1
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Zhang R, Khan D, Muhammad S. Establishment of a novel protocol for assessing the severity of subarachnoid hemorrhage in circle Willis perforation mouse model. Sci Rep 2024; 14:10147. [PMID: 38698100 PMCID: PMC11066000 DOI: 10.1038/s41598-024-60237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
The Circle of Willis perforation (cWp) mouse model is a key tool in subarachnoid hemorrhage (SAH) research; however, inconsistent bleeding volumes can challenge experimental reliability. To address this issue, we introduced the ROB Scoring System, a novel protocol integrating Rotarod Tests (RT), Open-field Tests (OT) video analysis, and daily Body Weight Loss (BWL) monitoring to precisely categorize SAH severity. Forty C57BL/6 mice underwent cWp SAH induction, categorized by ROB into severity subgroups (severe, moderate, mild). Validation compared ROB trends in subgroups, and ROB outcomes with autopsy results on postoperative days three and seven for acute and sub-acute evaluations. Mortality rates were analyzed via the survival log-rank test, revealing a significant difference among SAH subgroups (P < 0.05). Strong correlations between ROB grades and autopsy findings underscored its precision. Notably, the severe group exhibited 100% mortality within 4 days post SAH onset. Single parameters (RT, OT, BWL) were insufficient for distinguishing SAH severity levels. The ROB score represents a significant advancement, offering an objective method for precise categorization and addressing inherent bleeding variations in the cWp SAH model. This standardized protocol enhances the reliability and effectiveness of the SAH translational research, providing a valuable tool for future investigations into this critical area.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Dusseldorf, Mooren Str. 5, 40225, Dusseldorf, Germany.
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Peng K, Koduri S, Ye F, Yang J, Keep RF, Xi G, Hua Y. A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:842-850. [PMID: 35150055 PMCID: PMC9062564 DOI: 10.1111/cns.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS White matter (WM) injury is a critical factor associated with worse outcomes following subarachnoid hemorrhage (SAH). However, the detailed pathological changes are not completely understood. This study investigates temporal changes in the corpus callosum (CC), including WM edema and oligodendrocyte death after SAH, and the role of lipocalin-2 (LCN2) in those changes. METHODS Subarachnoid hemorrhage was induced in adult wild-type or LCN2 knockout mice via endovascular perforation. Magnetic resonance imaging was performed 4 hours, 1 day, and 8 days after SAH, and T2 hyperintensity changes within the CC were quantified to represent WM edema. Immunofluorescence staining was performed to evaluate oligodendrocyte death and proliferation. RESULTS Subarachnoid hemorrhage induced significant CC T2 hyperintensity at 4 hours and 1 day that diminished significantly by 8 days post-procedure. Comparing changes between the 4 hours and 1 day, each individual mouse had an increase in CC T2 hyperintensity volume. Oligodendrocyte death was observed at 4 hours, 1 day, and 8 days after SAH induction, and there was progressive loss of mature oligodendrocytes, while immature oligodendrocytes/oligodendrocyte precursor cells (OPCs) proliferated back to baseline by Day 8 after SAH. Moreover, LCN2 knockout attenuated WM edema and oligodendrocyte death at 24 hours after SAH. CONCLUSIONS Subarachnoid hemorrhage leads to T2 hyperintensity change within the CC, which indicates WM edema. Oligodendrocyte death was observed in the CC within 1 day of SAH, with a partial recovery by Day 8. SAH-induced WM injury was alleviated in an LCN2 knockout mouse model.
Collapse
Affiliation(s)
- Kang Peng
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA,Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Sravanthi Koduri
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Fenghui Ye
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Jinting Yang
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Richard F. Keep
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Guohua Xi
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Ya Hua
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Zhang J, Peng K, Ye F, Koduri S, Hua Y, Keep RF, Xi G. Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage. Transl Stroke Res 2022; 13:188-196. [PMID: 34076826 PMCID: PMC9793692 DOI: 10.1007/s12975-021-00918-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is associated with a high incidence of morbidity and mortality, particularly within the first 72 h after aneurysm rupture. We recently found ultra-early cerebral thrombosis, detectable on T2* magnetic resonance imaging (MRI), in a mouse SAH model at 4 h after onset. The current study examined whether such changes also occur in rat at 24 h after SAH, the vessels involved, whether the degree of thrombosis varied with SAH severity and brain injury, and if it differed between male and female rats. Adult Sprague Dawley rats were subjected to an endovascular perforation SAH model or sham surgery and underwent T2 and T2* MRI 24 h later. Following SAH, increased numbers of T2* hypointense vessels were detected on MRI. The number of such vessels correlated with SAH severity, as assessed by MRI-based grading of bleeding. Histologically, thrombotic vessels were found on hematoxylin and eosin staining, had a single layer of smooth muscle cells on alpha-smooth muscle actin immunostaining, and had laminin 2α/fibrinogen double labeling, suggesting venule thrombosis underlies the T2*-positive vessels on MRI. Capillary thrombosis was also detected which may follow the venous thrombosis. In both male and female rats, the number of T2*-positive thrombotic vessels correlated with T2 lesion volume and neurological function, and the number of such vessels was significantly greater in female rats. In summary, this study identified cerebral venous thrombosis 24 h following SAH in rats that could be detected with T2* MRI imaging and may contribute to SAH-induced brain injury.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
5
|
Miyaoka R, Yamamoto J, Miyachi H, Suzuki K, Saito T, Nakano Y. Intra-arterial Contrast-enhanced Micro-computed Tomography Can Evaluate Intracranial Status in the Ultra-early Phase of Experimental Subarachnoid Hemorrhage in Rats. Neurol Med Chir (Tokyo) 2021; 61:721-730. [PMID: 34615810 PMCID: PMC8666300 DOI: 10.2176/nmc.oa.2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endovascular perforation (EP) model is a common technique for experimental subarachnoid hemorrhage (SAH) in rats, simulating the pathophysiological features observed in the acute phase of SAH. Due to the drawbacks of large variations in the amount of bleeding, the results obtained from this model require severity evaluation. However, no less-invasive procedure could confirm the precise intracranial conditions immediately after establishing the rat EP model. We created a novel method for evaluating SAH immediately after establishing the rat EP model using intra-arterial contrast-enhanced micro-computed tomography (CT). We administered contrast agents continuously via the carotid artery during surgery and performed CT examination immediately after SAH induction. First, bleeding severity was classified by establishing a scoring system based on the CT findings (cSAH scoring system). Subsequently, we determined the actual SAH distribution macroscopically and histologically and compared it with the cSAH scores. Second, we investigated the contrast agent’s neurotoxicity in rats. Finally, we confirmed the correlation between cSAH scores and SAH severity, including neurological status, cerebral vasospasm, and hematoma volume 24 hr after SAH. Intra-arterial contrast-enhanced micro-CT could visualize the distribution of SAH proportionally to the bleeding severity immediately after establishing the EP model. Moreover, the contrast agent administration was determined not to be neurotoxic to rats. The cSAH scoring revealed a significant correlation with the SAH severity in the rat EP model (P <0.01). Thus, our minimally invasive method provided precise information on intracranial status in the ultra-early phase of SAH in rats EP model.
Collapse
Affiliation(s)
- Ryo Miyaoka
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Junkoh Yamamoto
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Hiroshi Miyachi
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Kohei Suzuki
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Takeshi Saito
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| | - Yoshiteru Nakano
- Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health
| |
Collapse
|
6
|
Mielke D, Bleuel K, Stadelmann C, Rohde V, Malinova V. The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS One 2020; 15:e0227349. [PMID: 32097426 PMCID: PMC7041796 DOI: 10.1371/journal.pone.0227349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
Objective The amount of extravasated blood is an established surrogate marker for subarachnoid hemorrhage (SAH) severity, which varies in different experimental SAH (eSAH) models. A comprehensive eSAH grading system would allow a more reliable correlation of outcome parameters with SAH severity. The aim of this study was to define a severity score for eSAH related to the Fisher-Score in humans. Material and methods SAH was induced in 135 male rats using the modified double hemorrhage model. A sham group included 8 rats, in which saline solution instead of blood was injected. Histological analysis with HE(hematoxylin-eosin)-staining for the visualization of blood was performed in all rats on day 5. The amount and distribution of blood within the subarachnoid space and ventricles (IVH) was analyzed. Results The mortality rate was 49.6% (71/143). In all except five SAH rats, blood was visible within the subarachnoid space. As expected, no blood was detected in the sham group. The following eSAH severity score was established (ESAS-score): grade I: no SAH visible; grade II: local or diffuse thin SAH, no IVH; grade III: diffuse / thick layers of blood, no IVH; grade IV: additional IVH. Grade I was seen in five rats (7.9%), grade II in 28.6% (18/63), grade III in 41.3% (26/63) and grade IV in 22.2% (14/63) of the rats with eSAH. Conclusion The double hemorrhage model allows the induction of a high grade SAH in more than 60% of the rats, making it suitable for the evaluation of outcome parameters in severe SAH.
Collapse
Affiliation(s)
- Dorothee Mielke
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Jing C, Zhang H, Shishido H, Keep RF, Hua Y. Association of Brain CD163 Expression and Brain Injury/Hydrocephalus Development in a Rat Model of Subarachnoid Hemorrhage. Front Neurosci 2018; 12:313. [PMID: 29867324 PMCID: PMC5964168 DOI: 10.3389/fnins.2018.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Hemoglobin contributes to brain cell damage and death following subarachnoid hemorrhage (SAH). While CD163, a hemoglobin scavenger receptor, can mediate the clearance of extracellular hemoglobin it has not been well-studied in SAH. In the current study, a filament perforation SAH model was performed in male rats. T2-weighted and T2*-weighted scans were carried out using a 7.0-Tesla MR scanner 24 h after perforation. T2 lesions and hydrocephalus were determined on T2-weighted images. A grading system based on MRI was used to assess SAH severity. The effects of SAH on CD163 were determined by immunohistochemistry staining and Western blots. SAH led to a marked increase in CD163 levels in cortex, white matter and periventricular regions from days 1 to 7. CD163 stained cells were co-localized with neurons, microglia/macrophages, oligodendrocytes and cleaved caspase-3-positive cells, but not astrocytes. Furthermore, CD163 protein levels were increased in rats with higher SAH grades, the presence of T2 lesions on MRI, or hydrocephalus. In conclusion, CD163 expression is markedly upregulated after SAH. It is associated with more severe hemorrhage, as well as MRI T2 lesion and hydrocephalus development.
Collapse
Affiliation(s)
- Chaohui Jing
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haining Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Turan N, Miller BA, Heider RA, Nadeem M, Sayeed I, Stein DG, Pradilla G. Neurobehavioral testing in subarachnoid hemorrhage: A review of methods and current findings in rodents. J Cereb Blood Flow Metab 2017; 37:3461-3474. [PMID: 27677672 PMCID: PMC5669338 DOI: 10.1177/0271678x16665623] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most important aspect of a preclinical study seeking to develop a novel therapy for neurological diseases is whether the therapy produces any clinically relevant functional recovery. For this purpose, neurobehavioral tests are commonly used to evaluate the neuroprotective efficacy of treatments in a wide array of cerebrovascular diseases and neurotrauma. Their use, however, has been limited in experimental subarachnoid hemorrhage studies. After several randomized, double-blinded, controlled clinical trials repeatedly failed to produce a benefit in functional outcome despite some improvement in angiographic vasospasm, more rigorous methods of neurobehavioral testing became critical to provide a more comprehensive evaluation of the functional efficacy of proposed treatments. While several subarachnoid hemorrhage studies have incorporated an array of neurobehavioral assays, a standardized methodology has not been agreed upon. Here, we review neurobehavioral tests for rodents and their potential application to subarachnoid hemorrhage studies. Developing a standardized neurobehavioral testing regimen in rodent studies of subarachnoid hemorrhage would allow for better comparison of results between laboratories and a better prediction of what interventions would produce functional benefits in humans.
Collapse
Affiliation(s)
- Nefize Turan
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Brandon A Miller
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert A Heider
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Maheen Nadeem
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gustavo Pradilla
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y. MRI Characterization in the Acute Phase of Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2016; 8:234-243. [PMID: 27896625 DOI: 10.1007/s12975-016-0511-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
A number of mechanisms have been proposed for the early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated the radiographic characteristics and influence of gender on early brain injury after experimental SAH. SAH was induced by endovascular perforation in male and female rats. Magnetic resonance imaging was performed in a 7.0-T Varian MR scanner at 24 h after SAH. The occurrence and size of T2 lesions, ventricular dilation, and white matter injury (WMI) were determined on T2-weighted images (T2WI). The effects of SAH on heme oxygenase-1 and fibrin/fibrinogen were examined by Western blotting and immunohistochemistry. SAH severity was assessed using a MRI grading system, and neurological function was evaluated according to a modified Garcia's scoring system. T2 hyperintensity areas and enlarged ventricles were observed in T2WI coronal sections 24 h after SAH. The overall incidence of T2 lesions, WMI, and hydrocephalus was 54, 20, and 63%, respectively. Female rats had a higher incidence of T2 hyperintensity lesions and hydrocephalus, as well as larger T2 lesion volumes and higher average ventricular volume. SAH rats graded at 3-4 (our previously validated MRI grading scale) had larger T2 lesion volumes, more hydrocephalus, and worse neurological function compared with those graded at 0-2. In conclusion, T2 lesion, WMI, and hydrocephalus were the most prevalent MRI characteristics 24 h after experimental SAH. The T2 lesion area matched with fibrinogen/fibrin positive staining in the acute phase of SAH. SAH induced more severe brain injury in females compared to males in the acute phase of SAH.
Collapse
Affiliation(s)
- Dewei Guo
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - D Andrew Wilkinson
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - B Gregory Thompson
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
11
|
Mutoh T, Mutoh T, Sasaki K, Nakamura K, Taki Y, Ishikawa T. Value of Three-Dimensional Maximum Intensity Projection Display to Assist in Magnetic Resonance Imaging (MRI)-Based Grading in a Mouse Model of Subarachnoid Hemorrhage. Med Sci Monit 2016; 22:2050-5. [PMID: 27307024 PMCID: PMC4913823 DOI: 10.12659/msm.896499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Subarachnoid hemorrhage (SAH) is one of the most devastating cerebrovascular disorders. We report on the diagnostic value of three-dimensional (3-D) maximum intensity projection (MIP) reconstruction of T2*-weighted magnetic resonance images (MRI), processed using graphical user interface-based software, to aid in the accurate grading of endovascular-perforation-induced SAH in a mouse model. Material/Methods A total of 30 mice were subjected to SAH by endovascular perforation; three (10%) were scored as grade 0, six (20%) as grade 1, six (20%) as grade 2, eight (27%) as grade 3, and seven (23%) as grade 4 according to T2*-weighted coronal slices. In comparison, none of mice were scored as grade 0, eight (27%) as grade 1, five (17%) as grade 2, nine (30%) as grade 3, and eight (27%) as grade 4 based on subsequent evaluation using reconstructed 3-D MIP images. Results Mice scored as grade 0 (10%; no visible SAH) on T2*-coronal images were categorized as grades 1 (thin/localized SAH) and 3 (thick/diffuse SAH) according to 3-D MIP images. Grades based on T2* 3-D MIP images were more closely correlated with conventional SAH score (r2=0.59; P<0.0001) and neurological score (r2=0.25; P=0.005) than those based on T2*-coronal slices (r2=0.46; P<0.0001 for conventional score and r2=0.15; P=0.035 for neurological score). Conclusions These results suggest that 3-D MIP images generated from T2*-weighted MRI data may be useful for the simple and precise grading of SAH severity in mice to overcome the weakness of the current MRI-based SAH grading system.
Collapse
Affiliation(s)
- Tomoko Mutoh
- Department of Nuclear Medicine and Radiology,Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kazumasu Sasaki
- Department of Preclinical Evaluation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiro Nakamura
- Department of Radiology, Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsuya Ishikawa
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan
| |
Collapse
|