1
|
Zagorski K, King O, Hovakimyan A, Petrushina I, Antonyan T, Chailyan G, Ghazaryan M, Hyrc KL, Chadarevian JP, Davtyan H, Blurton-Jones M, Cribbs DH, Agadjanyan MG, Ghochikyan A. Novel Vaccine against Pathological Pyroglutamate-Modified Amyloid Beta for Prevention of Alzheimer's Disease. Int J Mol Sci 2023; 24:9797. [PMID: 37372944 PMCID: PMC10298272 DOI: 10.3390/ijms24129797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Post-translationally modified N-terminally truncated amyloid beta peptide with a cyclized form of glutamate at position 3 (pE3Aβ) is a highly pathogenic molecule with increased neurotoxicity and propensity for aggregation. In the brains of Alzheimer's Disease (AD) cases, pE3Aβ represents a major constituent of the amyloid plaque. The data show that pE3Aβ formation is increased at early pre-symptomatic disease stages, while tau phosphorylation and aggregation mostly occur at later stages of the disease. This suggests that pE3Aβ accumulation may be an early event in the disease pathogenesis and can be prophylactically targeted to prevent the onset of AD. The vaccine (AV-1986R/A) was generated by chemically conjugating the pE3Aβ3-11 fragment to our universal immunogenic vaccine platform MultiTEP, then formulated in AdvaxCpG adjuvant. AV-1986R/A showed high immunogenicity and selectivity, with endpoint titers in the range of 105-106 against pE3Aβ and 103-104 against the full-sized peptide in the 5XFAD AD mouse model. The vaccination showed efficient clearance of the pathology, including non-pyroglutamate-modified plaques, from the mice brains. AV-1986R/A is a novel promising candidate for the immunoprevention of AD. It is the first late preclinical candidate which selectively targets a pathology-specific form of amyloid with minimal immunoreactivity against the full-size peptide. Successful translation into clinic may offer a new avenue for the prevention of AD via vaccination of cognitively unimpaired individuals at risk of disease.
Collapse
Affiliation(s)
- Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; (I.P.); (J.P.C.); (H.D.); (M.B.-J.); (D.H.C.)
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Manush Ghazaryan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Krzysztof L. Hyrc
- The Hope Center of Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA;
| | - Jean Paul Chadarevian
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; (I.P.); (J.P.C.); (H.D.); (M.B.-J.); (D.H.C.)
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; (I.P.); (J.P.C.); (H.D.); (M.B.-J.); (D.H.C.)
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; (I.P.); (J.P.C.); (H.D.); (M.B.-J.); (D.H.C.)
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; (I.P.); (J.P.C.); (H.D.); (M.B.-J.); (D.H.C.)
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (K.Z.); (O.K.); (A.H.); (T.A.); (G.C.); (M.G.); (M.G.A.)
| |
Collapse
|
2
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Acero G, Garay C, Venegas D, Ortega E, Gevorkian G. Novel monoclonal antibody 3B8 specifically recognizes pyroglutamate-modified amyloid β 3-42 peptide in brain of AD patients and 3xTg-AD transgenic mice. Neurosci Lett 2020; 724:134876. [PMID: 32114116 DOI: 10.1016/j.neulet.2020.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
In addition to the full-length beta-amyloid peptides (Aβ 1-40/42), several Aβ variants, truncated at their N- or C-termini and bearing different post-translational modifications, have been detected in the brain of Alzheimer´s disease (AD) patients. AβN3(pE), an Aβ peptide bearing an amino-terminal pyroglutamate at position 3, is a significant constituent of intracellular, extracellular and vascular Aβ deposits in brain tissue from individuals with AD and Down syndrome. Pioneering immunotherapy studies have primarily focused on the full-length Aβ peptide, disregarding the presence of N-truncated/modified species. However, in recent years, increasing attention has been directed towards AβN3(pE), in both pre-clinical studies and clinical trials. In the present study, we generated and characterized an anti-AβN3(pE) mouse monoclonal antibody (3B8) that recognizes amyloid aggregates in brain tissue from AD patients and in 3xTg-AD transgenic mice. To identify the epitope recognized by 3B8, a library of random heptapeptides fused to the minor coat protein of M13 phage was screened. Results from screening, along with those from ELISA assays against distinct Aβ fragments, suggest recognition of two conformational epitopes present in AβN3(pE) and Aβ 3-42, regardless of the glutamate-pyroglutamate modification. The novel 3B8 antibody may be useful in future therapeutic and diagnostic applications for AD.
Collapse
Affiliation(s)
- Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Claudia Garay
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - David Venegas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP, 04510, Mexico.
| |
Collapse
|
4
|
Relationship Between Tau, β Amyloid and α-Synuclein Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:169-176. [PMID: 32096037 DOI: 10.1007/978-981-32-9358-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is becoming increasing clear that multiple pathological lesions co-exist in the brains of the demented and non-demented elderly, and with putative interactions revealed at the molecular level in addition to the cumulative effects on brain damage, mounting evidence suggests manifestation of multiple protein aggregates will have implications for the clinical course of many neurodegenerative diseases associated with dementia. In this section we will discuss how the presence of multiple pathological lesions can affect the pathological and clinical phenotype of neurodegenerative disorders.
Collapse
|
5
|
Mehta PD, Patrick BA, Barshatzky M, Mehta SP, Frackowiak J, Mazur-Kolecka B, Wegiel J, Wisniewski T, Miller DL. Generation and Partial Characterization of Rabbit Monoclonal Antibody to Pyroglutamate Amyloid-β3-42 (pE3-Aβ). J Alzheimers Dis 2018; 62:1635-1649. [DOI: 10.3233/jad-170898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pankaj D. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bruce A. Patrick
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marc Barshatzky
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sangita P. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Janusz Frackowiak
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Bozena Mazur-Kolecka
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jerzy Wegiel
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, USA
| | - David L. Miller
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
6
|
Li G, Hu ZW, Chen PG, Sun ZY, Chen YX, Zhao YF, Li YM. Prophylactic Vaccine Based on Pyroglutamate-3 Amyloid β Generates Strong Antibody Response and Rescues Cognitive Decline in Alzheimer's Disease Model Mice. ACS Chem Neurosci 2017; 8:454-459. [PMID: 28292186 DOI: 10.1021/acschemneuro.6b00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Clearance of amyloid β (Aβ) by immunotherapy is one of the fancy methods to treat Alzheimer's disease (AD). However, the failure of some clinical trials suggested that there may be something ignored in the past development of immunotherapy. Pyroglutamate-3 Aβ (AβpE3-X), which was found to be abundant in the patients' brain, has attracted much attention after the report that AβpE3-42 could serve as a template to exacerbate the aggregation of Aβ. In addition, AβpE3-X could not be recognized by the antibodies targeting the N-terminus of Aβ, suggesting that AβpE3-X maybe the ignored one. Indeed, passive immunization targeting AβpE3-X has shown some beneficial results, while active immunotherapy has not been extensively studied. In the present study, we designed and synthesized a novel peptide vaccine targeting AβpE3-X, which contains AβpE3-15 as B cell epitope and P2 as T cell epitope. We showed that this vaccine could induce strong antibody response to AβpE3-X. We also showed that prophylactic immunization of AD model mice with our vaccine could reduce Aβ plaques and rescue cognitive decline. This new kind of Aβ vaccine will open up new directions for AD immunotherapy.
Collapse
Affiliation(s)
- Gao Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Wen Hu
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pu-Guang Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhan-Yi Sun
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Fen Zhao
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan-Mei Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
7
|
Cynis H, Frost JL, Crehan H, Lemere CA. Immunotherapy targeting pyroglutamate-3 Aβ: prospects and challenges. Mol Neurodegener 2016; 11:48. [PMID: 27363697 PMCID: PMC4929720 DOI: 10.1186/s13024-016-0115-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Immunization against amyloid-β (Aβ) peptides deposited in Alzheimer’s disease (AD) has shown considerable therapeutic effect in animal models however, the translation into human Alzheimer’s patients is challenging. In recent years, a number of promising Aβ immunotherapy trials failed to reach primary study endpoints. Aside from uncertainties in the selection of patients and the start and duration of treatment, these results also suggest that the mechanisms underlying AD are still not fully understood. Thorough characterizations of protein aggregates in AD brain have revealed a conspicuous heterogeneity of Aβ peptides enabling the study of the toxic potential of each of the major forms. One such form, amino-terminally truncated and modified pyroglutamate (pGlu)-3 Aβ peptide appears to play a seminal role for disease initiation, qualifying it as novel target for immunotherapy approaches.
Collapse
Affiliation(s)
- Holger Cynis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| | - Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Dammers C, Gremer L, Neudecker P, Demuth HU, Schwarten M, Willbold D. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy. PLoS One 2015; 10:e0139710. [PMID: 26436664 PMCID: PMC4593648 DOI: 10.1371/journal.pone.0139710] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the presented method will be useful in obtaining cost-effective high-quality recombinant pEAβ40 and pEAβ42 for further physiological and biochemical studies.
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Dep. Molecular Drug Biochemistry and Therapy, 06120 Halle (Saale), Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
9
|
Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer's disease. Acta Neuropathol 2015; 129:565-83. [PMID: 25666182 PMCID: PMC4366547 DOI: 10.1007/s00401-015-1395-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
The brains of Alzheimer’s disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.
Collapse
|
10
|
|
11
|
Mandler M, Walker L, Santic R, Hanson P, Upadhaya AR, Colloby SJ, Morris CM, Thal DR, Thomas AJ, Schneeberger A, Attems J. Pyroglutamylated amyloid-β is associated with hyperphosphorylated tau and severity of Alzheimer's disease. Acta Neuropathol 2014; 128:67-79. [PMID: 24861310 DOI: 10.1007/s00401-014-1296-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022]
Abstract
Pyroglutamylated amyloid-β (pE(3)-Aβ) has been suggested to play a major role in Alzheimer's disease (AD) pathogenesis as amyloid-β (Aβ) oligomers containing pE(3)-Aβ might initiate tau-dependent cytotoxicity. We aimed to further elucidate the associations among pE(3)-Aβ, full-length Aβ and hyperphosphorylated tau (HP-τ) in human brain tissue. We examined 41 post mortem brains of both AD (n = 18) and controls. Sections from frontal and entorhinal cortices were stained with pE(3)-Aβ, HP-τ and full-length Aβ antibodies. The respective loads were assessed using image analysis and western blot analysis was performed in a subset of cases. All loads were significantly higher in AD, but when using Aβ loads as independent variables only frontal pE(3)-Aβ load predicted AD. In frontal and entorhinal cortices pE(3)-Aβ load independently predicted HP-τ load while non-pE(3)-Aβ failed to do so. All loads correlated with the severity of AD neuropathology. However, partial correlation analysis revealed respective correlations in the frontal cortex only for pE(3)-Aβ load only while in the entorhinal cortex respective correlations were seen for both HP-τ and non-pE(3)-Aβ loads. Mini Mental State Examination scores were independently predicted by entorhinal HP-τ load and by frontal pE(3)-Aβ load. Here, we report an association between pE(3)-Aβ and HP-τ in human brain tissue and an influence of frontal pE(3)-Aβ on both the severity of AD neuropathology and clinical dementia. Our findings further support the notion that pE(3)-Aβ may represent an important link between Aβ and HP-τ, and investigations into its role as diagnostic and therapeutic target in AD are warranted.
Collapse
Affiliation(s)
- Markus Mandler
- AFFiRiS AG, Vienna Biocenter, Karl-Farkas-Gasse 22, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Perez-Garmendia R, Gevorkian G. Pyroglutamate-Modified Amyloid Beta Peptides: Emerging Targets for Alzheimer´s Disease Immunotherapy. Curr Neuropharmacol 2014; 11:491-8. [PMID: 24403873 PMCID: PMC3763757 DOI: 10.2174/1570159x11311050004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/16/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022] Open
Abstract
Extracellular and intraneuronal accumulation of amyloid-beta (Aβ) peptide aggregates in the brain has been hypothesized to play an important role in the neuropathology of Alzheimer’s Disease (AD). The main Aβ variants detected in the human brain are Aβ1-40 and Aβ1-42, however a significant proportion of AD brain Aβ consists also of N-terminal truncated species. Pyroglutamate-modified Aβ peptides have been demonstrated to be the predominant components among all N-terminal truncated Aβ species in AD brains and represent highly desirable and abundant therapeutic targets. The current review describes the properties and localization of two pyroglutamate-modified Aβ peptides, AβN3(pE) and AβN11(pE), in the brain. The role of glutaminyl cyclase (QC) in the formation of these peptides is also addressed. In addition, two potential therapeutic strategies, the inhibition of QC and immunotherapy approaches, and clinical trials aimed to target these important pathological Aβ species are reviewed.
Collapse
Affiliation(s)
- Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
13
|
Intranasal inoculation with an adenovirus vaccine encoding ten repeats of Aβ3–10 induces Th2 immune response against amyloid-β in wild-type mouse. Neurosci Lett 2011; 505:128-33. [DOI: 10.1016/j.neulet.2011.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/22/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
|
14
|
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The recent updates of therapeutic approaches against aβ for the treatment of Alzheimer's disease. Anat Rec (Hoboken) 2011; 294:1307-18. [PMID: 21717585 DOI: 10.1002/ar.21425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/21/2022]
Abstract
One of the main neuropathological lesions observed in brain autopsy of Alzheimer's disease (AD) patients is the extracellular senile plaques mainly composed of amyloid-beta (Aβ) peptide. Recently, treatment strategies have focused on modifying the formation, clearance, and accumulation of this potentially neurotoxic peptide. β- and γ-secretase are responsible for the cleavage of amyloid precursor protein (APP) and the generation of Aβ peptide. Treatments targeting these two critical secretases may therefore reduce Aβ peptide levels and positive impact on AD. Vaccination is also an advanced approach against Aβ. This review focuses on recent advances of our understanding of this key peptide, with emphasis on Aβ peptide synthesis, accumulation and neurotoxicity, and current therapies including vaccination and two critical secretase inhibitors. MicroRNAs (miRNAs) are a class of conserved endogenous small noncoding RNAs, known to regulate the expression of complementary messenger RNAs, involved in AD development. We therefore address the relationship of miRNAs in the brain and Aβ generation, as a novel therapeutic approach to the treatment of AD while also providing new insights on the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Shucai Ling
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
15
|
Chambers JK, Mutsuga M, Uchida K, Nakayama H. Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid 2011; 18:63-71. [PMID: 21557687 DOI: 10.3109/13506129.2011.570385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Senile plaques (SP) are characteristic histopathological manifestations of Alzheimer's disease (AD), but are also found in normal aging (NA). Recent studies have demonstrated that beta amyloid (Aβ) proteins that have been truncated at the N-terminal position 3 (AβpN3) are the predominant component of SP in AD, but not in NA. The present study revealed that AβpN3 was deposited in an age-dependent manner in canine brains. Moreover, AβpN3 was the main component of the SP that developed in very old dogs. The deposition of AβpN3 increased in accordance with the number of SP, but that of N-terminally intact Aβ (AβN1) did not. In addition, AβpN3 was also deposited in the SP of a Japanese macaque and an American black bear, but not in a feline brain. Focal microvascular cerebral amyloid angiopathy was also observed in the deep cortices and the white matter of the dogs and a woodpecker. Those were always composed of both AβpN3 and AβN1. In conclusion, though non-human animals do not develop full pathology of AD of the human type, AβpN3 is widely deposited in the brains of senescent vertebrates.
Collapse
Affiliation(s)
- James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
16
|
Hartlage-Rübsamen M, Morawski M, Waniek A, Jäger C, Zeitschel U, Koch B, Cynis H, Schilling S, Schliebs R, Demuth HU, Roßner S. Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol 2011; 121:705-19. [PMID: 21301857 PMCID: PMC3098988 DOI: 10.1007/s00401-011-0806-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 12/18/2022]
Abstract
In the hippocampal formation of Alzheimer’s disease (AD) patients, both focal and diffuse deposits of Aβ peptides appear in a subregion- and layer-specific manner. Recently, pyroglutamate (pGlu or pE)-modified Aβ peptides were identified as a highly pathogenic and seeding Aβ peptide species. Since the pE modification is catalyzed by glutaminyl cyclase (QC) this enzyme emerged as a novel pharmacological target for AD therapy. Here, we reveal the role of QC in the formation of different types of hippocampal pE-Aβ aggregates. First, we demonstrate that both, focal and diffuse pE-Aβ deposits are present in defined layers of the AD hippocampus. While the focal type of pE-Aβ aggregates was found to be associated with the somata of QC-expressing interneurons, the diffuse type was not. To address this discrepancy, the hippocampus of amyloid precursor protein transgenic mice was analysed. Similar to observations made in AD, focal (i.e. core-containing) pE-Aβ deposits originating from QC-positive neurons and diffuse pE-Aβ deposits not associated with QC were detected in Tg2576 mouse hippocampus. The hippocampal layers harbouring diffuse pE-Aβ deposits receive multiple afferents from QC-rich neuronal populations of the entorhinal cortex and locus coeruleus. This might point towards a mechanism in which pE-Aβ and/or QC are being released from projection neurons at hippocampal synapses. Indeed, there are a number of reports demonstrating the reduction of diffuse, but not of focal, Aβ deposits in hippocampus after deafferentation experiments. Moreover, we demonstrate in neurons by live cell imaging and by enzymatic activity assays that QC is secreted in a constitutive and regulated manner. Thus, it is concluded that hippocampal pE-Aβ plaques may develop through at least two different mechanisms: intracellularly at sites of somatic QC activity as well as extracellularly through seeding at terminal fields of QC expressing projection neurons.
Collapse
Affiliation(s)
- Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Birgit Koch
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Holger Cynis
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Stephan Schilling
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Hans-Ulrich Demuth
- Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle/Saale, Germany
- Ingenium Pharmaceuticals GmbH, Fraunhoferstr. 13, 82152 Martinsried/Munich, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| |
Collapse
|
17
|
Perez-Garmendia R, Ibarra-Bracamontes V, Vasilevko V, Luna-Muñoz J, Mena R, Govezensky T, Acero G, Manoutcharian K, Cribbs DH, Gevorkian G. Anti-11[E]-pyroglutamate-modified amyloid β antibodies cross-react with other pathological Aβ species: relevance for immunotherapy. J Neuroimmunol 2010; 229:248-55. [PMID: 20864186 PMCID: PMC2991418 DOI: 10.1016/j.jneuroim.2010.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 12/15/2022]
Abstract
N-truncated/modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as animal models of AD, and represent highly desirable therapeutic targets. In the present study we have focused on N-truncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 11 (AβN11(pE)). We identified two B-cell epitopes recognized by rabbit anti-AβN11(pE) polyclonal antibodies. Interestingly, rabbit anti-AβN11(pE) polyclonal antibodies bound also to full-length Aβ1-42 and N-truncated/modified AβN3(pE), suggesting that the three peptides may share a common B-cell epitope. Importantly, rabbit anti-AβN11(pE) antibodies bound to naturally occurring Aβ aggregates present in brain samples from AD patients. These results are potentially important for developing novel immunogens for targeting N-truncated/modified Aβ aggregates as well, since the most commonly used immunogens in the majority of vaccine studies have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides.
Collapse
Affiliation(s)
- Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| | - Vanessa Ibarra-Bracamontes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
| | - Jose Luna-Muñoz
- Department of Neurosciences, CINVESTAV-IPN, Mexico, DF, MEXICO
| | - Raul Mena
- Department of Neurosciences, CINVESTAV-IPN, Mexico, DF, MEXICO
| | - Tzipe Govezensky
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92697-4540, USA
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, México DF, 04510, MÉXICO
| |
Collapse
|
18
|
Boddapati S, Levites Y, Sierks MR. Inhibiting β-secretase activity in Alzheimer's disease cell models with single-chain antibodies specifically targeting APP. J Mol Biol 2010; 405:436-47. [PMID: 21073877 DOI: 10.1016/j.jmb.2010.10.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/09/2023]
Abstract
The Amyloid-β (Aβ) peptide is produced from the amyloid precursor protein (APP) by sequential proteolytic cleavage of APP first by β-secretase and then by γ-secretase. β-Site APP cleaving enzyme-1 (BACE-1) is the predominant enzyme involved in β-secretase processing of APP and is a primary therapeutic target for treatment of Alzheimer's disease. While inhibiting BACE-1 activity has obvious therapeutic advantages, BACE-1 also cleaves numerous other substrates with important physiological activity. Thus, blanket inhibition of BACE-1 function may have adverse side effects. We isolated a single chain variable fragment (scFv) from a human-based scFv yeast display library that selectively inhibits BACE-1 activity toward APP by binding the APP substrate at the proteolytic site. We selected the iBSEC1 scFv, since it recognizes the BACE-1 cleavage site on APP but does not bind the adjacent highly antigenic N-terminal of Aβ, and thus it will target APP but not soluble Aβ. When added to 7PA2 cells, a mammalian cell line that overexpresses APP, the iBSEC1 scFv binds APP on the cell surface, reduces toxicity induced by APP overexpression, and reduces both intracellular and extracellular Aβ levels by around 50%. Since the iBSEC1 scFv does not contain the antibody F(c) region, this construct does not pose the risk of exacerbating inflammation in the brain as faced with full-length monoclonal antibodies for potential therapeutic applications.
Collapse
Affiliation(s)
- Shanta Boddapati
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | | | | |
Collapse
|
19
|
Morawski M, Hartlage-Rübsamen M, Jäger C, Waniek A, Schilling S, Schwab C, McGeer PL, Arendt T, Demuth HU, Roßner S. Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Abeta pathology in Alzheimer's disease. Acta Neuropathol 2010; 120:195-207. [PMID: 20383514 PMCID: PMC2892616 DOI: 10.1007/s00401-010-0685-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 12/11/2022]
Abstract
Glutaminyl cyclase (QC) was discovered recently as the enzyme catalyzing the pyroglutamate (pGlu or pE) modification of N-terminally truncated Alzheimer’s disease (AD) Aβ peptides in vivo. This modification confers resistance to proteolysis, rapid aggregation and neurotoxicity and can be prevented by QC inhibitors in vitro and in vivo, as shown in transgenic animal models. However, in mouse brain QC is only expressed by a relatively low proportion of neurons in most neocortical and hippocampal subregions. Here, we demonstrate that QC is highly abundant in subcortical brain nuclei severely affected in AD. In particular, QC is expressed by virtually all urocortin-1-positive, but not by cholinergic neurons of the Edinger–Westphal nucleus, by noradrenergic locus coeruleus and by cholinergic nucleus basalis magnocellularis neurons in mouse brain. In human brain, QC is expressed by both, urocortin-1 and cholinergic Edinger–Westphal neurons and by locus coeruleus and nucleus basalis Meynert neurons. In brains from AD patients, these neuronal populations displayed intraneuronal pE-Aβ immunoreactivity and morphological signs of degeneration as well as extracellular pE-Aβ deposits. Adjacent AD brain structures lacking QC expression and brains from control subjects were devoid of such aggregates. This is the first demonstration of QC expression and pE-Aβ formation in subcortical brain regions affected in AD. Our results may explain the high vulnerability of defined subcortical neuronal populations and their central target areas in AD as a consequence of QC expression and pE-Aβ formation.
Collapse
|
20
|
Medecigo M, Manoutcharian K, Vasilevko V, Govezensky T, Munguia ME, Becerril B, Luz-Madrigal A, Vaca L, Cribbs DH, Gevorkian G. Novel amyloid-beta specific scFv and VH antibody fragments from human and mouse phage display antibody libraries. J Neuroimmunol 2010; 223:104-14. [PMID: 20451261 PMCID: PMC2882999 DOI: 10.1016/j.jneuroim.2010.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 12/14/2022]
Abstract
Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer's disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Abeta1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single-domain (VH) format. We demonstrated that these antibody fragments recognize in a specific manner amyloid-beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Abeta1-42 in neuroblastoma cell cultures in a concentration-dependent manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Abeta, which makes them strong therapeutic candidates due to the fact that most of the Abeta species found in the brains of AD patients display extensive N-terminus truncations/modifications.
Collapse
Affiliation(s)
- M. Medecigo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - K. Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - V. Vasilevko
- The Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
| | - T. Govezensky
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - M. E. Munguia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - B. Becerril
- Instituto de Biotecnologia, UNAM, Cuernavaca, 62210, MEXICO
| | - A. Luz-Madrigal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
- Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - L. Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - D. H. Cribbs
- The Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92697-4540, USA
| | - G. Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| |
Collapse
|
21
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. The amyloid-beta (Abeta) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Abeta immunotherapies have been shown to lower cerebral Abeta levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Abeta vaccine was stopped when approximately 6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Abeta immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Abeta vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Abeta immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Abeta immunization.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, New Research Building 636F, Boston, MA 02115, USA.
| | | |
Collapse
|