE ADVANCES 2018. [DOI: 10.26599/bsa.2018.9050007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.
Collapse
Affiliation(s)
- Fang Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyue Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Kang BE, Lee S, Baker BJ. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Neurosci Res 2018; 146:13-21. [PMID: 30342069 DOI: 10.1016/j.neures.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Genetically-Encoded Voltage Indicators (GEVIs) are capable of converting changes in membrane potential into an optical signal. Here, we focus on recent insights into the mechanism of ArcLight-type probes and the consequences of utilizing a pH-dependent Fluorescent Protein (FP). A negative charge on the exterior of the β-can of the FP combined with a pH-sensitive FP enables voltage-dependent conformational changes to affect the fluorescence of the probe. This hypothesis implies that interaction/dimerization of the FP creates a microenvironment for the probe that is altered via conformational changes. This mechanism explains why a pH sensitive FP with a negative charge on the outside of the β-can is needed, but also suggests that pH could affect the optical signal as well. To better understand the effects of pH on the voltage-dependent signal of ArcLight, the intracellular pH (pHi) was tested at pH 6.8, 7.2, or 7.8. The resting fluorescence of ArcLight gets brighter as the pHi increases, yet only pH 7.8 significantly affected the ΔF/F. ArcLight could also simultaneously report voltage and pH changes during the acidification of a neuron firing multiple action potentials revealing different buffering capacities of the soma versus the processes of the cell.
Collapse
Affiliation(s)
- Bok Eum Kang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Program in Nanoscience and Technology, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University. Suwon, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
16
|
Platisa J, Pieribone VA. Genetically encoded fluorescent voltage indicators: are we there yet? Curr Opin Neurobiol 2018; 50:146-153. [PMID: 29501950 PMCID: PMC5984684 DOI: 10.1016/j.conb.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
In order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies. Our aim in this review is not to provide a status check of the current state of the field, as excellent publications covering this topic already exist. Here, we discuss specific questions regarding GEVI development and application that we think are crucial in achieving this goal.
Collapse
Affiliation(s)
- Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
17
|
Sepehri Rad M, Cohen LB, Braubach O, Baker BJ. Monitoring voltage fluctuations of intracellular membranes. Sci Rep 2018; 8:6911. [PMID: 29720664 PMCID: PMC5932030 DOI: 10.1038/s41598-018-25083-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 02/02/2023] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the largest continuous membrane-enclosed network which surrounds a single lumen. Using a new genetically encoded voltage indicator (GEVI), we applied the patch clamp technique to cultured HEK293 cells and neurons and found that there is a very fast electrical interaction between the plasma membrane and internal membrane(s). This discovery suggests a novel mechanism for interaction between the external membrane and internal membranes as well as mechanisms for interactions between the various internal membranes. The ER may transfer electrical signals between the plasma membrane and other internal organelles. The internal membrane optical signal is reversed in polarity but has a time course similar to that of the plasma membrane signal. The optical signal of the GEVI in the plasma membrane is consistent from trial to trial. However, the internal signal decreases in size with repeated trials suggesting that the electrical coupling is degrading and/or the resistance of the internal membrane is decaying.
Collapse
Affiliation(s)
- Masoud Sepehri Rad
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Lawrence B Cohen
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Oliver Braubach
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
18
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
19
|
Voltage and Calcium Imaging of Brain Activity. Biophys J 2017; 113:2160-2167. [PMID: 29102396 DOI: 10.1016/j.bpj.2017.09.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
Sensors for imaging brain activity have been under development for almost 50 years. The development of some of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In particular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss the present state of the art and indicate areas of active development.
Collapse
|
20
|
Jung A, Rajakumar D, Yoon BJ, Baker BJ. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator. Exp Neurobiol 2017; 26:241-251. [PMID: 29093633 PMCID: PMC5661057 DOI: 10.5607/en.2017.26.5.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/19/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.
Collapse
Affiliation(s)
- Arong Jung
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea.,College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Dhanarajan Rajakumar
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bradley J Baker
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
21
|
|
22
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
23
|
Toward Better Genetically Encoded Sensors of Membrane Potential. Trends Neurosci 2017; 39:277-289. [PMID: 27130905 DOI: 10.1016/j.tins.2016.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
Genetically encoded optical sensors of cell activity are powerful tools that can be targeted to specific cell types. This is especially important in neuroscience because individual brain regions can include a multitude of different cell types. Optical imaging allows for simultaneous recording from numerous neurons or brain regions. Optical signals of membrane potential are useful because membrane potential changes are a direct sign of both synaptic and action potentials. Here we describe recent improvements in the in vitro and in vivo signal size and kinetics of genetically encoded voltage indicators (GEVIs) and discuss their relationship to alternative sensors of neural activity.
Collapse
|
24
|
Xu Y, Zou P, Cohen AE. Voltage imaging with genetically encoded indicators. Curr Opin Chem Biol 2017; 39:1-10. [PMID: 28460291 PMCID: PMC5581692 DOI: 10.1016/j.cbpa.2017.04.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Membrane voltages are ubiquitous throughout cell biology. Voltage is most commonly associated with excitable cells such as neurons and cardiomyocytes, although many other cell types and organelles also support electrical signaling. Voltage imaging in vivo would offer unique capabilities in reporting the spatial pattern and temporal dynamics of electrical signaling at the cellular and circuit levels. Voltage is not directly visible, and so a longstanding challenge has been to develop genetically encoded fluorescent voltage indicator proteins. Recent advances have led to a profusion of new voltage indicators, based on different scaffolds and with different tradeoffs between voltage sensitivity, speed, brightness, and spectrum. In this review, we describe recent advances in design and applications of genetically-encoded voltage indicators (GEVIs). We also highlight the protein engineering strategies employed to improve the dynamic range and kinetics of GEVIs and opportunities for future advances.
Collapse
Affiliation(s)
- Yongxian Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Adam E Cohen
- Departments of Chemistry and Chemical Biology and of Physics, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute.
| |
Collapse
|
25
|
Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang Y, Salesse C, Wu H, Wu JC, Clandinin TR, Toth K, Lin MZ, St-Pierre F. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 2017; 6. [PMID: 28749338 PMCID: PMC5584994 DOI: 10.7554/elife.25690] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI:http://dx.doi.org/10.7554/eLife.25690.001
Collapse
Affiliation(s)
- Simon Chamberland
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Michael M Pan
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Ying Yang
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Charleen Salesse
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - François St-Pierre
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
26
|
Ni Q, Mehta S, Zhang J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J 2017; 285:203-219. [PMID: 28613457 DOI: 10.1111/febs.14134] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity.
Collapse
Affiliation(s)
- Qiang Ni
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Genetically encoded indicators of neuronal activity. Nat Neurosci 2017; 19:1142-53. [PMID: 27571193 DOI: 10.1038/nn.4359] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.
Collapse
|
28
|
Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem Sci 2016; 42:111-129. [PMID: 27814948 DOI: 10.1016/j.tibs.2016.09.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.
Collapse
Affiliation(s)
- Erik A Rodriguez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA.
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Genetically Encoded Voltage Indicators: Opportunities and Challenges. J Neurosci 2016; 36:9977-89. [PMID: 27683896 DOI: 10.1523/jneurosci.1095-16.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions.
Collapse
|
30
|
Nakajima R, Jung A, Yoon BJ, Baker BJ. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators. Front Synaptic Neurosci 2016; 8:22. [PMID: 27547183 PMCID: PMC4974255 DOI: 10.3389/fnsyn.2016.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology Seongbuk-gu, Seoul, South Korea
| | - Arong Jung
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; College of Life Sciences and Biotechnology, Korea UniversitySeongbuk-gu, Seoul, South Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University Seongbuk-gu, Seoul, South Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; Department of Neuroscience, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
31
|
Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions. Sci Rep 2016; 6:23865. [PMID: 27040905 PMCID: PMC4878010 DOI: 10.1038/srep23865] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.
Collapse
|
32
|
Storace D, Rad MS, Han Z, Jin L, Cohen LB, Hughes T, Baker BJ, Sung U. Genetically Encoded Protein Sensors of Membrane Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:493-509. [PMID: 26238066 DOI: 10.1007/978-3-319-17641-3_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. However these dyes suffer from the drawbacks of non-specificity of cell staining and low accessibility of the dye to some cell types. Further progress in imaging activity is expected from the development of genetically encoded fluorescent sensors of membrane potential. Cell type specificity of expression of these fluorescent protein (FP) voltage sensors can be obtained via several different mechanisms. One is cell type specificity of infection by individual virus subtypes. A second mechanism is specificity of promoter expression in individual cell types. A third, depends on the offspring of transgenic animals with cell type specific expression of cre recombinase mated with an animal that has the DNA for the FP voltage sensor in all of its cells but its expression is dependent on the recombinase activity. Challenges remain. First, the response time constants of many of the new FP voltage sensors are slower (2-10 ms) than those of organic dyes. This results in a relatively small fractional fluorescence change, ΔF/F, for action potentials. Second, the largest signal presently available is only ~40% for a 100 mV depolarization and many of the new probes have signals that are substantially smaller. Large signals are especially important when attempting to detect fast events because the shorter measurement interval results in a relatively small number of detected photons and therefore a relatively large shot noise (see Chap. 1). Another kind of challenge has occurred when attempts were made to transition from one species to another or from one cell type to another or from cell culture to in vivo measurements.Several laboratories have recently described a number of novel FP voltage sensors. Here we attempt to critically review the current status of these developments in terms of signal size, time course, and in vivo function.
Collapse
Affiliation(s)
- Douglas Storace
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Genetically Encoded Voltage Indicators in Circulation Research. Int J Mol Sci 2015; 16:21626-42. [PMID: 26370981 PMCID: PMC4613271 DOI: 10.3390/ijms160921626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023] Open
Abstract
Membrane potentials display the cellular status of non-excitable cells and mediate communication between excitable cells via action potentials. The use of genetically encoded biosensors employing fluorescent proteins allows a non-invasive biocompatible way to read out the membrane potential in cardiac myocytes and other cells of the circulation system. Although the approaches to design such biosensors date back to the time when the first fluorescent-protein based Förster Resonance Energy Transfer (FRET) sensors were constructed, it took 15 years before reliable sensors became readily available. Here, we review different developments of genetically encoded membrane potential sensors. Furthermore, it is shown how such sensors can be used in pharmacological screening applications as well as in circulation related basic biomedical research. Potentials and limitations will be discussed and perspectives of possible future developments will be provided.
Collapse
|
34
|
Nadeau JL. Initial photophysical characterization of the proteorhodopsin optical proton sensor (PROPS). Front Neurosci 2015; 9:315. [PMID: 26388725 PMCID: PMC4559597 DOI: 10.3389/fnins.2015.00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Fluorescence is not frequently used as a tool for investigating the photocycles of rhodopsins, largely because of the low quantum yield of the retinal chromophore. However, a new class of genetically encoded voltage sensors is based upon rhodopsins and their fluorescence. The first such sensor reported in the literature was the proteorhodopsin optical proton sensor (PROPS), which is capable of indicating membrane voltage changes in bacteria by means of changes in fluorescence. However, the properties of this fluorescence, such as its lifetime decay components and its origin in the protein photocycle, remain unknown. This paper reports steady-state and nanosecond time-resolved emission of this protein expressed in two strains of Escherichia coli, before and after membrane depolarization. The voltage-dependence of a particularly long lifetime component is established. Additional work to improve quantum yields and improve the general utility of PROPS is suggested.
Collapse
Affiliation(s)
- Jay L. Nadeau
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
35
|
Shen Y, Lai T, Campbell RE. Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. NEUROPHOTONICS 2015; 2:031203. [PMID: 26158012 PMCID: PMC4478792 DOI: 10.1117/1.nph.2.3.031203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 05/23/2023]
Abstract
The inherent advantages of red-shifted fluorescent proteins and fluorescent protein-based biosensors for the study of signaling processes in neurons and other tissues have motivated the development of a plethora of new tools. Relative to green fluorescent proteins (GFPs) and other blue-shifted alternatives, red fluorescent proteins (RFPs) provide the inherent advantages of lower phototoxicity, lower autofluorescence, and deeper tissue penetration associated with longer wavelength excitation light. All other factors being the same, the multiple benefits of using RFPs make these tools seemingly ideal candidates for use in neurons and, ultimately, the brain. However, for many applications, the practical utility of RFPs still falls short of the preferred GFPs. We present an overview of RFPs and RFP-based biosensors, with an emphasis on their reported applications in neuroscience.
Collapse
Affiliation(s)
- Yi Shen
- University of Alberta, Department of Chemistry, Edmonton, Alberta T6G 2G2, Canada
| | - Tiffany Lai
- University of Alberta, Department of Chemistry, Edmonton, Alberta T6G 2G2, Canada
| | - Robert E. Campbell
- University of Alberta, Department of Chemistry, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
36
|
St-Pierre F, Chavarha M, Lin MZ. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr Opin Chem Biol 2015; 27:31-8. [PMID: 26079047 DOI: 10.1016/j.cbpa.2015.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022]
Abstract
Neurons tightly regulate the electrical potential difference across the plasma membrane with millivolt accuracy and millisecond resolution. Membrane voltage dynamics underlie the generation of an impulse, the transduction of impulses from one end of the neuron to the other, and the release of neurotransmitters. Imaging these voltage dynamics in multiple neurons simultaneously is therefore crucial for understanding how neurons function together within circuits in intact brains. Genetically encoded fluorescent voltage sensors have long been desired to report voltage in defined subsets of neurons with optical readout. In this review, we discuss the diverse strategies used to design and optimize protein-based voltage sensors, and highlight the chemical mechanisms by which different classes of reporters sense voltage. To guide neuroscientists in choosing an appropriate sensor for their applications, we also describe operating trade-offs of each class of voltage indicators.
Collapse
Affiliation(s)
- François St-Pierre
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mariya Chavarha
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Monitoring brain activity with protein voltage and calcium sensors. Sci Rep 2015; 5:10212. [PMID: 25970202 PMCID: PMC4429559 DOI: 10.1038/srep10212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022] Open
Abstract
Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.
Collapse
|
38
|
Jung A, Garcia JE, Kim E, Yoon BJ, Baker BJ. Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors. NEUROPHOTONICS 2015; 2:021012. [PMID: 26158002 PMCID: PMC4478964 DOI: 10.1117/1.nph.2.2.021012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/05/2015] [Indexed: 05/31/2023]
Abstract
Several genetically encoded fluorescent sensors of voltage were created by systematically truncating the length of the linker sequence between the voltage-sensing domain and the position of the fluorescent protein, Super Ecliptic A227D. In addition to varying the length, the amino acid composition at the fusion site for the fluorescent protein was modified. Both linker length and amino acid composition affected the size and voltage sensitivity of the optical signal. The truncation mutants revealed a potential structural periodicity with a maximum signal three amino acids from the voltage-sensing domain and another maximum 11 amino acids from the voltage-sensing domain. These results confirm that the linker length and composition can fine tune the size and voltage range of the sensor. The potential periodicity suggests that the orientation of the fluorescent protein could be important for improving the signal size implicating dimerization of the fluorescent protein.
Collapse
Affiliation(s)
- Arong Jung
- Korea Institute of Science and Technology, Center for Functional Connectomics, Hwarangno 14-gil 5, Seoul 136-791, Republic of Korea
| | - Jessica E. Garcia
- Korea Institute of Science and Technology, Center for Functional Connectomics, Hwarangno 14-gil 5, Seoul 136-791, Republic of Korea
| | - Eunha Kim
- Korea Institute of Science and Technology, Center for Functional Connectomics, Hwarangno 14-gil 5, Seoul 136-791, Republic of Korea
| | - Bong-June Yoon
- Korea University, College of Life Sciences and Biotechnology, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Bradley J. Baker
- Korea Institute of Science and Technology, Center for Functional Connectomics, Hwarangno 14-gil 5, Seoul 136-791, Republic of Korea
| |
Collapse
|
39
|
Akemann W, Song C, Mutoh H, Knöpfel T. Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins. NEUROPHOTONICS 2015; 2:021008. [PMID: 26082930 PMCID: PMC4465821 DOI: 10.1117/1.nph.2.2.021008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
The invention of membrane voltage protein indicators widens the reach of optical voltage imaging in cell physiology, most notably neurophysiology, by enabling membrane voltage recordings from genetically defined cell types in chronic and life-long preparations. While the last years have seen a dramatic improvement in the technical performance of these indicators, concomitant innovations in optogenetics, optical axon tracing, and high-speed digital microscopy are beginning to fulfill the age-old vision of an all-optical analysis of neuronal circuits, reaching beyond the limits of traditional electrode-based recordings. We will present our personal account of the development of protein voltage indicators from the pioneering days to the present state, including their applications in neurophysiology that has inspired our own work for more than a decade.
Collapse
Affiliation(s)
- Walther Akemann
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
- Institute of Biology, CNRS UMR 8197, École Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France
| | - Chenchen Song
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
| | - Hiroki Mutoh
- Hamamatsu University School of Medicine, Department of Neurophysiology, Shizuoka 431-3192, Japan
| | - Thomas Knöpfel
- Imperial College London, Department of Medicine, London W12 ONN, United Kingdom
| |
Collapse
|
40
|
Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. J Neurosci 2015; 35:372-85. [PMID: 25568129 DOI: 10.1523/jneurosci.3008-14.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics <10 ms. Optimization of the linker sequence between S4 and the fluorescent protein resulted in a new ArcLight-derived probe, Bongwoori, capable of resolving action potentials in a hippocampal neuron firing at 60 Hz. Additional manipulation of the voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity.
Collapse
|
41
|
Loew LM. Design and Use of Organic Voltage Sensitive Dyes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:27-53. [PMID: 26238048 DOI: 10.1007/978-3-319-17641-3_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemistry and the physics of voltage sensitive dyes (VSDs) should be understood and appreciated as a prerequisite for their optimal application to problems in neuroscience cardiology. This chapter provides a basic understanding of the properties of the large variety of available organic VSDs. The mechanisms by which the dyes respond to voltage guides the best set up of the optics for recording or imaging electrophysiological activity. The physical and chemical properties of the dyes can be tuned to optimize delivery to and staining of the cells in different experimental preparations. The aim of this chapter is to arm the experimentalists who use the dyes with enough information and data to be able to intelligently choose the best dye for their specific requirements.
Collapse
Affiliation(s)
- Leslie M Loew
- Department of Cell Biology, R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, 06030-6406, USA,
| |
Collapse
|
42
|
Broussard GJ, Liang R, Tian L. Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 2014; 7:97. [PMID: 25538558 PMCID: PMC4256991 DOI: 10.3389/fnmol.2014.00097] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.
Collapse
Affiliation(s)
- Gerard J Broussard
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| |
Collapse
|
43
|
Subramanyam P, Colecraft HM. Ion channel engineering: perspectives and strategies. J Mol Biol 2014; 427:190-204. [PMID: 25205552 DOI: 10.1016/j.jmb.2014.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023]
Abstract
Ion channels facilitate the passive movement of ions down an electrochemical gradient and across lipid bilayers in cells. This phenomenon is essential for life and underlies many critical homeostatic processes in cells. Ion channels are diverse and differ with respect to how they open and close (gating) and to their ionic conductance/selectivity (permeation). Fundamental understanding of ion channel structure-function mechanisms, their physiological roles, how their dysfunction leads to disease, their utility as biosensors, and development of novel molecules to modulate their activity are important and active research frontiers. In this review, we focus on ion channel engineering approaches that have been applied to investigate these aspects of ion channel function, with a major emphasis on voltage-gated ion channels.
Collapse
Affiliation(s)
- Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, NY, 10032, USA.
| |
Collapse
|
44
|
Chambers JJ. Delivery of chemical cargo to endogenous proteins on live cells. Front Chem 2014; 2:11. [PMID: 24790980 PMCID: PMC3982513 DOI: 10.3389/fchem.2014.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- James J Chambers
- Department of Chemistry, Program in Neuroscience and Behavior, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
45
|
Abstract
The paralytic agent (+)-saxitoxin (STX), most commonly associated with oceanic red tides and shellfish poisoning, is a potent inhibitor of electrical conduction in cells. Its nefarious effects result from inhibition of voltage-gated sodium channels (Na(V)s), the obligatory proteins responsible for the initiation and propagation of action potentials. In the annals of ion channel research, the identification and characterization of Na(V)s trace to the availability of STX and an allied guanidinium derivative, tetrodotoxin. The mystique of STX is expressed in both its function and form, as this uniquely compact dication boasts more heteroatoms than carbon centers. This Review highlights both the chemistry and chemical biology of this fascinating natural product, and offers a perspective as to how molecular design and synthesis may be used to explore Na(V) structure and function.
Collapse
Affiliation(s)
- Arun P Thottumkara
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | | | | |
Collapse
|
46
|
|
47
|
St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 2014; 17:884-9. [PMID: 24755780 PMCID: PMC4494739 DOI: 10.1038/nn.3709] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
Abstract
Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy.
Collapse
Affiliation(s)
- François St-Pierre
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jesse D Marshall
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA
| | - Ying Yang
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Yiyang Gong
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA
| | - Mark J Schnitzer
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA. [3] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Michael Z Lin
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Two-photon voltage imaging using a genetically encoded voltage indicator. Sci Rep 2014; 3:2231. [PMID: 23868559 PMCID: PMC3715760 DOI: 10.1038/srep02231] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 11/09/2022] Open
Abstract
Voltage-sensitive fluorescent proteins (VSFPs) are a family of genetically-encoded voltage indicators (GEVIs) reporting membrane voltage fluctuation from genetically-targeted cells in cell cultures to whole brains in awake mice as demonstrated earlier using 1-photon (1P) fluorescence excitation imaging. However, in-vivo 1P imaging captures optical signals only from superficial layers and does not optically resolve single neurons. Two-photon excitation (2P) imaging, on the other hand, has not yet been convincingly applied to GEVI experiments. Here we show that 2P imaging of VSFP Butterfly 1.2 expresssing pyramidal neurons in layer 2/3 reports optical membrane voltage in brain slices consistent with 1P imaging but with a 2-3 larger ΔR/R value. 2P imaging of mouse cortex in-vivo achieved cellular resolution throughout layer 2/3. In somatosensory cortex we recorded sensory responses to single whisker deflections in anesthetized mice at full frame video rate. Our results demonstrate the feasibility of GEVI-based functional 2P imaging in mouse cortex.
Collapse
|
49
|
Pollock JD, Wu DY, Satterlee JS. Molecular neuroanatomy: a generation of progress. Trends Neurosci 2014; 37:106-23. [PMID: 24388609 PMCID: PMC3946666 DOI: 10.1016/j.tins.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022]
Abstract
The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade.
Collapse
Affiliation(s)
- Jonathan D Pollock
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA.
| | - Da-Yu Wu
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - John S Satterlee
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| |
Collapse
|
50
|
Taniguchi H. Genetic dissection of GABAergic neural circuits in mouse neocortex. Front Cell Neurosci 2014; 8:8. [PMID: 24478631 PMCID: PMC3902216 DOI: 10.3389/fncel.2014.00008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits.
Collapse
Affiliation(s)
- Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, JupiterFL, USA
| |
Collapse
|