1
|
Frungieri MB, Mayerhofer A. Biogenic amines in the testis: sources, receptors and actions. Front Endocrinol (Lausanne) 2024; 15:1392917. [PMID: 38966220 PMCID: PMC11222591 DOI: 10.3389/fendo.2024.1392917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
Biogenic amines are signaling molecules with multiple roles in the central nervous system and in peripheral organs, including the gonads. A series of studies indicated that these molecules, their biosynthetic enzymes and their receptors are present in the testis and that they are involved in the regulation of male reproductive physiology and/or pathology. This mini-review aims to summarize the current knowledge in this field and to pinpoint existing research gaps. We suggest that the widespread clinical use of pharmacological agonists/antagonists of these signaling molecules, calls for new investigations in this area. They are necessary to evaluate the relevance of biogenic amines for human male fertility and infertility, as well as the potential value of at least one of them as an anti-aging compound in the testis.
Collapse
Affiliation(s)
- Monica Beatriz Frungieri
- Laboratorio de neuro-inmuno-endocrinología testicular, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Meikle CKS, Creeden JF, McCullumsmith C, Worth RG. SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep 2021; 41:325-335. [PMID: 34254465 PMCID: PMC8411309 DOI: 10.1002/npr2.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that may have clinical utility in treating severe pulmonary manifestations of COVID-19. SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of proinflammatory transcription factor activity, including NF-κB and STAT3; (b) downregulation of lung tissue damage and proinflammatory cell recruitment via inhibition of cytokines, including IL-6, IL-8, TNF-α, and IL-1β; and (c) direct suppression inflammatory cells, including T cells, macrophages, and platelets. These pathways are implicated in the pathogenesis of COVID-19. In this review, we will compare the pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-associated inflammatory lung disease.
Collapse
Affiliation(s)
- Claire Kyung Sun Meikle
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cheryl McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
3
|
Sobieszczańska A, Lis M, Suszko-Pawłowska A, Szczypka M. Clomipramine, a tricyclic antidepressant, and selegiline, a monoamine oxidase-B inhibitor, modulate the activity of phagocytic cells after oral administration in mice. J Pharm Pharmacol 2020; 72:836-842. [PMID: 32144951 DOI: 10.1111/jphp.13251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/09/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Our aim was to find out whether clomipramine, a tricyclic antidepressant, and selegiline, a monoamine oxidase-B inhibitor, influence the activity of phagocytic cells after in-vivo administration in mice. METHODS Clomipramine and selegiline were administered to Balb/c mice orally at a dose of 1 mg/kg, 7 or 14 times. IL-1β and nitric oxide (NO) levels were measured in supernatants of the peritoneal macrophage cultures stimulated in vitro with lipopolysaccharide from Escherichia coli. The phagocytic activity of the granulocytes and monocytes was determined using a commercial Phagotest 24 and 72 h after the last dose of the investigated drugs. KEY FINDINGS Seven doses of clomipramine or selegiline decreased IL-1β production, while a rise in its synthesis was observed after 14 doses of selegiline. Clomipramine administered 14 times increased NO production. Clomipramine and selegiline administered seven times reduced the percentage of phagocytosing granulocytes. The drugs administered 14 times increased the percentage of phagocytosing granulocytes and decreased the percentage of phagocytosing monocytes. CONCLUSIONS Both clomipramine and selegiline administered in vivo changed the phagocytic activity of blood cells and IL-1β and NO production by murine peritoneal macrophages. This effect depended on the drug, the number of doses and the type of phagocytic cells.
Collapse
Affiliation(s)
- Anna Sobieszczańska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Agnieszka Suszko-Pawłowska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Miner NB, Phillips TJ, Janowsky A. The Role of Biogenic Amine Transporters in Trace Amine-Associated Receptor 1 Regulation of Methamphetamine-Induced Neurotoxicity. J Pharmacol Exp Ther 2019; 371:36-44. [PMID: 31320495 PMCID: PMC6750185 DOI: 10.1124/jpet.119.258970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (MA) impairs vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function and expression, increasing intracellular DA levels that lead to neurotoxicity. The trace amine-associated receptor 1 (TAAR1) is activated by MA, but when the receptor is not activated, MA-induced neurotoxicity is increased. To investigate interactions among TAAR1, VMAT2, and DAT, transporter function and expression were measured in transgenic Taar1 knockout (KO) and wild-type (WT) mice 24 hours following a binge-like regimen (four intraperitoneal injections, 2 hours apart) of MA (5 mg/kg) or the same schedule of saline treatment. Striatal synaptosomes were separated by fractionation to examine the function and expression of VMAT2 localized to cytosolic and membrane-associated vesicles. DAT was measured in whole synaptosomes. VMAT2-mediated [3H]DA uptake inhibition was increased in Taar1 KO mice in synaptosomal and vesicular fractions, but not the membrane-associated fraction, compared with Taar1 WT mice. There was no difference in [3H]dihydrotetrabenazine binding to the VMAT2 or [125I]RTI-55 binding to the DAT between genotypes, indicating activation of TAAR1 does not affect VMAT2 or DAT expression. There was also no difference between Taar1 WT and KO mice in DAT-mediated [3H]DA uptake inhibition following in vitro treatment with MA. These findings provide the first evidence of a TAAR1-VMAT2 interaction, as activation of TAAR1 mitigated MA-induced impairment of VMAT2 function, independently of change in VMAT2 expression. Additionally, the interaction is localized to intracellular VMAT2 on cytosolic vesicles and did not affect expression or function of DAT in synaptosomes or VMAT2 at the plasmalemmal surface, i.e., on membrane-associated vesicles. SIGNIFICANCE STATEMENT: Methamphetamine stimulates the G protein-coupled receptor TAAR1 to affect dopaminergic function and neurotoxicity. Here we demonstrate that a functional TAAR1 protects a specific subcellular fraction of VMAT2, but not the dopamine transporter, from methamphetamine-induced effects, suggesting new directions in pharmacotherapeutic development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicholas B Miner
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Ahmad MF, Ferland D, Ayala-Lopez N, Contreras GA, Darios E, Thompson J, Ismail A, Thelen K, Moeser AJ, Burnett R, Anantharam A, Watts SW. Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arterioscler Thromb Vasc Biol 2019; 39:188-199. [PMID: 30567483 PMCID: PMC6344267 DOI: 10.1161/atvbaha.118.311720] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Objective- Perivascular adipose tissue (PVAT) contains an independent adrenergic system that can take up, metabolize, release, and potentially synthesize the vasoactive catecholamine norepinephrine. Norepinephrine has been detected in PVAT, but the mechanism of its protection within this tissue is unknown. Here, we investigate whether PVAT adipocytes can store norepinephrine using VMAT (vesicular monoamine transporter). Approach and Results- High-performance liquid chromatography identified norepinephrine in normal male Sprague Dawley rat aortic, superior mesenteric artery, and mesenteric resistance vessel PVATs, and retroperitoneal fat. Real-time polymerase chain reaction revealed VMAT1 and VMAT2 mRNA expression in the adipocytes and stromal vascular fraction of mesenteric resistance vessel PVAT. Immunofluorescence demonstrated the presence of VMAT1 and VMAT2, and the colocalization of VMAT2 with norepinephrine, in the cytoplasm of adipocytes in mesenteric resistance vessel PVAT. A protocol was developed to capture real-time uptake of Mini 202-a functional and fluorescent VMAT probe-in live rat PVAT adipocytes. Mini 202 was taken up by freshly isolated and differentiated adipocytes from mesenteric resistance vessel PVAT and adipocytes from thoracic aortic and superior mesenteric artery PVATs. In adipocytes freshly isolated from mesenteric resistance vessel PVAT, addition of rose bengal (VMAT inhibitor), nisoxetine (norepinephrine transporter inhibitor), or corticosterone (organic cation 3 transporter inhibitor) significantly reduced Mini 202 signal. Immunofluorescence supports that neither VMAT1 nor VMAT2 is present in retroperitoneal adipocytes, suggesting that PVAT adipocytes may be unique in storing norepinephrine. Conclusions- This study supports a novel function of PVAT adipocytes in storing amines in a VMAT-dependent manner. It provides a foundation for future studies exploring the purpose and mechanisms of norepinephrine storage by PVAT in normal physiology and obesity-related hypertension.
Collapse
Affiliation(s)
- Maleeha F Ahmad
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - David Ferland
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Nadia Ayala-Lopez
- Department of Laboratory Medicine, Yale University, New Haven, CT (N.A.-L.)
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Emma Darios
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Janice Thompson
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Alexander Ismail
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Robert Burnett
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Arun Anantharam
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor (A.A.)
| | - Stephanie W Watts
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| |
Collapse
|
6
|
Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A. Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter. J Med Chem 2018; 61:9121-9131. [PMID: 30240563 DOI: 10.1021/acs.jmedchem.8b00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Collapse
Affiliation(s)
- Brian A Provencher
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States.,Department of Chemistry and Biochemistry , Merrimack College , North Andover , Massachusetts 01845 , United States
| | - Amy J Eshleman
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - Robert A Johnson
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States
| | - Xiao Shi
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States
| | - Olga Kryatova
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Jared Nelson
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Jianhua Tian
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Mario Gonzalez
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Peter C Meltzer
- Organix Inc , 240 Salem Street , Woburn , Massachusetts 01801 , United States
| | - Aaron Janowsky
- Research Service , VA Portland Health Care System , Portland , Oregon 97239 , United States.,Departments of Psychiatry and Behavioral Neuroscience , Oregon Health and Science University , Portland , Oregon 97239 , United States.,The Methamphetamine Abuse Research Center , Oregon Health and Science University , Portland , Oregon 97239 , United States
| |
Collapse
|
7
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Ismail A, Ayala-Lopez N, Ahmad M, Watts SW. 3T3-L1 cells and perivascular adipocytes are not equivalent in amine transporter expression. FEBS Lett 2016; 591:137-144. [PMID: 27926779 DOI: 10.1002/1873-3468.12513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/05/2022]
Abstract
Rat perivascular adipose tissue (PVAT) stores, takes up, and releases norepinephrine (NE; Ayala-Lopez et al. (2014) Pharmacol Res Perspect 2, e00041). We hypothesized that 3T3-L1 adipocytes would exhibit similar behaviors and, thus, could serve as a model for PVAT adipocytes. However, basal levels of NE were not detected in 3T3-L1 adipocytes. While incubation of 3T3-L1 adipocytes with exogenous NE increased their cellular NE content, the mRNA expression of several NE transporters [e.g., norepinephrine transporter (NET)] were not detected in these cells. Similarly, we observed expression of the vesicular monoamine transporter 1 (VMAT1) in 3T3-L1 adipocytes by qRT-PCR and immunostaining, but stimulation of the cells with tyramine (100 μm) did not cause a significant release of NE. These studies support that 3T3-L1 adipocytes are not an adequate model of perivascular adipocytes for studying NE handling.
Collapse
Affiliation(s)
- Alex Ismail
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Maleeha Ahmad
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Popova D, Forsblad A, Hashemian S, Jacobsson SOP. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells. PLoS One 2016; 11:e0166750. [PMID: 27861613 PMCID: PMC5115802 DOI: 10.1371/journal.pone.0166750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.
Collapse
Affiliation(s)
- Dina Popova
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Andréas Forsblad
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Sanaz Hashemian
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stig O. P. Jacobsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
10
|
Nazimek K, Strobel S, Bryniarski P, Kozlowski M, Filipczak-Bryniarska I, Bryniarski K. The role of macrophages in anti-inflammatory activity of antidepressant drugs. Immunobiology 2016; 222:823-830. [PMID: 27453459 DOI: 10.1016/j.imbio.2016.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Depression is a common disease influencing patients' quality of life, whose etiology involves complex interactions of environmental, genetic and immunological factors. The latter factors include proinflammatory activation of monocytes and macrophages and increased serum levels of proinflammatory cytokines, altogether formulated as the "macrophage theory of depression". Our current review summarizes the impact of the most commonly used antidepressant drugs on the immune response with special emphasis on the role of macrophages in the clinically observed effects. The anti-inflammatory action of antidepressants mainly results from their direct interaction with immune cells and from changes in the concentration and the relations of neurotransmitters sensed by these cells. The summarized data revealed that Mφs are one of the leading cell populations involved in drug-mediated immune effects that can be observed both in subjects with depression as well as in individuals not suffering from depression. Thus, currently reviewed immunomodulatory effects of the experimental use of different antidepressant drugs suggest the possibility of utilizing them in complex therapeutic strategies dedicated to various inflammatory and immune-mediated diseases. It is worth noting that an excessive inflammatory reaction is also associated with the pathogenesis of various cardiovascular, metabolic and neuro-endocrine diseases. Thus, the inclusion of antidepressants in the complex therapy of these disorders may have beneficial effects through the enhancement of the mood of the patient and alleviation of chronic inflammation. On the other hand, presented data suggest that the influence of chronically used antidepressants on anti-microbial and anti-tumor immunity could also be taken into consideration.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland.
| | - Spencer Strobel
- Students' Scientific Society, Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland.
| | - Paweł Bryniarski
- Students' Scientific Society, Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland; Students' Scientific Society, Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 10 Sniadeckich St, PL 31-531 Krakow, Poland.
| | - Michael Kozlowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland; Students' Scientific Society, Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 10 Sniadeckich St, PL 31-531 Krakow, Poland.
| | - Iwona Filipczak-Bryniarska
- Department of Pain Treatment and Palliative Care, Jagiellonian University Medical College, 10 Sniadeckich St, PL 31-531 Krakow, Poland.
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St, PL 31-121 Krakow, Poland.
| |
Collapse
|
11
|
Histone deacetylase HDAC1 downregulates transcription of the serotonin transporter (5-HTT) gene in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:909-18. [DOI: 10.1016/j.bbagrm.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/01/2015] [Accepted: 05/23/2015] [Indexed: 12/27/2022]
|
12
|
Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation. Mol Cell Biol 2015; 35:2024-34. [PMID: 25825525 DOI: 10.1128/mcb.00985-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXRα serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXRα at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXRα S198, and this was lost in LXR-deficient BMDMs. LXRα occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXRα (RAW-LXRα S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXRα (RAW-LXRα WT). Expression profiling of ligand-treated RAW-LXRα S198A cells compared to RAW-LXRα WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXRα S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXRα S198 phosphorylation, including that of antiatherogenic genes such as CCR7.
Collapse
|
13
|
Durairaj H, Steury MD, Parameswaran N. Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. Int Immunopharmacol 2015; 25:485-92. [PMID: 25744603 DOI: 10.1016/j.intimp.2015.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that is clinically used for the treatment of depression in human patients. Because of recent reports on the role of serotonin in modulating inflammation and the link between inflammation and depression, we sought to test the effect of paroxetine directly on macrophage response to an inflammatory stimulus. Lipopolysaccharide (LPS) treatment of mouse macrophages significantly enhanced TNFα and IL-6 production. Paroxetine treatment of macrophages, however, significantly inhibited LPS-induced IL-6 production. In contrast, paroxetine enhanced LPS-induced TNFα production in macrophages. These effects of paroxetine were mimicked by fluoxetine, another SSRI. To determine if the effects of paroxetine are mediated via modulation of the 5-HT system, we treated macrophages with 5-HT or 5-HT receptor antagonist (LY215840) in the presence of LPS and/or paroxetine. 5-HT treatment by itself did not affect LPS-induced cytokine production. LY215840, however, reversed paroxetine's effect on LPS-induced TNFα production but not IL-6. To understand the signaling mechanisms, we examined paroxetine's effect on MAPK and NFκB pathways. While paroxetine inhibited LPS-induced IκBα phosphorylation, MAPK pathways were mostly unaffected. Together these data demonstrate that paroxetine has critical but differential effects on IL-6 and TNFα production in macrophages and that it likely regulates these cytokines via distinct mechanisms.
Collapse
Affiliation(s)
- Haritha Durairaj
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
14
|
Kim K. Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin. Biomol Ther (Seoul) 2014; 20:506-12. [PMID: 24009842 PMCID: PMC3762292 DOI: 10.4062/biomolther.2012.20.6.506] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022] Open
Abstract
Although pruritus is the critical symptom of atopic dermatitis that profoundly affect the patients' quality of life, controlling and management of prurirtus still remains as unmet needs mainly due to the distinctive multifactorial pathogenesis of pruritus in atopic dermatitis. Based on the distinct feature of atopic dermatitis that psychological state of patients substantially influence on the intensity of pruritus, various psychotropic drugs have been used in clinic to relieve pruritus of atopic dermatitis patients. Only several psychotropic drugs were reported to show real antipruritic effects in atopic dermatitis patients including naltrexone, doxepin, trimipramine, bupropion, tandospirone, paroxetine and fluvoxamine. However, the precise mechanisms of antipruritic effect of these psychotropic drugs are still unclear. In human skin, serotonin receptors and serotonin transporter protein are expressed on skin cells such as keratinocytes, melanocytes, dermal fibroblasts, mast cells, T cells, natural killer cells, langerhans cells, and sensory nerve endings. It is noteworthy that serotonergic drugs, as well as serotonin itself, showed immune-modulating effect. Fenfluramine, fluoxetine and 2, 5-dimethoxy-4-iodoamphetamine significantly decreased lymphocyte proliferation. It is still questionable whether these serotonergic drugs exert the immunosuppressive effects via serotonin receptor or serotonin transporter. All these clinical and experimental reports suggest the possibility that antipruritic effects of selective serotonin reuptake inhibitors in atopic dermatitis patients might be at least partly due to their suppressive effect on T cells. Further studies should be conducted to elucidate the precise mechanism of neuroimmunological interaction in pruritus of atopic dermatitis.
Collapse
Affiliation(s)
- Kwangmi Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
15
|
Tanaka T, Doe JM, Horstmann SA, Ahmad S, Ahmad A, Min SJ, Reynolds PR, Suram S, Gaydos J, Burnham EL, Vandivier RW. Neuroendocrine signaling via the serotonin transporter regulates clearance of apoptotic cells. J Biol Chem 2014; 289:10466-10475. [PMID: 24570000 DOI: 10.1074/jbc.m113.482299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a CNS neurotransmitter increasingly recognized to exert immunomodulatory effects outside the CNS that contribute to the pathogenesis of autoimmune and chronic inflammatory diseases. 5-HT signals to activate the RhoA/Rho kinase (ROCK) pathway, a pathway known for its ability to regulate phagocytosis. The clearance of apoptotic cells (i.e. efferocytosis) is a key modulator of the immune response that is inhibited by the RhoA/ROCK pathway. Because efferocytosis is defective in many of the same illnesses where 5-HT has been implicated in disease pathogenesis, we hypothesized that 5-HT would suppress efferocytosis via activation of RhoA/ROCK. The effect of 5-HT on efferocytosis was examined in murine peritoneal and human alveolar macrophages, and its mechanisms were investigated using pharmacologic blockade and genetic deletion. 5-HT impaired efferocytosis by murine peritoneal macrophages and human alveolar macrophages. 5-HT increased phosphorylation of myosin phosphatase subunit 1 (Mypt-1), a known ROCK target, and inhibitors of RhoA and ROCK reversed the suppressive effect of 5-HT on efferocytosis. Peritoneal macrophages expressed the 5-HT transporter and 5-HT receptors (R) 2a, 2b, but not 2c. Inhibition of 5-HTR2a and 5-HTR2b had no effect on efferocytosis, but blockade of the 5-HT transporter prevented 5-HT-impaired efferocytosis. Genetic deletion of the 5-HT transporter inhibited 5-HT uptake into peritoneal macrophages, prevented 5-HT-induced phosphorylation of Mypt-1, reversed the inhibitory effect of 5-HT on efferocytosis, and decreased cellular peritoneal inflammation. These results suggest a novel mechanism by which 5-HT might disrupt efferocytosis and contribute to the pathogenesis of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Takeshi Tanaka
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jenna M Doe
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sarah A Horstmann
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Shama Ahmad
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Aftab Ahmad
- Pediatric Airway Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sung-Joon Min
- Division of Health Care Policy and Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Paul R Reynolds
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado 80206
| | - Saritha Suram
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jeanette Gaydos
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ellen L Burnham
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - R William Vandivier
- COPD Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
16
|
Gruba SM, Meyer AF, Manning BM, Wang Y, Thompson JW, Dalluge JJ, Haynes CL. Time- and concentration-dependent effects of exogenous serotonin and inflammatory cytokines on mast cell function. ACS Chem Biol 2014; 9:503-9. [PMID: 24304209 PMCID: PMC4083829 DOI: 10.1021/cb400787s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mast cells play a significant role in both the innate and adaptive immune response; however, the tissue-bound nature of mast cells presents an experimental roadblock to performing physiologically relevant mast cell experiments. In this work, a heterogeneous cell culture containing primary culture murine peritoneal mast cells (MPMCs) was studied to characterize the time-dependence of mast cell response to allergen stimulation and the time- and concentration-dependence of the ability of the heterogeneous MPMC culture to uptake and degranulate exogenous serotonin using high performance liquid chromatography (HPLC) coupled to an electrochemical detector. Additionally, because mast cells play a central role in asthma, MPMCs were exposed to CXCL10 and CCL5, two important asthma-related inflammatory cytokines that have recently been shown to induce mast cell degranulation. MPMC response to both allergen exposure and cytokine exposure was evaluated for 5-HT secretion and bioactive lipid formation using ultraperformance liquid chromatography coupled to an electrospray ionization triple quadrupole mass spectrometer (UPLC-MS/MS). In this work, MPMC response was shown to be highly regulated and responsive to subtle alterations in a complex environment through time- and concentration-dependent degranulation and bioactive lipid formation. These results highlight the importance of selecting an appropriate mast cell model when studying mast cell involvement in allergic response and inflammation.
Collapse
Affiliation(s)
| | | | - Benjamin M. Manning
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Yiwen Wang
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - John W. Thompson
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Joseph J. Dalluge
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Christy L. Haynes
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| |
Collapse
|
17
|
Curzytek K, Kubera M, Szczepanik M, Basta-Kaim A, Leśkiewicz M, Budziszewska B, Lasoń W, Maes M. Crosstalk between contact hypersensitivity reaction and antidepressant drugs. Pharmacol Rep 2013; 65:1673-80. [DOI: 10.1016/s1734-1140(13)71529-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/15/2013] [Indexed: 12/11/2022]
|
18
|
Gaskill PJ, Calderon TM, Coley JS, Berman JW. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 2013; 8:621-42. [PMID: 23456305 PMCID: PMC4303241 DOI: 10.1007/s11481-013-9443-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
19
|
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.
Collapse
Affiliation(s)
- Nicole L. Baganz
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| | - Randy D. Blakely
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| |
Collapse
|
20
|
Gaskill PJ, Carvallo L, Eugenin EA, Berman JW. Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation 2012; 9:203. [PMID: 22901451 PMCID: PMC3488577 DOI: 10.1186/1742-2094-9-203] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
Background Perivascular macrophages and microglia are critical to CNS function. Drugs of abuse increase extracellular dopamine in the CNS, exposing these cells to elevated levels of dopamine. In rodent macrophages and human T-cells, dopamine was shown to modulate cellular functions through activation of dopamine receptors and other dopaminergic proteins. The expression of these proteins and the effects of dopamine on human macrophage functions had not been studied. Methods To study dopaminergic gene expression, qRT-PCR was performed on mRNA from primary human monocyte derived macrophages (MDM). Expression and localization of dopaminergic proteins was examined by immunoblotting isolated plasma membrane, total membrane and cytosolic proteins from MDM. To characterize dopamine-mediated changes in cytokine production in basal and inflammatory conditions, macrophages were treated with different concentrations of dopamine in the presence or absence of LPS and cytokine production was assayed by ELISA. Statistical significance was determined using two-tailed Students’ T-tests or Wilcoxen Signed Rank tests. Results These data show that MDM express mRNA for all five subtypes of dopamine receptors, and that dopamine receptors 3 and 4 are expressed on the plasma membrane. MDM also express mRNA for the dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC). DAT is expressed on the plasma membrane, VMAT2 on cellular membranes and TH and AADC are in the cytosol. Dopamine also alters macrophage cytokine production in both untreated and LPS-treated cells. Untreated macrophages show dopamine mediated increases IL-6 and CCL2. Macrophages treated with LPS show increased IL-6, CCL2, CXCL8 and IL-10 and decreased TNF-α. Conclusions Monocyte derived macrophages express dopamine receptors and other dopaminergic proteins through which dopamine may modulate macrophage functions. Thus, increased CNS dopamine levels due to drug abuse may exacerbate the development of neurological diseases including Alzheimer’s disease and HIV associated neurological disorders.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
21
|
Schneider E, Machavoine F, Bricard-Rignault R, Levasseur M, Petit-Bertron AF, Gautron S, Ribeil JA, Launay JM, Mecheri S, Côté F, Dy M. Downregulation of basophil-derived IL-4 and in vivo TH2 IgE responses by serotonin and other organic cation transporter 3 ligands. J Allergy Clin Immunol 2011; 128:864-871.e2. [DOI: 10.1016/j.jaci.2011.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 04/07/2011] [Accepted: 04/22/2011] [Indexed: 01/11/2023]
|
22
|
Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1306-16. [PMID: 20654672 DOI: 10.1016/j.pnpbp.2010.07.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/29/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023]
Abstract
Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.
Collapse
Affiliation(s)
- Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka City, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ley S, Weigert A, Brüne B. Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 2010; 215:674-84. [DOI: 10.1016/j.imbio.2010.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
|
24
|
Mikulski Z, Zasłona Z, Cakarova L, Hartmann P, Wilhelm J, Tecott LH, Lohmeyer J, Kummer W. Serotonin activates murine alveolar macrophages through 5-HT2Creceptors. Am J Physiol Lung Cell Mol Physiol 2010; 299:L272-80. [DOI: 10.1152/ajplung.00032.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), known as neuromodulator, regulates immune responses and inflammatory cascades. The expression and function of 5-HT receptors on alveolar macrophages (AM), which are the major fraction of pulmonary immune cells, remain elusive. Therefore, we determined the expression of 5-HT type 2 receptors and investigated the effects evoked by stimulation with 5-HT in AM compared with alveolar epithelial cells (AEC). Quantitative PCR (qPCR) analysis revealed expression of the receptors 5-HT2Aand 5-HT2Bin AEC and of 5-HT2Cin AM. In AM, 5-HT (10−5M) induced a rise in intracellular calcium concentration ([Ca2+]i) that was initiated by release of Ca2+from intracellular stores and depended on extracellular Ca2+in a sustained phase. This 5-HT-induced increase in [Ca2+]iwas not observed in AM treated with the 5-HT2C-selective inhibitor RS-102221 and in AM derived from 5-HT2C-deficient mice. AM stimulated with 5-HT (10−5M) showed increased expression of CCL2 (MCP-1) mRNA as assayed by qPCR at 4 h and augmented production of CCL2 protein as determined by dot-blot assay and ELISA at 24 h. Notably, in 5-HT2C-deficient AM, CCL2 production was not induced by 5-HT treatment. Moreover, transcriptional responses to 5-HT exposure assayed by microarray experiments were only observed in AM from wild-type animals and not in AM derived from 5-HT2C-deficient mice. Taken together, these data demonstrate the presence of functional 5-HT2Creceptors on AM and suggest a role of 5-HT as novel modulator of AM function. These effects are exclusively driven by the 5-HT2Creceptor, thereby providing the potential for selective intervention.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Wilhelm
- Department of Pathology, Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany; and
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, California
| | | | | |
Collapse
|
25
|
GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 2007; 188:64-8. [PMID: 17599468 DOI: 10.1016/j.jneuroim.2007.05.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/06/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
The expression and functionality of the gamma aminobutyric acid A receptor (GABA(A)R) in mice macrophages was explored. Reverse Transcriptase-Polymerase Chain Reaction showed that macrophages express the GABA(A)R RNA for the alpha1, alpha2, beta3 and delta subunits, but not for the alpha5, beta1, beta2 and gamma3 subunits. The expression of alpha1 subunit was also revealed by confocal microscopy. LPS-stimulated macrophages significantly reduced their in vitro production of IL-6 and IL-12 after GABA adding to the culture medium. These results showed that BALB/c mice peritoneal macrophages express a functional subset of GABA(A)R subunits.
Collapse
|
26
|
Rudd ML, Tua-Smith A, Straus DB. Lck SH3 domain function is required for T-cell receptor signals regulating thymocyte development. Mol Cell Biol 2006; 26:7892-900. [PMID: 16923964 PMCID: PMC1636743 DOI: 10.1128/mcb.00968-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymocyte development is shaped by signals from the T-cell antigen receptor. The strength of receptor signaling determines developmental progression as well as deletion of self-reactive T cells. Receptor stimulation of the extracellular signal-regulated kinase (ERK) pathway plays an important regulatory role during thymocyte development. However, it is unclear how differences in receptor signaling are translated into distinctive activation of the ERK pathway. We have investigated the potential role of the Lck tyrosine kinase in regulating intracellular signaling during thymocyte development. While Lck is known to be critical for initial T-cell receptor signaling events, it may have an independent role in regulating intracellular signaling through the function of its SH3 domain. To determine whether such a regulatory mechanism functions during thymocyte development, we generated mice in which the normal lck allele is replaced with an lck SH3 domain mutant. Analysis of these mice revealed that both early thymocyte development and maturation of CD4(+) and CD8(+) lineages is impaired. Investigation of thymocyte responses to antigen receptor stimulation showed a significant reduction in proliferation and ERK pathway activation, although initial signaling events were intact. These findings indicate that Lck SH3 domain function may provide a means to independently couple receptor signaling to regulation of the ERK pathway during thymocyte development.
Collapse
Affiliation(s)
- Meghan L Rudd
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
27
|
Wang HW, Li CZ, Yang ZF, Zheng YQ, Zhang Y, Liu YM. Electrophysiological effect of fluoxetine on Xenopus oocytes heterologously expressing human serotonin transporter. Acta Pharmacol Sin 2006; 27:289-93. [PMID: 16490163 DOI: 10.1111/j.1745-7254.2006.00274.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate the electrophysiological effect of fluoxetine on serotonin transporter. METHODS A heterologous expression system was used to introduce human serotonin transporter (hSERT) into Xenopus oocytes. A 2-electrode voltage clamp technique was used to study the pharmacological properties of fluoxetine. RESULTS hSERT-expressing oocytes were perfused with 10 micromol/L serotonin (5-HT) to induce hSERT-current. The 5-HT-induced hSERT currents were dose-dependently reversed by fluoxetine. The RC50 (concentration that achieved a 50% reversal) was approximately 3.12 micromol/L. Fluoxetine took more time to combine with hSERT than 5-HT did, and it was also slow to dissociate from hSERT. This long-lasting effect of fluoxetine affected normal 5-HT transport. Fluoxetine significantly prolonged the time constant for 5-HT-induced hSERT current. These results might be used to explain the long-lasting anti-anxiety effect of fluoxetine in clinical practice, because it increases the concentration of 5-HT in the synaptic cleft by its enduring suppression of the function of 5-HT transporters. CONCLUSION Fluoxetine inhibits 5-HT reuptake by competing with 5-HT and changing the normal dynamics of hSERT.
Collapse
Affiliation(s)
- Hong-wei Wang
- Department of Physiology, Shanghai Jiaotong University Medical School, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
28
|
Meredith EJ, Chamba A, Holder MJ, Barnes NM, Gordon J. Close encounters of the monoamine kind: immune cells betray their nervous disposition. Immunology 2005; 115:289-95. [PMID: 15946246 PMCID: PMC1782168 DOI: 10.1111/j.1365-2567.2005.02166.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Here we review the evidence for immune cells expressing multiple components of the serotonergic and dopaminergic systems that are more commonly associated with the central nervous system (CNS). We discuss where and how peripheral encounters with these biogenic monoamines occur and posit reasons as to why the immune system would wish to deploy these pathways. A full taxonomy of serotonergic and dopaminergic constituents and their workings in component cells of the immune system should facilitate the formulation of novel therapeutic approaches in diseases characterized by immune dysfunction and potentially provide a range of surrogate peripheral markers for registering and monitoring disturbances within the CNS.
Collapse
Affiliation(s)
- Elizabeth J Meredith
- MRC Centre for Immune Regulation, University of Vincent DriveBirmingham, United Kingdom
| | - Anita Chamba
- MRC Centre for Immune Regulation, University of Vincent DriveBirmingham, United Kingdom
| | - Michelle J Holder
- MRC Centre for Immune Regulation, University of Vincent DriveBirmingham, United Kingdom
| | - Nicholas M Barnes
- Division of Neuroscience, The Medical School, University of Vincent DriveBirmingham, United Kingdom
| | - John Gordon
- MRC Centre for Immune Regulation, University of Vincent DriveBirmingham, United Kingdom
| |
Collapse
|