1
|
Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R. Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2015; 2:711-21. [PMID: 26273684 PMCID: PMC4531054 DOI: 10.1002/acn3.207] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ofira Einstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| |
Collapse
|
2
|
Prion disease detection, PMCA kinetics, and IgG in urine from sheep naturally/experimentally infected with scrapie and deer with preclinical/clinical chronic wasting disease. J Virol 2011; 85:9031-8. [PMID: 21715495 DOI: 10.1128/jvi.05111-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are fatal neurodegenerative disorders. Low levels of infectious agent and limited, infrequent success of disease transmissibility and PrP(Sc) detection have been reported with urine from experimentally infected clinical cervids and rodents. We report the detection of prion disease-associated seeding activity (PASA) in urine from naturally and orally infected sheep with clinical scrapie agent and orally infected preclinical and infected white-tailed deer with clinical chronic wasting disease (CWD). This is the first report on PASA detection of PrP(Sc) from the urine of naturally or preclinical prion-diseased ovine or cervids. Detection was achieved by using the surround optical fiber immunoassay (SOFIA) to measure the products of limited serial protein misfolding cyclic amplification (sPMCA). Conversion of PrP(C) to PrP(Sc) was not influenced by the presence of poly(A) during sPMCA or by the homogeneity of the PrP genotypes between the PrP(C) source and urine donor animals. Analysis of the sPMCA-SOFIA data resembled a linear, rather than an exponential, course. Compared to uninfected animals, there was a 2- to 4-log increase of proteinase K-sensitive, light chain immunoglobulin G (IgG) fragments in scrapie-infected sheep but not in infected CWD-infected deer. The higher-than-normal range of IgG levels found in the naturally and experimentally infected clinical scrapie-infected sheep were independent of their genotypes. Although analysis of urine samples throughout the course of infection would be necessary to determine the usefulness of altered IgG levels as a disease biomarker, detection of PrP(Sc) from PASA in urine points to its potential value for antemortem diagnosis of prion diseases.
Collapse
|
3
|
Dabaghian R, Zerr I, Heinemann U, Zanusso G. Detection of proteinase K resistant proteins in the urine of patients with Creutzfeldt-Jakob and other neurodegenerative diseases. Prion 2009; 2:170-8. [PMID: 19263593 DOI: 10.4161/pri.2.4.8068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent concern about the possible secondary spread of vCJD through blood transfusion and blood products has highlighted the need for a sensitive test for the identification of PrP(TSE/res) in clinical specimens collected in a non-invasive way. In addition, a more accurate estimate of the prevalence of pre-clinical vCJD in the population may be possible if there were a test that could be applied to easily available material such as urine. As a step towards this goal,the detection of putative PrP(TSE/res) in the urine of CJD patients has been improved, based on Proteinase K digestion of samples and western blotting. The modified western blot uses concentrated urine as a starting material. After proteolytic treatment followed by electrophoresis and western blotting, membranes are incubated with an anti-PrP antibody conjugated directly with horseradish peroxidase. This study was conducted on urine samples of CJD and other neurodegenerative disease affected individuals. Proteinase K resistant high molecular weight proteins were detected, which are suggested to be a complex of urinary PrP and immunoglobulin proteins. Whether urine can be used as a diagnostic tool for the detection of PrP could not be answered in this study.
Collapse
Affiliation(s)
- Reza Dabaghian
- Health Protection Agency, Virus Reference Department, London, United Kingdom.
| | | | | | | |
Collapse
|
4
|
Miele G, Seeger H, Marino D, Eberhard R, Heikenwalder M, Stoeck K, Basagni M, Knight R, Green A, Chianini F, Wüthrich RP, Hock C, Zerr I, Aguzzi A. Urinary alpha1-antichymotrypsin: a biomarker of prion infection. PLoS One 2008; 3:e3870. [PMID: 19057641 PMCID: PMC2586086 DOI: 10.1371/journal.pone.0003870] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/12/2008] [Indexed: 11/18/2022] Open
Abstract
The occurrence of blood-borne prion transmission incidents calls for identification of potential prion carriers. However, current methods for intravital diagnosis of prion disease rely on invasive tissue biopsies and are unsuitable for large-scale screening. Sensitive biomarkers may help meeting this need. Here we scanned the genome for transcripts elevated upon prion infection and encoding secreted proteins. We found that alpha(1)-antichymotrypsin (alpha(1)-ACT) was highly upregulated in brains of scrapie-infected mice. Furthermore, alpha(1)-ACT levels were dramatically increased in urine of patients suffering from sporadic Creutzfeldt-Jakob disease, and increased progressively throughout the disease. Increased alpha(1)-ACT excretion was also found in cases of natural prion disease of animals. Therefore measurement of urinary alpha(1)-ACT levels may be useful for monitoring the efficacy of therapeutic regimens for prion disease, and possibly also for deferring blood and organ donors that may be at risk of transmitting prion infections.
Collapse
Affiliation(s)
- Gino Miele
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
- * E-mail: (GM); (AA)
| | - Harald Seeger
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Denis Marino
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Ralf Eberhard
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Mathias Heikenwalder
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Katharina Stoeck
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | | | - Richard Knight
- The National Creutzfeldt-Jakob Disease Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Alison Green
- The National Creutzfeldt-Jakob Disease Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| | | | - Christoph Hock
- Division of Psychiatry Research, University of Zürich, Zürich, Switzerland
| | - Inga Zerr
- National TSE Reference Center, Department of Neurology, Medical Faculty, Georg-August University, Göttingen, Germany
| | - Adriano Aguzzi
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
- * E-mail: (GM); (AA)
| |
Collapse
|
5
|
Simon SLR, Lamoureux L, Plews M, Stobart M, LeMaistre J, Ziegler U, Graham C, Czub S, Groschup M, Knox JD. The identification of disease-induced biomarkers in the urine of BSE infected cattle. Proteome Sci 2008; 6:23. [PMID: 18775071 PMCID: PMC2546380 DOI: 10.1186/1477-5956-6-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/05/2008] [Indexed: 11/18/2022] Open
Abstract
Background The bovine spongiform encephalopathy (BSE) epidemic and the emergence of a new human variant of Creutzfeldt-Jakob Disease (vCJD) have led to profound changes in the production and trade of agricultural goods. The rapid tests currently approved for BSE monitoring in slaughtered cattle are all based on the detection of the disease related isoform of the prion protein, PrPd, in brain tissue and consequently are only suitable for post-mortem diagnosis. Objectives: In instances such as assessing the health of breeding stock for export purposes where post-mortem testing is not an option, there is a demand for an ante-mortem test based on a matrix or body fluid that would permit easy access and repeated sampling. Urine and urine based analyses would meet these requirements. Results Two dimensional differential gel eletrophoresis (2D-DIGE) and mass spectrometry analyses were used to identify proteins exhibiting differential abundance in the urine of BSE infected cattle and age matched controls over the course of the disease. Multivariate analyses of protein expression data identified a single protein able to discriminate, with 100% accuracy, control from infected samples. In addition, a subset of proteins were able to predict with 85% ± 13.2 accuracy the time post infection that the samples were collected. Conclusion These results suggest that in principle it is possible to identify biomarkers in urine useful in the diagnosis, prognosis and monitoring of disease progression of transmissible spongiform encephalopathy diseases (TSEs).
Collapse
|
6
|
Safar JG, Lessard P, Tamgüney G, Freyman Y, Deering C, Letessier F, Dearmond SJ, Prusiner SB. Transmission and detection of prions in feces. J Infect Dis 2008; 198:81-9. [PMID: 18505383 DOI: 10.1086/588193] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In chronic wasting disease (CWD) in cervids and in scrapie in sheep, prions appear to be transmitted horizontally. Oral exposure to prion-tainted blood, urine, saliva, and feces has been suggested as the mode of transmission of CWD and scrapie among herbivores susceptible to these prion diseases. To explore the transmission of prions through feces, uninoculated Syrian hamsters (SHas) were cohabitated with or exposed to the bedding of SHas orally infected with Sc237 prions. Incubation times of 140 days and a rate of prion infection of 80%-100% among exposed animals suggested transmission by feces, probably via coprophagy. We measured the disease-causing isoform of the prion protein (PrP(Sc)) in feces by use of the conformation-dependent immunoassay, and we titrated the irradiated feces intracerebrally in transgenic mice that overexpressed SHa prion protein (SHaPrP). Fecal samples collected from infected SHas in the first 7 days after oral challenge harbored 60 ng/g PrP(Sc) and prion titers of approximately 10(6.6) ID(50)/g. Excretion of infectious prions continued at lower levels throughout the asymptomatic phase of the incubation period, most likely by the shedding of prions from infected Peyer patches. Our findings suggest that horizontal transmission of disease among herbivores may occur through the consumption of feces or foodstuff tainted with prions from feces of CWD-infected cervids and scrapie-infected sheep.
Collapse
Affiliation(s)
- Jiri G Safar
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Andrievskaia O, Algire J, Balachandran A, Nielsen K. Prion protein in sheep urine. J Vet Diagn Invest 2008; 20:141-6. [PMID: 18319425 DOI: 10.1177/104063870802000201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The misfolded form of cellular prion protein (PrP(C)) is the main component of the infectious agent of transmissible spongiform encephalopathies and the validated biomarker for these diseases. The expression of PrP(C) is highest in the central nervous system and has been found in peripheral tissues. Soluble PrP(C) has been detected in cerebrospinal fluid, urine, serum, milk, and seminal plasma. In this study, attempts were made to characterize prion protein in urine samples from normal and scrapie-infected sheep. Urine samples from scrapie-infected sheep and age-matched healthy sheep were collected and analyzed by Western blot following concentration. A protease K-sensitive protein band with a molecular weight of approximately 27-30 kDa was visualized after immunoblotting with anti-PrP monoclonal antibodies to a C-terminal part of PrP(C), but not after immunoblotting with monoclonal antibodies to an N-terminal epitope of PrP(C) or with secondary antibodies only. The amount of PrP(C) in the urine of 49 animals (control group: n = 16; naturally scrapie-infected group: n = 33) was estimated by comparison with known amounts of ovine recombinant PrP in the immunoblot. Background concentration of PrP(C) in urine was found to be 0-0.16 ng/ml (adjusted to the initial nonconcentrated volume of the urine samples). Seven out of 33 naturally scrapie-infected animals had an elevated level (0.3-4.7 ng/ml) of PrP(C) in urine. The origin of PrP(C) in urine and the reason for the increased level of PrP(C) in scrapie-infected sheep urine has yet to be explored.
Collapse
Affiliation(s)
- Olga Andrievskaia
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9, Canada.
| | | | | | | |
Collapse
|
8
|
Kariv-Inbal Z, Ben-Hur T, Grigoriadis NC, Engelstein R, Gabizon R. Urine from scrapie-infected hamsters comprises low levels of prion infectivity. NEURODEGENER DIS 2006; 3:123-8. [PMID: 16954698 DOI: 10.1159/000094770] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022] Open
Abstract
The question of whether prion diseases can be transmitted by body fluids has important epidemiological, environmental and economical implications. In this work, we set to investigate whether urine collected from scrapie-infected hamsters can transmit fatal or subclinical infectivity to normal hamsters. After prolonged incubation times ranging from 300 to 700 days, a small number of animals inoculated with scrapie urine succumbed to scrapie disease, and several asymptomatic hamsters presented low levels of PrP(Sc) in their brains. In addition, most of the asymptomatic hamsters inoculated with scrapie urine, as opposed to those inoculated with normal urine, presented extensive gliosis as well as protease-resistant light chain IgG in their urine, a molecule shown by us and others to be a surrogate marker for prion infection. Our results suggest that urine from scrapie-infected hamsters can transmit a widespread subclinical disease that in some cases develops into fatal scrapie.
Collapse
Affiliation(s)
- Zehavit Kariv-Inbal
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
9
|
Halimi M, Dayan-Amouyal Y, Kariv-Inbal Z, Friedman-Levi Y, Mayer-Sonnenfeld T, Gabizon R. Prion urine comprises a glycosaminoglycan-light chain IgG complex that can be stained by Congo red. J Virol Methods 2006; 133:205-10. [PMID: 16386805 DOI: 10.1016/j.jviromet.2005.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/28/2005] [Accepted: 11/08/2005] [Indexed: 11/29/2022]
Abstract
Light chain IgG, a known amyloidotic protein, is present in the urine of prion disease affected individuals in a protease resistant form. In addition, it was shown recently that prion urine samples comprise a significant excess of glycosaminoglycans. Since amyloidotic proteins and glycosaminoglycans are the major components of amyloid aggregates, a Congo red dot blot assay was developed for detection of Creutzfeldt-Jacob disease (CJD) in urine. This assay was also positive for about 10% of patients suffering from diseases such as Alzheimer disease, cerebrovascular attacks and multiple sclerosis, but negative for healthy controls. Both glycosaminoglycans and proteins such as light chain IgG were required for the binding of Congo red to the urine fractions, as shown by the fact that Proteinase K digestion of the samples either after guanidine or after choindrotinase abolished the Congo red signal from the CJD samples.
Collapse
Affiliation(s)
- Michele Halimi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Balen AH, Lumholtz IB. Consensus statement on the bio-safety of urinary-derived gonadotrophins with respect to Creutzfeldt–Jakob disease. Hum Reprod 2005; 20:2994-9. [PMID: 16055457 DOI: 10.1093/humrep/dei209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human transmissible spongiform encephalopathies (TSE) encompass a group of rare neurodegenerative diseases. In April 2004, a group of international experts and regulators met in Buenos Aires, Argentina, to review the safety and to reach consensus on the use of urinary-derived gonadotrophins with respect to TSE. Iatrogenic transmission of Creutzfeldt-Jakob Disease (CJD) from pituitary-derived gonadotrophins has been reported, no infectivity in urine has been demonstrated, and no definite cases of transmission via urine have been reported. It is currently not possible to monitor donor urine or finished product for the presence of prions. Therefore the assessment of risk has to be based on the likelihood of infection in urine, the source of the urine, and the capacity of the manufacturing process to remove any adventitious infection. Urine for the production of medicinal products should be obtained from sources that minimize the possible presence of materials derived from subjects suffering from human TSE. As no strong evidence for TSE infectivity in urine exists, it can be concluded that the risk of disease-generating prions and TSE infectivity being present in donor urine is low. Current evidence indicates that, with respect to the risk of TSE infection, urinary-derived gonadotrophins appear to be safe.
Collapse
|