1
|
Beecy SJ, Gross AL, Maguire AS, Hoffman LMK, Diffie EB, Cuddon P, Kell P, Jiang X, Gray-Edwards HL, Martin DR. Clinical and biochemical abnormalities in a feline model of GM2 activator deficiency. Mol Genet Metab 2025; 144:108615. [PMID: 39644670 DOI: 10.1016/j.ymgme.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Though it has no catalytic activity toward GM2 ganglioside, the GM2 activator protein (GM2A) is essential for ganglioside hydrolysis by facilitating the action of lysosomal ß-N-acetylhexosaminidase. GM2A deficiency results in death in early childhood due to rapid central nervous system deterioration similar to the related GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease. This manuscript further characterizes a feline model of GM2A deficiency with a focus on clinical and biochemical parameters that may be useful as benchmarks for translational therapeutic research. The GM2A deficient cat has clinical features consistent with the human condition, including isointensity of gray and white matter of the brain on T2-weighted MRI; MR spectroscopic changes of brain metabolites consistent with gliosis, neuronal injury and demyelination; rhythmical slowing of cerebral cortical activation on electroencephalography; and elevation of aspartate aminotransferase and lactate dehydrogenase in cerebrospinal fluid. Biochemically, the brain of GM2A deficient cats has storage of GM2 and GA2 ganglioside coincident with increased hexosaminidase activity toward a standard synthetic substrate. Also, the brain of GM2A deficient cats has increased levels of lyso-platelet activating factor and lyso-phosphatidylcholine, which may serve as novel biomarkers of disease progression and provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Sidney J Beecy
- Horae Gene Therapy Center, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America
| | - Anne S Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, United States of America
| | - Leah M K Hoffman
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America
| | - Elise B Diffie
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America
| | - Paul Cuddon
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America
| | - Pamela Kell
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63130, United States of America
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63130, United States of America
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01605, United States of America.
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, United States of America.
| |
Collapse
|
2
|
Morales Bordon D, Suárez-Cabrera F, Ramírez G, Paz-Oliva P, Morales-Espino A, Arencibia A, Encinoso M, Ventura MR, Jaber JR. Study of the Normal Crested Porcupine ( Hystrix cristata) Nasal Cavity and Paranasal Sinuses by Cross-Sectional Anatomy and Computed Tomography. Vet Sci 2024; 11:611. [PMID: 39728951 DOI: 10.3390/vetsci11120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
This study utilized CT imaging to investigate the rostral part of the head of the crested porcupine's head. By combining CT images with anatomical cross-sections, we have provided a detailed description of the structures in this area. This information could be useful for diagnosing disorders and improving their treatment in the nasal cavity and paranasal sinuses of crested porcupines.
Collapse
Affiliation(s)
- Daniel Morales Bordon
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Francisco Suárez-Cabrera
- Departamento de Morfología, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Gregorio Ramírez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Pablo Paz-Oliva
- Departamento de Morfología, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Alejandro Morales-Espino
- Departamento de Morfología, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Alberto Arencibia
- Departamento de Morfología, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Mario Encinoso
- Hospital Veterinario, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - Myriam R Ventura
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| | - José Raduan Jaber
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
- VETFUN, Educational Innovation Group, University of Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413 Las Palmas, Spain
| |
Collapse
|
3
|
Behroozi M, Graïc JM, Gerussi T. Beyond the surface: how ex-vivo diffusion-weighted imaging reveals large animal brain microstructure and connectivity. Front Neurosci 2024; 18:1411982. [PMID: 38988768 PMCID: PMC11233460 DOI: 10.3389/fnins.2024.1411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI's application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Johnson AK, McCurdy VJ, Gray-Edwards HL, Maguire AS, Cochran JN, Gross AL, Skinner HE, Randle AN, Shirley JL, Brunson BL, Bradbury AM, Leroy SG, Hwang M, Rockwell HE, Cox NR, Baker HJ, Seyfried TN, Sena-Esteves M, Martin DR. Life-Limiting Peripheral Organ Dysfunction in Feline Sandhoff Disease Emerges after Effective CNS Gene Therapy. Ann Neurol 2023; 94:969-986. [PMID: 37526361 PMCID: PMC10718573 DOI: 10.1002/ana.26756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline β-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.
Collapse
Affiliation(s)
- Aime K. Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Victoria J. McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Heather L. Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Anne S. Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - J. Nicholas Cochran
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Amanda L. Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Haleigh E. Skinner
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Ashley N. Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Jamie L. Shirley
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Brandon L. Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Allison M. Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Stanley G. Leroy
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, 381 Plantation Street Suite 250, Worcester, MA 01605, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | - Nancy R. Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849
| | - Henry J. Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849
| | | | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, 381 Plantation Street Suite 250, Worcester, MA 01605, USA
| | - Douglas R. Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| |
Collapse
|
5
|
Park MH, Kim JS, Lee S, Kim DH, Oh SH. Increased Resting-State Positron Emission Tomography Activity After Cochlear Implantation in Adult Deafened Cats. Clin Exp Otorhinolaryngol 2023; 16:326-333. [PMID: 36397262 DOI: 10.21053/ceo.2022.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Cochlear implants are widely used for hearing rehabilitation in patients with profound sensorineural hearing loss. However, Cochlear implants have variable. RESULTS and central neural plasticity is considered to be a reason for this variability. We hypothesized that resting-state cortical networks play a role in conditions of profound hearing loss and are affected by cochlear implants. To investigate the resting-state neuronal networks after cochlear implantation, we acquired 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) images in experimental animals. METHODS Eight adult domestic cats were enrolled in this study. The hearing threshold of the animals was within the normal range, as measured by auditory evoked potential. They were divided into control (n=4) and hearing loss (n=4) groups. Hearing loss was induced by co-administration of ethacrynic acid and kanamycin. FDG-PET was performed in a normal hearing state and 4 and 11 months after the deafening procedure. Cochlear implantation was performed in the right ear, and electrical cochlear stimulation was performed for 7 months (from 4 to 11 months after the deafening procedure). PET images were compared between the two groups at the three time points. RESULTS Four months after hearing loss, the auditory cortical area's activity decreased, and activity in the associated visual area increased. After 7 months of cochlear stimulation, the superior marginal gyrus and cingulate gyrus, which are components of the default mode network, showed hypermetabolism. The inferior colliculi showed hypometabolism. CONCLUSION Resting-state cortical activity in the default mode network components was elevated after cochlear stimulation. This suggests that the animals' awareness level was elevated after hearing restoration by the cochlear implantation.
Collapse
Affiliation(s)
- Min-Hyun Park
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Seonhwa Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Doo Hee Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
6
|
Cartiaux B, Amara A, Pailloux N, Paumier R, Malek A, Elmehatli K, Kachout S, Bensmida B, Montel C, Arribarat G, Mogicato G. Diffusion tensor imaging tractography in the one-humped camel ( Camelus dromedarius) brain. Front Vet Sci 2023; 10:1231421. [PMID: 37649566 PMCID: PMC10464492 DOI: 10.3389/fvets.2023.1231421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Tractography is a technique used to trace the pathways of the brain using noninvasive diffusion tensor imaging (DTI) data. It is becoming increasingly popular for investigating the brains of domestic mammals and other animals with myelinated fibers but the principle of DTI can also apply for those with unmyelinated fibers. In the case of camels, DTI tractography is a promising method for enhancing current knowledge of the brain's structural connectivity and identifying white-matter tract changes potentially linked to neurodegenerative pathologies. The present study was therefore designed to describe representative white-matter tracts in the one-humped camel DTI tractography. Methods Post mortem DTI was used to obtain images of two one-humped camel brains using a 3 Tesla system. T2-weighted images were also acquired to identify regions of interest for each fiber tract and a fiber dissection technique was used to complement the DT images. The main association, commissural, and projection fibers were reconstructed and superimposed on T2-weighted images or fractional anisotropy maps. Results The results of the present study show the reconstruction of the most representative tracts, ie the cingulum, the corpus callosum and the internal capsule, in the one-humped camel brain using DTI data acquired post mortem. These DTI results were compared to those from fiber dissection. Discussion Anatomy of the cingulum, corpus callosum and internal capsule correlates well with the description in anatomical textbooks and appears to be similar to fibers describe in large animals. Further research will be required to improve and validate these findings and to generate a tractography atlas based on MRI and histological data, as such an atlas would be a valuable resource for future neuroimaging research.
Collapse
Affiliation(s)
- Benjamin Cartiaux
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| | - Abdelkader Amara
- Department of Pathology, University of La Manouba, Sidi Thabet, Tunisia
| | - Ninon Pailloux
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| | - Romain Paumier
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| | - Atef Malek
- Department of Nutrition, University of La Manouba, Sidi Thabet, Tunisia
| | - Kefya Elmehatli
- Regional Commissariat for Agricultural Development, Tataouine, Tunisia
| | - Souhir Kachout
- Regional Commissariat for Agricultural Development, Tataouine, Tunisia
| | - Boubaker Bensmida
- Regional Commissariat for Agricultural Development, Tataouine, Tunisia
| | - Charles Montel
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| | - Germain Arribarat
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Giovanni Mogicato
- Toulouse Neuroimaging Center, University of Toulouse Paul Sabatier-INSERM-ENVT, Toulouse, France
| |
Collapse
|
7
|
Morales-Bordon D, Encinoso M, Arencibia A, Jaber JR. Cranial Investigations of Crested Porcupine ( Hystrix cristata) by Anatomical Cross-Sections and Magnetic Resonance Imaging. Animals (Basel) 2023; 13:2551. [PMID: 37627342 PMCID: PMC10451156 DOI: 10.3390/ani13162551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
This paper aimed to describe an atlas of the crested porcupine (Hystrix cristata) head by applying advanced imaging techniques such as MRI. Furthermore, by combining the images acquired through these techniques with anatomical sections, we obtained an adequate description of the structures that form the CNS and associated structures of this species. This anatomical information could serve as a valuable diagnostic tool for the clinical evaluation of different pathological processes in porcupines, such as abscesses, skull malformations, fractures, and neoplasia.
Collapse
Affiliation(s)
- Daniel Morales-Bordon
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, 35413 Arucas, Las Palmas, Spain;
| | - Mario Encinoso
- Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, 35413 Arucas, Las Palmas, Spain
| | - Alberto Arencibia
- Departamento de Morfologia, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, 35413 Arucas, Las Palmas, Spain;
| | - José Raduan Jaber
- Departamento de Morfologia, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Trasmontaña, 35413 Arucas, Las Palmas, Spain;
| |
Collapse
|
8
|
Arribarat G, Cartiaux B, Boucher S, Montel C, Gros-Dagnac H, Fave Y, Péran P, Mogicato G, Deviers A. Ex vivo susceptibility-weighted imaging anatomy of canine brain–comparison of imaging and histological sections. Front Neuroanat 2022; 16:948159. [PMID: 36124091 PMCID: PMC9481421 DOI: 10.3389/fnana.2022.948159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Now that access of large domestic mammals to high-field MRI becomes more common, techniques initially implemented for human patients can be used for the structural and functional study of the brain of these animals. Among them, susceptibility-weighted imaging (SWI) is a recent technique obtained from gradient echo (GE) imaging that allow for an excellent anatomical tissue contrast and a non-invasive assessment of brain iron content. The goal of this study was to design an optimal GE SWI imaging protocol to be used in dogs undergoing an MRI examination of the brain in a 3-Tesla scanner. This imaging protocol was applied to ex vivo brains from four dogs. The imaging protocol was validated by visual inspection of the SWI images that provided a high anatomical detail, as demonstrated by their comparison with corresponding microscopic sections. As resolvable brain structures were labeled, this study is the first to provide an anatomic description of SWI images of the canine brain. Once validated in living animals, this GE SWI imaging protocol could be easily included in routine neuroimaging protocols to improve the diagnosis of various intracranial diseases of dogs, or be used in future comparative studies aiming at evaluating brain iron content in animals.
Collapse
Affiliation(s)
- Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Benjamin Cartiaux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| | - Samuel Boucher
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Charles Montel
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| | - Hélène Gros-Dagnac
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Yoann Fave
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
- *Correspondence: Giovanni Mogicato
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| |
Collapse
|
9
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
10
|
Díaz Martínez E, Ayala Florenciano MD, Arencibia Espinosa A, Soler Laguía M, Kilroy D, Martínez Gomariz F, Ramírez Zarzosa G. A neuroanatomical study of the feline brain using MRI and mulligan staining: functional and pathological considerations. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:310-317. [PMID: 35126538 PMCID: PMC8806173 DOI: 10.22099/ijvr.2021.39886.5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Despite multiple studies describing accurate diagnoses using advanced neuroimaging techniques, low and mid-field magnetic resonance imaging (MRI) are still the most frequent scanners in veterinary clinics. To date, these studies in cats do not show a clear distinction of nerve centres in MRI data. AIMS The objective of this study is to determine the efficacy of Mulligan histological staining as a tool in facilitating the location and identification of the main structures of the feline brain in MRI. This study aims to facilitate the interpretation of MRI obtained with these types of scanners. METHODS A total of 10 feline brains were used. One specimen was used for MRI (T2 sequence using a 1.5T scanner). The other 9 brains were sectioned and stained with the three Mulligan staining techniques (Mulligan, Le Masurier and Robert). RESULTS The uptake of stain by the grey matter in these sections allowed the determination of the location and the limits of these nervous structures within the brain. The histological location of these structures was correlated with the MRI scans, leading to the successful identification of many small, indistinct nuclei. CONCLUSION Mulligan staining is proposed as a tool that facilitates the location of nerve structures in comparison with data from the most frequently-used MRI scanners in veterinary clinics.
Collapse
Affiliation(s)
- E. Díaz Martínez
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - M. D. Ayala Florenciano
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - A. Arencibia Espinosa
- Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413, Las Palmas, Spain;
| | - M. Soler Laguía
- Department of Medicine and Surgery, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - D. Kilroy
- Division of Veterinary Science Centre, University College Dublin, School of Veterinary Medicine, University of Dublin, Belfield, Dublin 4, Ireland
| | - F. Martínez Gomariz
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - G. Ramírez Zarzosa
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain; ,Correspondence: G. Ramírez Zarzosa, Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain. E-mail:
| |
Collapse
|
11
|
Boucher S, Arribarat G, Cartiaux B, Lallemand EA, Péran P, Deviers A, Mogicato G. Diffusion Tensor Imaging Tractography of White Matter Tracts in the Equine Brain. Front Vet Sci 2020; 7:382. [PMID: 32850994 PMCID: PMC7406683 DOI: 10.3389/fvets.2020.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Tractography, a noninvasive technique tracing brain pathways from diffusion tensor magnetic resonance imaging (DTI) data, is increasingly being used for brain investigation of domestic mammals. In the equine species, such a technique could be useful to improve our knowledge about structural connectivity or to assess structural changes of white matter tracts potentially associated with neurodegenerative diseases. The goals of the present study were to establish the feasibility of DTI tractography in the equine brain and to provide a morphologic description of the most representative tracts in this species. Postmortem DTI and susceptibility-weighted imaging (SWI) of an equine brain were acquired with a 3-T system using a head coil. Association, commissural, and projection fibers, the three fiber groups typically investigated in tractography studies, were successfully reconstructed and overlaid on SWI or fractional anisotropy maps. The fibers derived from DTI correlate well with their description in anatomical textbooks. Our results demonstrate the feasibility of using postmortem DTI data to reconstruct the main white matter tracts of the equine brain. Further DTI acquisitions and corresponding dissections of equine brains will be necessary to validate these findings and create an equine stereotaxic white matter atlas that could be used in future neuroimaging research.
Collapse
Affiliation(s)
- Samuel Boucher
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Benjamin Cartiaux
- INSERM UMR1037, Cancer Research Center of Toulouse, Oncopole, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| |
Collapse
|
12
|
Gruber I, Kneissl S, Probst A, Pakozdy A. Delineation of the Feline Hippocampal Formation: A Comparison of Magnetic Resonance Images With Anatomic Slices. Front Vet Sci 2019; 6:358. [PMID: 31781578 PMCID: PMC6857121 DOI: 10.3389/fvets.2019.00358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
The hippocampal formation (HF) is a relevant brain structure that is involved in several neurological and psychiatric diseases. In cats, structural changes of the HF are associated with epilepsy. The knowledge of a detailed anatomy of this brain region may lead to the accurate diagnosis and development of better therapies. There are, however, discrepancies among the research findings, which may be due to different definitions being used, according to anatomical guidelines and boundaries, as well as different magnetic resonance (MR) protocols. The aim of this study is to evaluate the anatomical borders of the HF on transverse MR images and the correlated anatomic sections in three cats. The boundaries of the HF were mostly visible in the formalin fixed anatomic sections, except in the areas where the hippocampus proper exchanges into the subicular complex. Also, the delineation of the anteroventral part and the latero-caudal borders of the HF were not clearly defined. Based on our preliminary results these problems are reinforced on MR images, and further histological and anatomical research must be done to find a way to delineate these neurological structures accurately.
Collapse
Affiliation(s)
- Isabella Gruber
- Internal Medicine Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Sibylle Kneissl
- Diagnostic Imaging, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Probst
- Institute of Topographic Anatomy, University of Veterinary Medicine, Vienna, Austria
| | - Akos Pakozdy
- Internal Medicine Small Animals, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Sienkiewicz T, Sergiel A, Huber D, Maślak R, Wrzosek M, Podgórski P, Reljić S, Paśko Ł. The Brain Anatomy of the Brown Bear (Carnivora, Ursus arctos L., 1758) Compared to That of Other Carnivorans: A Cross-Sectional Study Using MRI. Front Neuroanat 2019; 13:79. [PMID: 31555102 PMCID: PMC6727829 DOI: 10.3389/fnana.2019.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to provide a neuroanatomy atlas derived from cross-sectional and magnetic resonance imaging (MRI) of the encephalon of the brown bear (Ursus arctos). A postmortem brain analysis using magnetic resonance imaging (MRI - 1,5T; a high-resolution submillimeter three-dimensional T1-3D FFE) and cross-sectional macroscopic anatomy methods revealed major embryological and anatomical subdivisions of the encephalon, including the ventricular system. Most of the internal structures were comparably identifiable in both methods. The tractus olfactorius medialis, corpus subthalamicum, brachium colliculi rostralis, fasciculus longitudinalis medialis, nuclei vestibulares, velum medullare rostrale, nucleus fastigii, fasciculi cuneatus et gracilis were identified entirely by cross-sectional macroscopic analysis. However, the glandula pinealis, lemniscus lateralis and nuclei rhaphe were visualized only with MRI. Gross neuroanatomic analysis provided information about sulci and gyri of the cerebral hemispheres, components of the vermis and cerebellar hemispheres, and relative size and morphology of constituents of the rhinencephalon and cerebellum constituents. Similarities and discrepancies in identification of structures provided by both methods, as well as hallmarks of the structures facilitating identification using these methods are discussed. Finally, we compare the brown bear encephalon with other carnivores and discuss most of the identified structures compared to those of the domestic dog, the domestic cat, Ursidae and Mustelidae families and Pinnipedia clade.
Collapse
Affiliation(s)
- Tomasz Sienkiewicz
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Agnieszka Sergiel
- Department of Wildlife Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Djuro Huber
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Robert Maślak
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Marcin Wrzosek
- Department of Internal Medicine and Clinic of Diseases for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Faculty of Postgraduate Medical Training, Wrocław Medical University, Wrocław, Poland
| | - Slaven Reljić
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Łukasz Paśko
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
14
|
Huizing X, Sparkes A, Dennis R. Shape of the feline cerebellum and occipital bone related to breed on MRI of 200 cats. J Feline Med Surg 2017; 19:1065-1072. [PMID: 27827801 PMCID: PMC11110983 DOI: 10.1177/1098612x16676022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives The MRI features of the feline cerebellum and occipital bone have not previously been described in the literature. The aims of this study were three-fold. Firstly, to document variations in cerebellar shape on MRI in neurologically normal cats to support our hypothesis that crowding of the contents of the caudal fossa or herniation of the cerebellar vermis through the foramen magnum occurs frequently as an anatomical variant. Secondly, to document variations in the morphology of the occipital bone. Thirdly, to see whether these variations in shape of the feline cerebellum and occipital bone could be associated with head conformation, such as brachycephaly. Methods The imaging records of the small animal clinic at the Animal Health Trust between 2000 and 2013 were searched retrospectively to identify adult cats that had undergone high-field (1.5 T) MRI investigation which included the brain. Exclusion criteria included evidence of intracranial disease or the presence of cervical syringomyelia. Midline sagittal T2-weighted and transverse images were used to assess the occipital bone morphology and cerebellar shape, and to measure the width to length ratio of the cranial cavity. Results Fourteen different breeds were represented. A cerebellar shape consistent with crowding of the contents of the caudal fossa, or herniation through the foramen magnum was present in 40% of the entire population. Persians (recognised as a brachycephalic breed) had a higher proportion of cerebellar crowding or herniation than all other breeds. There was no significant difference in the distribution of occipital bone morphology between these breed groups. Conclusions and relevance It is important to recognise morphological variations of the feline cerebellum and occipital bone in order to avoid false-positive diagnoses of raised intracranial pressure and pathological herniation on MRI.
Collapse
Affiliation(s)
- Xander Huizing
- Department of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Ruth Dennis
- Animal Health Trust, Lanwades Park, Kentford, UK
| |
Collapse
|
15
|
A monocentric centerline extraction method for ring-like blood vessels. Med Biol Eng Comput 2017; 56:695-707. [DOI: 10.1007/s11517-017-1717-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
|
16
|
Lee HM, Howell B, Grill WM, Ghovanloo M. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System. IEEE Trans Biomed Eng 2017; 65:1095-1106. [PMID: 28829301 DOI: 10.1109/tbme.2017.2741107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.
Collapse
|
17
|
Nagakubo D, Hamamoto Y, Hasegawa D, Kamata M, Iizuka T, Muta K, Fujita N, Nakagawa T, Nishimura R. Functional MRI-based identification of brain regions activated by mechanical noxious stimulation and modulatory effect of remifentanil in cats. Res Vet Sci 2017; 114:444-449. [PMID: 28772233 DOI: 10.1016/j.rvsc.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/10/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
This study was conducted to identify the brain regions corresponding to mechanical noxious stimulation in cats using functional magnetic resonance imaging (fMRI) and to investigate the modulatory effect of remifentanil on the activation of these regions. Six healthy cats were anesthetized using a constant-rate infusion of alfaxalone. Cats were allocated to one of three treatment groups: remifentanil 0 (saline), 0.25, and 0.5μg/kg/min. A 3.0-T MRI unit was used to collect fMRI data. During the fMRI scanning, mechanical noxious stimulation was applied by tail clamping. The brain regions activated by the stimulation were identified based on blood oxygenation level-dependent (BOLD) responses. The modulatory effects of remifentanil were evaluated using a region of interest (ROI) analysis comparing signal changes in each brain region. Increased activity from noxious stimulation was observed in the somatosensory area (the postcruciatus gyrus, the anterior part of the marginalis gyrus, and the anterior part of the ectomarginalis gyrus), the parietal association area (the middle part of the marginalis gyrus and the middle part of the ectomarginalis gyrus), the cingulate cortex, the hippocampus, and the cerebellum. The results of the ROI analysis indicated that activations in the somatosensory area, the cingulate cortex, the hippocampus, and the cerebellum were significantly modulated (P<0.05) by remifentanil. In cats, activation patterns evoked by mechanical noxious stimulation were observed in several brain regions thought to be involved in various aspects of pain processing, including sensory discrimination and integration, affect, and motor response. These brain responses were modulated by remifentanil.
Collapse
Affiliation(s)
- Dai Nagakubo
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Hamamoto
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Daisuke Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Masatoshi Kamata
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoya Iizuka
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kanako Muta
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
18
|
Abstract
We have developed an imaging method designated as correlative light microscopy and block-face imaging (CoMBI), which contributes to improve the reliability of morphological analyses. This method can collect both the frozen sections and serial block-face images in a single specimen. The frozen section can be used for conventional light microscopic analysis to obtain 2-dimensional (2D) anatomical and molecular information, while serial block-face images can be used as 3-dimensional (3D) volume data for anatomical analysis. Thus, the sections maintain positional information in the specimen, and allows the correlation of 2D microscopic data and 3D volume data in a single specimen. The subjects can vary in size and type, and can cover most specimens encountered in biology. In addition, the required system for our method is characterized by cost-effectiveness. Here, we demonstrated the utility of CoMBI using specimens ranging in size from several millimeters to several centimeters, i.e., mouse embryos, human brainstem samples, and stag beetle larvae, and present successful correlation between the 2D light microscopic images and 3D volume data in a single specimen.
Collapse
|
19
|
Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. The Sleeping Cerebellum. Trends Neurosci 2017; 40:309-323. [PMID: 28431742 DOI: 10.1016/j.tins.2017.03.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Cathrin B Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Yoshiyuki Onuki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Bastiaan Bruinsma
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, 1007 MC, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA, Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cognitive impairment: a review including larger species. BMC Med 2017; 15:16. [PMID: 28118831 PMCID: PMC5264492 DOI: 10.1186/s12916-017-0793-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, University of Lübeck, Lübeck, Germany.,Neurovascular Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Chad Farris
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jeremy D Isaacs
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Raj N Kalaria
- Institute of Neuroscience, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Björn Nitzsche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Clinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute for Anatomy, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gary A Rosenberg
- Department of Neurology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aron M Troen
- Institute of Biochemistry Food and Nutrition Science, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
21
|
Przyborowska P, Adamiak Z, Holak P, Zhalniarovich Y. Comparison of Feline Brain Anatomy in 0.25 and 3 Tesla Magnetic Resonance Images. Anat Histol Embryol 2016; 46:178-186. [PMID: 27667783 DOI: 10.1111/ahe.12254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Abstract
The intention of the comparison of both low and high field was to examine which anatomical brain structures of cats were visible on low field images, as in clinical veterinary practice, 3 Tesla (T) magnets were of limited availability. The research was performed on 20 European short-haired male and female cats, aged 1-3 years, with body weight of 2-4 kg. 0.25 T magnetic resonance images of neurocranium were acquired in all using T2-weighted fast spin echo sequences with repetition time (TR) of 4010 ms and echo time (TE) of 90 ms in dorsal and transverse plane, and T2-weighted fast spine echo sequences with TR of 4290 ms and TE of 120 ms in sagittal plane. Based on a detailed catalogue of feline brain structures visible at 3 T in previously published studies, it was examined which structures were visible on low field images. Anatomic structures were identified and compared to assess the reliability of diagnoses made based on low-field magnetic resonance imaging. In low-field scans, 92 structures were identified. Elements of auditory, visual, motor pathways, hippocampus and cerebral ventricular system were distinguished. Low-field as well as high-field magnetic resonance imaging support the identification of local tissue lesions, metastasis, focal ischaemia and haemorrhage, disorders associated with ventricular system dilation and hydrocephalus. It also produced accurate images of the hippocampus, which contributes to reliable diagnoses of various forms of epilepsy in cats. Due to technical limitations, a low-field scanner is unlikely to visualize microtraumas, local inflammations, small haematomas or metastatic tumours.
Collapse
Affiliation(s)
- P Przyborowska
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Z Adamiak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - P Holak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Y Zhalniarovich
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 14, 10-719, Olsztyn, Poland
| |
Collapse
|
22
|
Gray-Edwards HL, Brunson BL, Holland M, Hespel AM, Bradbury AM, McCurdy VJ, Beadlescomb PM, Randle AN, Salibi N, Denney TS, Beyers RJ, Johnson AK, Voyles ML, Montgomery RD, Wilson DU, Hudson JA, Cox NR, Baker HJ, Sena-Esteves M, Martin DR. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol Genet Metab 2015; 116:80-7. [PMID: 25971245 DOI: 10.1016/j.ymgme.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Brandon L Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Merrilee Holland
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Adrien-Maxence Hespel
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Patricia M Beadlescomb
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nouha Salibi
- MR R&D Siemens Healthcare, Malvern, PA, USA; Auburn University MRI Research Center, Auburn, AL, USA
| | - Thomas S Denney
- Auburn University MRI Research Center, Auburn, AL, USA; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | | | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Meredith L Voyles
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ronald D Montgomery
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
23
|
Müllhaupt D, Augsburger H, Schwarz A, Fischer G, Kircher P, Hatt JM, Ohlerth S. Magnetic resonance imaging anatomy of the rabbit brain at 3 T. Acta Vet Scand 2015; 57:47. [PMID: 26310323 PMCID: PMC4551377 DOI: 10.1186/s13028-015-0139-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rabbits are widely accepted as an animal model in neuroscience research. They also represent very popular pet animals, and, in selected clinical cases with neurological signs, magnetic resonance imaging (MRI) may be indicated for imaging the rabbit brain. Literature on the normal MRI anatomy of the rabbit brain and associated structures as well as related reference values is sparse. Therefore, it was the purpose of this study to generate an MRI atlas of the normal rabbit brain including the pituitary gland, the cranial nerves and major vessels by the use of a 3 T magnet. RESULTS Based on transverse, dorsal and sagittal T2-weighted (T2w) and pre- and post-contrast 3D T1-weighted (T1w) sequences, 60 intracranial structures were identified and labeled. Typical features of a lissencephalic brain type were described. In the 5 investigated rabbits, on T1w images a crescent-shaped hyperintense area caudodorsally in the pituitary gland most likely corresponded to a part of the neurohypophysis. The optic, trigeminal, and in part, the facial, vestibulocochlear and trochlear nerves were identified. Mild contrast enhancement of the trigeminal nerve was present in all rabbits. Absolute and relative size of the pituitary gland, midline area of the cranial and caudal cranial fossa and height of the tel- and diencephalon, 3rd and 4th ventricles were also determined. CONCLUSIONS These data established normal MRI appearance and measurements of the rabbit brain. Results provide reference for research studies in rabbits and, in rare instances, clinical cases in veterinary medicine.
Collapse
|
24
|
Janke AL, Ullmann JFP. Robust methods to create ex vivo minimum deformation atlases for brain mapping. Methods 2015; 73:18-26. [PMID: 25620005 DOI: 10.1016/j.ymeth.2015.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 10/24/2022] Open
Abstract
Highly detailed ex vivo 3D atlases of average structure are of critical importance to neuroscience and its current push to understanding the global microstructure of the brain. Multiple single slice histology sections can no longer provide sufficient detail of inter-slice microstructure and lack out of plane resolution. Two ex vivo methods have emerged that can create such detailed models. High-field micro MRI with the addition of contrast media has allowed intact whole brain microstructure imaging with an isotropic resolution of 15 μm in mouse. Blockface imaging has similarly evolved to a point where it is now possible to image an entire brain in a rigorous fashion with an out of plane resolution of 10 μm. Despite the destruction of the tissue as part of this process it allows a reconstructed model that is free from cutting artifacts. Both of these methods have been utilised to create minimum deformation atlases that are representative of the respective populations. The MDA atlases allow us unprecedented insight into the commonality and differences in microstructure in cortical structures in specific taxa. In this paper we provide an overview of how to create such MDA models from ex vivo data.
Collapse
Affiliation(s)
- Andrew L Janke
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Pakozdy A, Angerer C, Klang A, König EH, Probst A. Gyration of the Feline Brain: Localization, Terminology and Variability. Anat Histol Embryol 2014; 44:422-7. [DOI: 10.1111/ahe.12153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/11/2014] [Accepted: 09/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Pakozdy
- University Clinic of Small Animals; University of Veterinary Medicine Vienna; Austria
| | - C. Angerer
- University Clinic of Small Animals; University of Veterinary Medicine Vienna; Austria
| | - A. Klang
- Institute of Pathology and Forensic Veterinary Medicine; University of Veterinary Medicine Vienna; Austria
| | - E. H. König
- Institute of Anatomy Histology and Embryology; University of Veterinary Medicine Vienna; Austria
| | - A. Probst
- Institute of Anatomy Histology and Embryology; University of Veterinary Medicine Vienna; Austria
| |
Collapse
|