1
|
Viral Clearance and Neuroinflammation in Acute TMEV Infection Vary by Host Genetic Background. Int J Mol Sci 2022; 23:ijms231810482. [PMID: 36142395 PMCID: PMC9501595 DOI: 10.3390/ijms231810482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.
Collapse
|
2
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
3
|
Lawley KS, Rech RR, Elenwa F, Han G, Perez Gomez AA, Amstalden K, Welsh CJ, Young CR, Threadgill DW, Brinkmeyer-Langford CL. Host genetic diversity drives variable central nervous system lesion distribution in chronic phase of Theiler's Murine Encephalomyelitis Virus (TMEV) infection. PLoS One 2021; 16:e0256370. [PMID: 34415947 PMCID: PMC8378701 DOI: 10.1371/journal.pone.0256370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.
Collapse
Affiliation(s)
- Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Raquel R. Rech
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
| | - Faith Elenwa
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Gang Han
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Aracely A. Perez Gomez
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - David W. Threadgill
- Texas A&M University, College Station, TX, United States of America
- Department of Molecular and Cellular Medicine, College Station, TX, United States of America
| | - Candice L. Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| |
Collapse
|
4
|
Amaya JM, Suidgeest E, Sahut-Barnola I, Dumontet T, Montanier N, Pagès G, Keller C, van der Weerd L, Pereira AM, Martinez A, Meijer OC. Effects of Long-Term Endogenous Corticosteroid Exposure on Brain Volume and Glial Cells in the AdKO Mouse. Front Neurosci 2021; 15:604103. [PMID: 33642975 PMCID: PMC7902940 DOI: 10.3389/fnins.2021.604103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
Chronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing’s syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits. AdKO mice had reduced relative volumes in several brain regions, including the corpus callosum and cortical areas. The medial amygdala, bed nucleus of the stria terminalis, and hypothalamus were increased in relative volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP, an oligodendrocyte marker) in several brain regions but a paradoxically increased MBP signal in the male cingulate cortex. We also observed a decrease in the expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia) in the cingulate regions of the anterior corpus callosum and the hippocampus. We conclude that long-term hypercorticosteronemia induced brain region-specific changes that might include aberrant myelination and a degree of white matter damage, as both repair (GFAP) and immune (IBA1) responses are decreased. These findings suggest a cause for the changes observed in the brains of human patients and serve as a background for further exploration of their subcellular and molecular mechanisms.
Collapse
Affiliation(s)
- Jorge Miguel Amaya
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Isabelle Sahut-Barnola
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Typhanie Dumontet
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Nathanaëlle Montanier
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Guilhem Pagès
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Cécile Keller
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Human Genetics Department, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto M Pereira
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine Martinez
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Onno C Meijer
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Antecedent presentation of neurological phenotypes in the Collaborative Cross reveals four classes with complex sex-dependencies. Sci Rep 2020; 10:7918. [PMID: 32404926 PMCID: PMC7220920 DOI: 10.1038/s41598-020-64862-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Antecedent viral infection may contribute to increased susceptibility to several neurological diseases, such as multiple sclerosis and Parkinson’s disease. Variation in clinical presentations of these diseases is often associated with gender, genetic background, or a combination of these and other factors. The complicated etiologies of these virally influenced diseases are difficult to study in conventional laboratory mouse models, which display a very limited number of phenotypes. We have used the genetically and phenotypically diverse Collaborative Cross mouse panel to examine complex neurological phenotypes after viral infection. Female and male mice from 18 CC strains were evaluated using a multifaceted phenotyping pipeline to define their unique disease profiles following infection with Theiler’s Murine Encephalomyelitis Virus, a neurotropic virus. We identified 4 distinct disease progression profiles based on limb-specific paresis and paralysis, tremors and seizures, and other clinical signs, along with separate gait profiles. We found that mice of the same strain had more similar profiles compared to those of different strains, and also identified strains and phenotypic parameters in which sex played a significant role in profile differences. These results demonstrate the value of using CC mice for studying complex disease subtypes influenced by sex and genetic background. Our findings will be useful for developing novel mouse models of virally induced neurological diseases with heterogenous presentation, an important step for designing personalized, precise treatments.
Collapse
|
6
|
Sharif K, Watad A, Coplan L, Lichtbroun B, Krosser A, Lichtbroun M, Bragazzi NL, Amital H, Afek A, Shoenfeld Y. The role of stress in the mosaic of autoimmunity: An overlooked association. Autoimmun Rev 2018; 17:967-983. [PMID: 30118900 DOI: 10.1016/j.autrev.2018.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Stress is defined as the pscyophysiological reaction in which the steady state is disturbed or threatened. Stress is not always perceived as a negative response. Stress results when environmental demands exceed an individuals' adaptive capacities. Autoimmune diseases are heterogeneous group of chronic diseases which occur secondary to loss of self antigen tolerance. The etiopathogenesis of autoimmune disease is uncertain. Genetic factors as well as environmental factors appear to interplay, leading to a cascade of events resulting in disease onset. Stress has been postulated to play a role in disease onset in the genetically susceptible patients. During the stress response, catecholamines and glucocorticoids are released from locus coeruleus and adrenal gland. These biomolecules exert control over various immune cells in the innate and adaptive arms of the immune system, thereby altering the cytokine profile released. The increase of IL-4 promotes T-helper 2 (Th2) cell differentiation, while the decrease in IL-12 and the increased IL-10 production reduce the number of T-helper 1 (Th1) cells. The relationship between stress and autoimmune diseases is intricate. Stress has been shown to be associated with disease onset, and disease exacerbations in rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Graves' disease as well as other autoimmune conditions. In certain conditions such as psoriasis, stress has been implicated in delaying lesion clearance upon the application of standard treatment regimes. Finally, psychological therapy and cognitive behavioral therapy aimed to reduce stress levels was shown to be effective in influencing better outcomes in many autoimmune diseases. The purpose of this paper is to closer inspect the clinical evidence regarding the role of stress on influencing the various aspects of disease entities.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abdulla Watad
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Nicola Luigi Bragazzi
- School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Howard Amital
- Department of Medicine 'B', Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arnon Afek
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Head of The Mosaic of Autoimmunity Project, Saint Petersburg State University, Israel; Head of The Mosaic of Autoimmunity Project, Saint Petersburg State University, Russia.
| |
Collapse
|
7
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
8
|
Gilli F, Chen X, Pachner AR, Gimi B. High-Resolution Diffusion Tensor Spinal Cord MRI Measures as Biomarkers of Disability Progression in a Rodent Model of Progressive Multiple Sclerosis. PLoS One 2016; 11:e0160071. [PMID: 27467829 PMCID: PMC4965026 DOI: 10.1371/journal.pone.0160071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
Disease in the spinal cord is a major component of disability in multiple sclerosis, yet current techniques of imaging spinal cord injury are insensitive and nonspecific. This study seeks to remove this major impediment to research in multiple sclerosis and other spinal cord diseases by identifying reliable biomarkers of disability progression using diffusion tensor imaging (DTI), a magnetic resonance imaging technique, to evaluate the spinal cord in a model of multiple sclerosis, i.e. the Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD). Mice with TMEV-IDD with varying levels of clinical disease were imaged using a 9.4T small animal MRI scanner. Axial diffusivity, radial diffusivity, and fractional anisotropy were calculated. Disability was assessed periodically using Rotarod assay and data were expressed as a neurological function index. Correlation was performed between DTI measurements and disability scores. TMEV-IDD mice displayed significant increased neurological deficits over time when compared with controls (p<0.0001). Concurrently, the values of fractional anisotropy and axial diffusivity were both decreased compared to controls (both p<0.0001), while radial diffusivity was increased (p<0.0001). Overall, fractional anisotropy changes were larger in white matter than in grey matter and differences were more pronounced in the ventral region. Lower disability scores were associated with decreased fractional anisotropy values measured in the ventral (r = 0.68; p<0.0001) and ventral-lateral (r = 0.70; p<0.0001) regions of the white matter. These data demonstrate that DTI measures of the spinal cord contribute to strengthening the association between neuroradiological markers and clinical disability, and support the use of DTI measures in spinal cord imaging in MS patients.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Xi Chen
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Andrew R. Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Barjor Gimi
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
9
|
Linsenbardt HR, Cook JL, Young EE, Vichaya EG, Young CR, Reusser NM, Storts R, Welsh CJ, Meagher MW. Social disruption alters pain and cognition in an animal model of multiple sclerosis. J Neuroimmunol 2015; 288:56-68. [PMID: 26531695 DOI: 10.1016/j.jneuroim.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/29/2023]
Abstract
Although pain and cognitive deficits are widespread and debilitating symptoms of multiple sclerosis (MS), they remain poorly understood. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS where disease course is exacerbated by prior stressors. Here chronic infection coupled with prior social stress increased pain behavior and impaired hippocampal-dependent memory consolidation during the demyelinating phase of disease in SJL mice. These results suggest that the TMEV model may be useful in investigating pain and cognitive impairments in MS. However, in contrast to prior Balb/cJ studies, stress failed to consistently alter behavioral and physiological indicators of disease course.
Collapse
Affiliation(s)
- H R Linsenbardt
- Department of Psychology, Texas A&M University, College Station, TX, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - J L Cook
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - E E Young
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - E G Vichaya
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - C R Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - N M Reusser
- Department of Psychology, Texas A&M University, College Station, TX, United States
| | - R Storts
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - C J Welsh
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - M W Meagher
- Department of Psychology, Texas A&M University, College Station, TX, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
10
|
Johnson RR, Maldonado Bouchard S, Prentice TW, Bridegam P, Rassu F, Young CR, Steelman AJ, Welsh TH, Welsh CJ, Meagher MW. Neonatal experience interacts with adult social stress to alter acute and chronic Theiler's virus infection. Brain Behav Immun 2014; 40:110-20. [PMID: 24632225 DOI: 10.1016/j.bbi.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/30/2022] Open
Abstract
Previous research has shown that neonatal handling has prolonged protective effects associated with stress resilience and aging, yet little is known about its effect on stress-induced modulation of infectious disease. We have previously demonstrated that social disruption stress exacerbates the acute and chronic phases of the disease when applied prior to Theiler's virus infection (PRE-SDR) whereas it attenuates disease severity when applied concurrently with infection (CON-SDR). Here, we asked whether neonatal handling would protect adult mice from the detrimental effects of PRE-SDR and attenuate the protective effects of CON-SDR on Theiler's virus infection. As expected, handling alone decreased IL-6 and corticosterone levels, protected the non-stressed adult mice from motor impairment throughout infection and reduced antibodies to myelin components (PLP, MBP) during the autoimmune phase of disease. In contrast, neonatal handling X PRE/CON-SDR elevated IL-6 and reduced corticosterone as well as increased motor impairment during the acute phase of the infection. Neonatal handling X PRE/CON-SDR continued to exacerbate motor impairment during the chronic phase, whereas only neonatal handling X PRE-SDR increased in antibodies to PLP, MOG, MBP and TMEV. Together, these results imply that while handling reduced the severity of later Theiler's virus infection in non-stressed mice, brief handling may not be protective when paired with later social stress.
Collapse
Affiliation(s)
- R R Johnson
- Advanced brain Monitoring, Inc, Carlsbad, CA 92008, United States
| | - S Maldonado Bouchard
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - T W Prentice
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - P Bridegam
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - F Rassu
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - C R Young
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - A J Steelman
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - T H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, United States
| | - C J Welsh
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States.
| |
Collapse
|
11
|
Brinkmeyer-Langford C, Rodrigues A, Kochan KJ, Haney R, Rassu F, Steelman AJ, Young C, Riggs P, Storts R, Meagher MW, Welsh CJ. Consequences of perinatal bisphenol A exposure in a mouse model of multiple sclerosis. Autoimmunity 2013; 47:57-66. [DOI: 10.3109/08916934.2013.832220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
13
|
Gomez FP, Steelman AJ, Young CR, Welsh CJ. Hormone and immune system interactions in demyelinating disease. Horm Behav 2013; 63:315-21. [PMID: 23137721 DOI: 10.1016/j.yhbeh.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/17/2022]
Abstract
The immune, endocrine and nervous systems communicate with each other through a myriad of molecules including cytokines, hormones and neurotransmitters. Alterations in the balance of the products of these systems affect susceptibility to autoimmune disease and also the progression of disease. One of the most intensely studied autoimmune diseases is multiple sclerosis (MS). The purpose of this review is to explore the relationships between sex hormones and MS disease progression and to attempt to understand the paradox that although women are more likely to develop MS, female sex hormones appear to be beneficial in symptom amelioration. The proposed mechanisms of the therapeutic action of estrogens will be discussed with respect to T cell polarization and also on CNS cell populations. Investigations into the pathogenesis of multiple sclerosis (MS) and animal models of MS have given insights into the interactions between the neuroendocrine systems and provide important potential therapeutic venues that may be expanded to other autoimmune and neurodegenerative conditions.
Collapse
Affiliation(s)
- Francisco P Gomez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
14
|
Chronic social stress impairs virus specific adaptive immunity during acute Theiler's virus infection. J Neuroimmunol 2012; 254:19-27. [PMID: 23021485 DOI: 10.1016/j.jneuroim.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/12/2023]
Abstract
Prior exposure to social disruption (SDR) stress exacerbates Theiler's murine encephalomyelitis virus (TMEV) infection, a model of multiple sclerosis. Here we examined the impact of SDR on T cell responses to TMEV infection in SJL mice. SDR impaired viral clearance and exacerbated acute disease. Moreover, TMEV infection alone increased CD4 and CD8 mRNA expression in brain and spleen while SDR impaired this response. SDR decreased both CD4(+) and CD8(+) virus-specific T cells in CNS, but not spleen. These findings suggest that SDR-induced suppression of virus-specific T cell responses contributes to impairments in viral clearance and exacerbation of acute disease.
Collapse
|
15
|
Yu LQ, Gao GL, Liu FJ, Zeng QJ. Dys-psychological Stress Effect on Expressions of P53 and NFκBp65 in Human Ovarian Carcinoma In Vivo. Chin J Cancer Res 2012; 24:245-8. [PMID: 23359775 DOI: 10.1007/s11670-012-0245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/20/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate the dys-psychological stress effect on the growth of subcutaneous xenotransplanted tumor in nude mice bearing human epithelium ovarian carcinoma, and the influence on P53 and NFκBp65 expressions. METHODS The subcutaneous tumor xenografts were established by implanting human epithelium ovarian carcinoma tissues into nude mice and the dys-psychological stress model was established with restraint. The mice were randomized into the following four treatment groups with each group six mice respectively: tumor group (group A), normal saline intraperitoneal injection; tumor with stress group (group B), normal saline intraperitoneal injection; tumor therapy group (group C), cisplatin intraperitoneal injection; and tumor therapy with stress group (group D), cisplatin intraperitoneal injection. The expressions of P53 and NFκBp65 in tumor tissues were determined by Western blotting. RESULTS The expressions of P53 and NFκBp65 in each restraint group were enhanced compared with the control groups (P<0.05). CONCLUSION The dys-psychological stress may induce the high expressions of P53 and NFκBp65 proteins and further promote tumor growth.
Collapse
Affiliation(s)
- Li-Qun Yu
- Department of Gynecology, Aviation General Hospital, Beijing 100012, China
| | | | | | | |
Collapse
|
16
|
Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW. Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 2011; 239:44-52. [PMID: 22000153 DOI: 10.1016/j.jneuroim.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Chronic social disruption stress (SDR) exacerbates acute and chronic phase Theiler's murine encephalomyelitis virus (TMEV) infection, a mouse model of multiple sclerosis. However, the precise mechanism by which this occurs remains unknown. The present study suggests that SDR exacerbates TMEV disease course by priming virus-induced neuroinflammation. It was demonstrated that IL-1β mRNA expression increases following acute SDR; however, IL-6 mRNA expression, but not IL-1β, is upregulated in response to chronic SDR. Furthermore, this study demonstrated SDR prior to infection increases infection related central IL-6 and IL-1β mRNA expression, and administration of IL-6 neutralizing antibody during SDR reverses this increase in neuroinflammation.
Collapse
Affiliation(s)
- E G Vichaya
- Dept. of Psychology, College of Liberal Arts, Texas A&M University, United States
| | | | | | | | | | | |
Collapse
|
17
|
Toniolo M, Bergamini C, Ferrero V, Morando G, Cicoira M, Vassanelli C. Severe acute left ventricular dysfunction in multiple sclerosis. J Cardiovasc Med (Hagerstown) 2011; 12:501-5. [DOI: 10.2459/jcm.0b013e32834102fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Majde JA. Neuroinflammation resulting from covert brain invasion by common viruses - a potential role in local and global neurodegeneration. Med Hypotheses 2010; 75:204-13. [PMID: 20236772 PMCID: PMC2897933 DOI: 10.1016/j.mehy.2010.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases are a horrendous burden for their victims, their families, and society as a whole. For half a century scientists have pursued the hypothesis that these diseases involve a chronic viral infection in the brain. However, efforts to consistently detect a specific virus in brains of patients with such diseases as Alzheimer's or multiple sclerosis have generally failed. Neuropathologists have become increasingly aware that most patients with neurodegenerative diseases demonstrate marked deterioration of the brain olfactory bulb in addition to brain targets that define the specific disease. In fact, the loss of the sense of smell may precede overt neurological symptoms by many years. This realization that the olfactory bulb is a common target in neurodegenerative diseases suggests the possibility that microbes and/or toxins in inhaled air may play a role in their pathogenesis. With regard to inhaled viruses, neuropathologists have focused on those viruses that infect and kill neurons. However, a recent study shows that a respiratory virus with no neurotropic properties can rapidly invade the mouse olfactory bulb from the nasal cavity. Available data suggest that this strain of influenza is passively transported to the bulb via the olfactory nerves (mechanism unknown), and is taken up by glial cells in the outer layers of the bulb. The infected glial cells appear to be activated by the virus, secrete proinflammatory cytokines, and block further spread of virus within the brain. At the time that influenza symptoms become apparent (15 h post-infection), but not prior to symptom onset (10 h post-infection), proinflammatory cytokine-expressing neurons are increased in olfactory cortical pathways and hypothalamus as well as in the olfactory bulb. The mice go on to die of pneumonitis with severe acute phase and respiratory disease symptoms but no classical neurological symptoms. While much remains to be learned about this intranasal influenza-brain invasion model, it suggests the hypothesis that common viruses encountered in our daily life may initiate neuroinflammation via olfactory neural networks. The numerous viruses that we inhale during a lifetime might cause the death of only a few neurons per infection, but this minor damage would accumulate over time and contribute to age-related brain shrinkage and/or neurodegenerative diseases. Elderly individuals with a strong innate inflammatory system, or ongoing systemic inflammation (or both), might be most susceptible to these outcomes. The evidence for the hypothesis that common respiratory viruses may contribute to neurodegenerative processes is developed in the accompanying article.
Collapse
Affiliation(s)
- Jeannine A Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
19
|
Young EE, Sieve AN, Vichaya EG, Carcoba LM, Young CR, Ambrus A, Storts R, Welsh CJR, Meagher MW. Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J Neuroimmunol 2010; 220:79-89. [PMID: 20167380 PMCID: PMC2856483 DOI: 10.1016/j.jneuroim.2010.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 12/20/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of the disease. The present data suggest that RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate that RS during early TMEV infection increases CNS lesion formation during the late phase and suggest that the effects of RS are sex-dependent.
Collapse
MESH Headings
- Animals
- Axons/immunology
- Axons/pathology
- Axons/virology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/physiopathology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Chronic Disease
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis/immunology
- Encephalomyelitis/physiopathology
- Encephalomyelitis/virology
- Female
- Male
- Mice
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Severity of Illness Index
- Sex Characteristics
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
- Theilovirus/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/virology
Collapse
Affiliation(s)
- Erin E Young
- Department of Psychology, College of Liberal Arts, Texas A&M University College Station, TX 77843, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meagher MW, Sieve AN, Johnson RR, Satterlee D, Belyavskyi M, Mi W, Prentice TW, Welsh TH, Welsh CJR. Neonatal maternal separation alters immune, endocrine, and behavioral responses to acute Theiler's virus infection in adult mice. Behav Genet 2010; 40:233-49. [PMID: 20135342 DOI: 10.1007/s10519-010-9333-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 01/09/2010] [Indexed: 12/01/2022]
Abstract
Previous studies have established a link between adverse early life events and subsequent disease vulnerability. The present study assessed the long-term effects of neonatal maternal separation on the response to Theiler's murine encephalomyelitis virus infection, a model of multiple sclerosis. Balb/cJ mouse pups were separated from their dam for 180-min/day (180-min MS), 15-min/day (15-min MS), or left undisturbed from postnatal days 2-14. During adolescence, mice were infected with Theiler's virus and sacrificed at days 14, 21, or 35 post-infection. Prolonged 180-min MS increased viral load and delayed viral clearance in the spinal cords of males and females, whereas brief 15-min MS increased the rate of viral clearance in females. The 15-min and 180-min MS mice exhibited blunted corticosterone responses during infection, suggesting that reduced HPA sensitivity may have altered the immune response to infection. These findings demonstrate that early life events alter vulnerability to CNS infection later in life. Therefore, this model could be used to study gene-environment interactions that contribute to individual differences in susceptibility to infectious and autoimmune diseases of the CNS.
Collapse
Affiliation(s)
- M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, TX, 77843-4235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Steelman AJ, Alford E, Young CR, Welsh TH, Meagher MW, Welsh CJR. Restraint stress fails to render C57BL/6 mice susceptible to Theiler's virus-induced demyelination. Neuroimmunomodulation 2010; 17:109-19. [PMID: 19923856 PMCID: PMC3214847 DOI: 10.1159/000258694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/16/2009] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multiple sclerosis is a degenerative disease of the CNS with a pathology consistent with immunological mediation. Although its cause is unknown, multiple factors are thought to influence both the onset and exacerbation of the disease, including both genetic background as well as environmental factors. METHODS We are interested in the effect of psychological stress on the onset and exacerbation of Theiler's virus-induced demyelinating disease (TVID), a murine model of MS in which viral persistence facilitates demyelination. In the current study, we determined whether chronic restraint stress (RS)-induced immunosuppression could result in the establishment of a persistent CNS infection in the normally TVID-resistant C57BL/6 mouse strain, resulting in demyelination. RESULTS Our data indicated that RS repeated over the course of 7 days was not sufficient to cause decreases in virus-specific adaptive immunity, and did not significantly alter CNS viral levels. Furthermore, chronic repeated RS lasting until 4 weeks after infection altered neither the development of virus-specific IgG nor motor function determined by Rotarod analysis. In addition, histological analysis of the CNS of stressed mice indicated no inflammation or demyelination on day 193 after infection. CONCLUSION These results suggest that stress alone is not sufficient to overcome genetic resistance to TVID in the C57BL/6 mouse strain.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Cardiovirus Infections/immunology
- Cardiovirus Infections/psychology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/psychology
- Disease Models, Animal
- Disease Susceptibility/immunology
- Disease Susceptibility/psychology
- Female
- Genetic Predisposition to Disease/genetics
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Inbred C57BL
- Movement Disorders/immunology
- Movement Disorders/physiopathology
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Stress, Psychological/immunology
- Theilovirus/immunology
- Viral Load/immunology
Collapse
Affiliation(s)
- Andrew J. Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Eric Alford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
| | - Thomas H. Welsh
- Department of Animal Science, College of Agriculture, Texas A&M University, College Station, Tex., USA
| | - Mary W. Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, Tex., USA
| | - C. Jane R. Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Tex., USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Tex., USA
- *Dr. C. Jane Welsh, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 (USA), Tel. +1 979 862 4974, Fax +1 979 847 8981, E-Mail
| |
Collapse
|
22
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Dean DD, Storts R, Welsh, Jr. TH, Meagher MW. Effects of stress on the immune response to Theiler's virus--implications for virus-induced autoimmunity. Neuroimmunomodulation 2010; 17:169-72. [PMID: 20134194 PMCID: PMC2857642 DOI: 10.1159/000258715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Psychological stress is an important factor in susceptibility to many diseases. Our laboratory has been investigating the impact of stress on the susceptibility to Theiler's virus-induced demyelination (TVID), a mouse model of multiple sclerosis. Using immunodominant viral peptides specific for identification of either CD4(+) or CD8(+) T cells, stress reduced IFN-gamma-producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells in the CNS. Expression of mRNA for the Th1 transcription factor T-bet and the Th2 transcription factor GATA-3 were decreased in spleen cells isolated from stressed mice. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus indicated that stress decreased both type 1 and type 2 responses. The adverse effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone, indicating a major role for glucocorticoids. Global stress-induced immunosuppression resulted in higher levels of virus replication and dissemination. The higher viral load subsequently led to an earlier disease onset and more severe clinical and histological signs of demyelinating disease. Our results have important implications for understanding the pathogenesis of MS, and suggest that stressful events during early infection with an agent capable of inducing demyelination may result in immunosuppression and failure to eliminate the pathogen, which in turn may lead to the development of MS.
Collapse
Affiliation(s)
- C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
- *Dr. C. Jane Welsh, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 (USA), Tel. +1 979 862 4974, Fax +1 979 847 8981, E-Mail
| | - Andrew J. Steelman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Wentao Mi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Dana D. Dean
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Ralph Storts
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Tex., USA
| | - Thomas H. Welsh, Jr.
- Department of Animal Science, College of Agriculture and Life Sciences, Tex., USA
| | - Mary W. Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, Tex., USA
| |
Collapse
|
23
|
Steelman AJ, Dean DD, Young CR, Smith R, Prentice TW, Meagher MW, Welsh CJR. Restraint stress modulates virus specific adaptive immunity during acute Theiler's virus infection. Brain Behav Immun 2009; 23:830-43. [PMID: 19348911 PMCID: PMC2710426 DOI: 10.1016/j.bbi.2009.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4(+) or CD8(+) T cells, we found that stress reduced IFN-gamma producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.
Collapse
Affiliation(s)
- Andrew J. Steelman
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Dana D. Dean
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Colin R. Young
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Roger Smith
- Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Thomas W. Prentice
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Mary W. Meagher
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - C. Jane R. Welsh
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A, Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| |
Collapse
|
24
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Storts R, Welsh TH, Meagher MW. Neuroimmune interactions in a model of multiple sclerosis. Ann N Y Acad Sci 2009; 1153:209-19. [PMID: 19236344 PMCID: PMC2862309 DOI: 10.1111/j.1749-6632.2008.03984.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychological stress has been implicated in both the onset and exacerbation of multiple sclerosis (MS). Our research has focused on the role of stress at the onset of MS, using the mouse model Theiler's murine encephalomyelitis virus-induced demyelination. Theiler's virus is a natural pathogen of mice that causes a persistent infection of the central nervous system (CNS) and inflammatory immune-mediated demyelination that is very similar to MS. Our research has shown that restraint stress sufficiently increases corticosterone secretion to cause immunosuppression. Stressed mice develop decreased innate and adaptive immune responses, including decreased chemokine and cytokine responses, to virus, which leads to increased viral replication within the CNS. Higher levels of virus then cause increased later demyelinating disease. These findings may have important implications in our understanding of the interactions between stress and the development of autoimmune diseases induced by infectious agents.
Collapse
Affiliation(s)
- C Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 2009; 14:4477-515. [PMID: 19273365 DOI: 10.2741/3543] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several lines of evidence indicate that gender affects the susceptibility and course of multiple sclerosis (MS) with a higher disease prevalence and overall better prognosis in women than men. This sex dimorphism may be explained by sex chromosome effects and effects of sex steroid hormones on the immune system, blood brain barrier or parenchymal central nervous system (CNS) cells. The well known improvement in disease during late pregnancy has also been linked to hormonal changes and has stimulated recent clinical studies to determine the efficacy of and tolerance to sex steroid therapeutic approaches. Both clinical and experimental studies indicate that sex steroid supplementation may be beneficial for MS. This could be related to anti-inflammatory actions on the immune system or CNS and to direct neuroprotective properties. Here, clinical and experimental data are reviewed with respect to the effects of sex hormones or gender in the pathology or therapy of MS or its rodent disease models. The different cellular targets as well as some molecular mechanisms likely involved are discussed.
Collapse
|
26
|
Young EE, Prentice TW, Satterlee D, McCullough H, Sieve AN, Johnson RR, Welsh TH, Welsh CJR, Meagher MW. Glucocorticoid exposure alters the pathogenesis of Theiler's murine encephalomyelitis virus during acute infection. Physiol Behav 2008; 95:63-71. [PMID: 18538803 DOI: 10.1016/j.physbeh.2008.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/26/2022]
Abstract
Previous research has shown that chronic restraint stress exacerbates Theiler's virus infection, a murine model for CNS inflammation and multiple sclerosis. The current set of experiments was designed to evaluate the potential role of glucocorticoids in the deleterious effects of restraint stress on acute CNS inflammatory disease. Exposure to chronic restraint stress resulted in elevated levels of corticosterone as well as increased clinical scores and weight loss (Experiment 1). In addition, corticosterone administration alone exacerbated behavioral signs of TMEV-induced sickness (i.e. decreased body weight, increased symptoms of encephalitis, and increased mortality) and reduced inflammation in the CNS (Experiment 2). Infected subjects receiving exogenous corticosterone showed exacerbation of acute phase measures of sickness and severe mortality as well as decreased viral clearance from CNS (Experiment 3). These findings indicate that corticosterone exposure alone is sufficient to exacerbate acute CNS inflammatory disease.
Collapse
Affiliation(s)
- Erin E Young
- Department of Psychology Texas A&M University Mailstop 4235, College Station, TX 77843, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meagher MW, Johnson RR, Young EE, Vichaya EG, Lunt S, Hardin EA, Connor MA, Welsh CJR. Interleukin-6 as a mechanism for the adverse effects of social stress on acute Theiler's virus infection. Brain Behav Immun 2007; 21:1083-95. [PMID: 17591434 PMCID: PMC2538675 DOI: 10.1016/j.bbi.2007.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 12/29/2022] Open
Abstract
Prior exposure to social disruption stress (SDR) exacerbates both the acute and chronic phase of Theiler's murine encephalomyelitis virus infection (TMEV; [Johnson, R.R., Storts, R., Welsh, T.H., Jr., Welsh, C.J., Meagher, M.W., 2004. Social stress alters the severity of acute Theiler's virus infection. J. Neuroimmunol. 148, 74--85; Johnson, R.R., Prentice, T.W., Bridegam, P., Young, C.R., Steelman, A.J., Welsh, T.H., Welsh, C.J.R., Meagher, M.W., 2006. Social stress alters the severity and onset of the chronic phase of Theiler's virus infection. J. Neuroimmunol. 175, 39--51]). However, the neuroimmune mechanism(s) mediating this effect have not been determined. The present study examined whether stress-induced increases in the proinflammatory cytokine interleukin-6 (IL-6) contributes to the adverse effects of SDR on acute TMEV infection. Experiment 1 demonstrated that SDR increases central and peripheral levels of IL-6 and that this effect is reversed by intracerebral ventricular infusion of neutralizing antibody to IL-6 prior to each of six SDR sessions. Although SDR reduced the sensitivity of spleen cells to the anti-inflammatory effects of corticosterone, the neutralizing antibody to IL-6 did not alter this effect. To investigate whether stress-induced increases in IL-6 contribute to the exacerbation of acute TMEV infection, Experiment 2 examined whether intracerebral administration of neutralizing antibody to IL-6 during SDR would prevent the subsequent exacerbation of acute TMEV infection. Experiment 3 then replaced the social stress with intracerebral infusion of IL-6 to assess sufficiency. As expected, prior exposure to SDR subsequently increased infection-related sickness behaviors, motor impairment, CNS viral titers, and CNS inflammation. These deleterious effects of SDR were either prevented or significantly attenuated by intracerebral infusion of neutralizing antibody to IL-6 during the stress exposure period. However, infusion of IL-6 alone did not mimic the adverse effects of SDR. We conclude that IL-6 is necessary but not sufficient to exacerbate acute TMEV infection.
Collapse
Affiliation(s)
- Mary W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Meagher MW, Johnson RR, Vichaya EG, Young EE, Lunt S, Welsh CJ. Social conflict exacerbates an animal model of multiple sclerosis. TRAUMA, VIOLENCE & ABUSE 2007; 8:314-30. [PMID: 17596348 DOI: 10.1177/1524838007303506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A growing body of evidence suggests that social conflict is associated with inflammatory disease onset and exacerbations in multiple sclerosis (MS) patients and in animal models of MS. This review illustrates how animal research can be used to elucidate the biobehavioral mechanisms underlying the adverse health effects of social conflict. The authors review studies indicating that social conflict exacerbates a virally initiated animal model of MS. This research suggests that the deleterious effects of social conflict may be partially mediated by stress-induced increases in pro-inflammatory cytokine levels in the central nervous system. In addition, they provide evidence that the adverse health effects of social conflict can be prevented by blocking the stress-induced increases in cytokine activity. This suggests that interventions designed to prevent or reverse the stress-induced increases in cytokine activity may be able to prevent or reverse some of the negative health effects of social conflict in humans.
Collapse
|
29
|
Heesen C, Gold SM, Huitinga I, Reul JMHM. Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis - a review. Psychoneuroendocrinology 2007; 32:604-18. [PMID: 17602841 DOI: 10.1016/j.psyneuen.2007.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/29/2007] [Accepted: 05/04/2007] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease of the CNS with an assumed autoimmune-mediated pathogenesis. Stressful life events have been hypothesized as potential triggers of disease exacerbation. Animal studies using experimental autoimmune encephalomyelitis (EAE), as a model for MS, suggest that decreased hypothalamic-pituitary-adrenal (HPA) function may play a role in the increased susceptibility and severity of the disease. Histopathological studies of the hypothalamus point to disturbances in corticotropin-releasing hormone (CRH) regulation as a result of MS lesions in this area. Functional endocrine tests (e.g., the combined Dexamethasone-CRH test) showed a disturbed negative feedback after steroid application in MS patients. Hyper- and hypoactivity of the HPA axis, have been described to be associated with more severe courses. This paper presents an overview of the evidence for a role of HPA dysfunction in EAE and MS based on stress-experimental studies.
Collapse
Affiliation(s)
- C Heesen
- Institute of Neuroimmunology and Clinical MS Research (INiMS), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
30
|
Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 2007; 217:65-78. [PMID: 17498052 DOI: 10.1111/j.1600-065x.2007.00519.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells are well known for their involvement in allergic and anaphylactic reactions, during which immunoglobulin E (IgE) receptor (Fc epsilon RI) aggregation leads to exocytosis of the content of secretory granules (1000 nm), commonly known as degranulation, and secretion of multiple mediators. Recent findings implicate mast cells also in inflammatory diseases, such as multiple sclerosis, where mast cells appear to be intact by light microscopy. Mast cells can be activated by bacterial or viral antigens, cytokines, growth factors, and hormones, leading to differential release of distinct mediators without degranulation. This process appears to involve de novo synthesis of mediators, such as interleukin-6 and vascular endothelial growth factor, with release through secretory vesicles (50 nm), similar to those in synaptic transmission. Moreover, the signal transduction steps necessary for this process appear to be largely distinct from those known in Fc epsilon RI-dependent degranulation. How these differential mast cell responses are controlled is still unresolved. No clinically available pharmacological agents can inhibit either degranulation or mast cell mediator release. Understanding this process could help develop mast cell inhibitors of selective mediator release with novel therapeutic applications.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts - New England Medical Center, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
31
|
Mi W, Young CR, Storts RW, Steelman AJ, Meagher MW, Welsh CJR. Restraint stress facilitates systemic dissemination of Theiler's virus and alters its pathogenecity. Microb Pathog 2006; 41:133-43. [PMID: 16949789 DOI: 10.1016/j.micpath.2006.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Accepted: 06/12/2006] [Indexed: 11/27/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV), a Picornavirus used as a viral model for multiple sclerosis (MS), causes an acute encephalomyelitis and chronic demyelination. The failure to clear the virus, which can result from stress, is a prerequisite for development of the later disease. Similarly, stressful life events have been associated with the development of MS. In the present study, a restraint stress (RS) model was used to investigate the effect of stress on the systemic dissemination of TMEV during the early stage of disease. Experimental data demonstrated that repeated RS remarkably facilitated the spread of virus from the CNS to such systemic organs as the spleen, lymph nodes, thymus, lungs and heart and compromised the ability of viral clearance within those tissues. RS also altered the pathogenecity of TMEV, enabling it to become cardiotropic, resulting in higher myocardial infectivity. These results demonstrate the profound impact that RS has upon both the tissue and organ dissemination of the virus, and the organ tropism of TMEV. An additional finding associated with stress was hepatic necrosis in the restrained animals, regardless of whether or not they were infected.
Collapse
Affiliation(s)
- Wentao Mi
- Genetics Program, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | |
Collapse
|
32
|
Akgül F, McLek I, Duman T, Seyfelì E, Seydaliyeva T, Yalçin F. Subclinical left ventricular dysfunction in multiple sclerosis. Acta Neurol Scand 2006; 114:114-8. [PMID: 16867034 DOI: 10.1111/j.1600-0404.2006.00662.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the left (LV) and right ventricular (RV) function in multiple sclerosis (MS) using standard echocardiography and Doppler tissue imaging (DTI). MATERIALS AND METHODS A total of 41 patients with definite MS and 32 healthy controls were included in the study. RESULTS LV end-systolic dimension was increased and LV ejection fraction was decreased in MS patients compared with controls (P < 0.05). LV end-diastolic dimension was increased in MS patients, however, did not reach significance. Among DTI parameters, mitral annular peak early diastolic velocity to peak late diastolic velocity ratio (Em/Am) was decreased in MS patients, but not reach statistical significance. No significant differences in tricuspid annular Em/Am ratio was found between MS patients and controls. A statistically significant increase of DTI derived LV myocardial performance index was found in MS patients as compared with controls. RV myocardial performance index showed a tendency to be increased in MS patients, however, did not reach significance. CONCLUSIONS These findings suggest subclinical LV dysfunction and preserved RV function in patients with MS.
Collapse
Affiliation(s)
- Ferit Akgül
- Mustafa Kemal University, Faculty of Medicine, Department of Cardiology, Antakya, Turkey.
| | | | | | | | | | | |
Collapse
|
33
|
Mi W, Prentice TW, Young CR, Johnson RR, Sieve AN, Meagher MW, Welsh CJR. Restraint stress decreases virus-induced pro-inflammatory cytokine mRNA expression during acute Theiler's virus infection. J Neuroimmunol 2006; 178:49-61. [PMID: 16828879 DOI: 10.1016/j.jneuroim.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 05/13/2006] [Accepted: 05/17/2006] [Indexed: 11/30/2022]
Abstract
Stressful life events have been associated with the onset and/or exacerbation of multiple sclerosis (MS). Our previous studies have indicated that restraint stress (RS) reduces inflammation and virus-induced chemokine expression in the Theiler's virus-induced demyelination (TVID) model of MS. Here we report that RS significantly reduced the virus-induced interferon-gamma mRNA levels in the brain. Additionally, mRNA levels of lymphotoxin-beta, tumor necrosis factor-alpha, and interferon-gamma in the brain were negatively correlated with viral titers in the brain. These results indicated an immunosuppressive effect of stress during early TVID causing impaired viral clearance, which may be a potential exacerbating factor for later demyelination.
Collapse
Affiliation(s)
- W Mi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Sieve AN, Steelman AJ, Young CR, Storts R, Welsh TH, Welsh CJR, Meagher MW. Sex-dependent effects of chronic restraint stress during early Theiler's virus infection on the subsequent demyelinating disease in CBA mice. J Neuroimmunol 2006; 177:46-62. [PMID: 16762424 DOI: 10.1016/j.jneuroim.2006.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/18/2006] [Accepted: 04/24/2006] [Indexed: 11/20/2022]
Abstract
Chronic restraint stress, administered during early infection with Theiler's virus, was found to exacerbate the acute CNS viral infection in male and female mice. During the subsequent demyelinating phase of disease (a model of multiple sclerosis), the effect of stress on disease progression was sex-dependent. Previously stressed male mice had less severe behavioral signs of the chronic phase, better rotarod performance and decreased inflammatory lesions of the spinal cord, while the opposite pattern was observed in females. In addition, mice in all groups developed autoantibodies to MBP, PLP139-151 and MOG33-55.
Collapse
MESH Headings
- Acute Disease
- Animals
- Autoantibodies/immunology
- Behavior, Animal/physiology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/physiopathology
- Chronic Disease
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Disease Models, Animal
- Female
- Immune Tolerance/immunology
- Male
- Mice
- Mice, Inbred CBA
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/virology
- Myelin Proteins/immunology
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Restraint, Physical
- Sex Factors
- Spinal Cord/immunology
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
- Theilovirus/immunology
- Time Factors
Collapse
Affiliation(s)
- Amy N Sieve
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station 77843-4235, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Johnson RR, Prentice TW, Bridegam P, Young CR, Steelman AJ, Welsh TH, Welsh CJR, Meagher MW. Social stress alters the severity and onset of the chronic phase of Theiler's virus infection. J Neuroimmunol 2006; 175:39-51. [PMID: 16631261 DOI: 10.1016/j.jneuroim.2006.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/03/2006] [Accepted: 02/27/2006] [Indexed: 11/15/2022]
Abstract
Social stress alters the acute phase of Theiler's virus infection (TMEV), a model of multiple sclerosis. Stress applied prior to infection had deleterious disease outcomes, while stress applied concurrent with infection was protective. The current study examined multiple behavioral (motor impairment, open field activity) and immunological measures (IL-6, antibodies to virus and myelin proteins) in both the acute and chronic phases of TMEV. It was found that stress applied prior to infection exacerbated disease outcomes, while concurrent application was protective in both disease phases.
Collapse
Affiliation(s)
- Robin R Johnson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, 77843-4235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mohr DC, Pelletier D. A temporal framework for understanding the effects of stressful life events on inflammation in patients with multiple sclerosis. Brain Behav Immun 2006; 20:27-36. [PMID: 15894458 DOI: 10.1016/j.bbi.2005.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/13/2005] [Accepted: 03/27/2005] [Indexed: 11/20/2022] Open
Abstract
A growing literature reports that stressful life events are associated with exacerbation and the subsequent development of brain lesions in patients with multiple sclerosis (MS). The evolution an MS exacerbation occurs over a period of many months and involves many different biological processes that change over time. Likewise, the experience of stress also occurs over time, with an onset, a shift from acute to chronic in some cases, and resolution. Each of these phases is associated with unique biological features. Thus, the impact of stress on MS exacerbation may depend on the temporal trajectories of stress and MS exacerbation, and when the intersection between these two trajectories occurs. This paper presents a temporal model, along with three different temporal relationships and associated mechanisms by which stress may impact MS exacerbation. These include the onset of a stressor, which may be mediated by mast cell activation, the point that a stressor begins to become chronic, which may be mediated by glucocorticoid resistance in immune cells, and the resolution of the stressor, which may be mediated by a drop in cortisol. These three hypotheses are not necessarily mutually exclusive. Data on psychosocial mediators and moderators are also briefly reviewed and future research directions are discussed.
Collapse
Affiliation(s)
- David C Mohr
- Department of Psychiatry and Neurology, University of California, San Francisco, CA 94131, USA.
| | | |
Collapse
|
37
|
Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 2005; 171:72-85. [PMID: 16278020 DOI: 10.1016/j.jneuroim.2005.09.012] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022]
Abstract
The immunosuppressive nature of glucocorticoids has been well documented both in vitro and in vivo. This glucocorticoid-mediated immunosuppression has also been observed in immune cells within the central nervous system (CNS). For example, microglia have previously been shown to exhibit decreased proliferation, cytokine production, and antigen presentation upon treatment with glucocorticoids in vitro. Despite these in vitro findings, the impact of glucocorticoids on microglia function in vivo has not been fully investigated. To determine the interaction between glucocorticoids and microglia within the CNS, we used a restraint model of psychological stress to elevate corticosterone levels in mice. Quantification of microglia from stressed mice indicated that four sessions of stress induced the proliferation of microglia. This proliferation was a function of corticosterone-induced activation of the N-methyl-D-aspartate (NMDA) receptor within the CNS since blockade of corticosterone synthesis, the glucocorticoid receptor, or the NMDA receptor each prevented stress-induced increases in microglia number. In addition, the NMDA receptor antagonist MK-801 prevented increases in microglia following exogenous corticosterone administration to non-stressed mice. We conclude that activation of the NMDA receptor and subsequent microglia proliferation is a downstream effect of elevated corticosterone levels. These findings demonstrate that elevated levels of glucocorticoids are able to activate microglia in vivo and suggest that stress is able to induce a pro-inflammatory response within the CNS. A pro-inflammatory microglia response may be a contributing factor in the development of various stress-induced inflammatory conditions in the CNS.
Collapse
Affiliation(s)
- Aji Nair
- Graduate Program in Neuroscience, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | |
Collapse
|
38
|
Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005; 5:243-51. [PMID: 15738954 DOI: 10.1038/nri1571] [Citation(s) in RCA: 1338] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Folk wisdom has long suggested that stressful events take a toll on health. The field of psychoneuroimmunology (PNI) is now providing key mechanistic evidence about the ways in which stressors--and the negative emotions that they generate--can be translated into physiological changes. PNI researchers have used animal and human models to learn how the immune system communicates bidirectionally with the central nervous and endocrine systems and how these interactions impact on health.
Collapse
Affiliation(s)
- Ronald Glaser
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Public Health and Institute for Behavioral Medical Research, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
39
|
Engler A, Roy S, Sen CK, Padgett DA, Sheridan JF. Restraint stress alters lung gene expression in an experimental influenza A viral infection. J Neuroimmunol 2005; 162:103-11. [PMID: 15833365 DOI: 10.1016/j.jneuroim.2005.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/24/2005] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
In the present study the global effect of restraint stress on gene expression in the murine lung during an experimental influenza A/PR8 viral infection was examined. Gene expression profiling using high density oligonucleotide microarrays revealed that the expression of 95 genes was altered on day 3 post infection (p.i.), while 48 genes were altered on day 7 p.i. Restraint stress reduced and delayed the expression of specific cytokines, cell adhesion molecules and cell surface receptors indicating alterations in cell migration to the site of infection. Furthermore, mapping of the candidate genes to known pathways revealed that genes associated with host defense and immune responses, including chemotaxis and chemokine function, antigen presentation and processing, MHC class II receptor function and inflammation were the major pathways affected by restraint stress.
Collapse
Affiliation(s)
- Andrea Engler
- Laboratory of Neuroendocrine Immunology, Section of Oral Biology, College of Dentistry, The Ohio State University Health Sciences Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|