1
|
Barone V, Surico PL, Cutrupi F, Mori T, Gallo Afflitto G, Di Zazzo A, Coassin M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024; 12:2346. [PMID: 39457658 PMCID: PMC11505591 DOI: 10.3390/biomedicines12102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic eye disease (DED) encompasses a range of ocular complications arising from diabetes mellitus, including diabetic retinopathy, diabetic macular edema, diabetic keratopathy, diabetic cataract, and glaucoma. These conditions are leading causes of visual impairments and blindness, especially among working-age adults. Despite advancements in our understanding of DED, its underlying pathophysiological mechanisms remain incompletely understood. Chronic hyperglycemia, oxidative stress, inflammation, and neurodegeneration play central roles in the development and progression of DED, with immune-mediated processes increasingly recognized as key contributors. This review provides a comprehensive examination of the complex interactions between immune cells, inflammatory mediators, and signaling pathways implicated in the pathogenesis of DED. By delving in current research, this review aims to identify potential therapeutic targets, suggesting directions of research for future studies to address the immunopathological aspects of DED.
Collapse
Affiliation(s)
- Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
2
|
Fernandez E, Phillips E, Saeed HN. Ocular involvement in allergic drug reactions. Curr Opin Allergy Clin Immunol 2023; 23:397-408. [PMID: 37493235 DOI: 10.1097/aci.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW Many systemic medications have been observed to cause ocular toxicity. A subset of these reactions is thought to involve immunomodulation or a hypersensitivity reaction. As new medications are developed, ocular adverse effects are becoming increasingly prevalent. Herein we review immune-mediated drug reactions affecting they eye with special attention to the hypersensitivity mechanisms leading to ocular toxicity. RECENT FINDINGS Recent work has focused on mechanisms and risk of immune-mediated ocular adverse drug reactions including genetic susceptibility and loss of ocular immune privilege. SUMMARY Given the consequences of immune-mediated ocular adverse drug reactions, clinicians must be aware of these to facilitate early recognition and management. The prompt involvement of an ophthalmologist for diagnosis and management is often essential to preserve vision and avoid long-term morbidity.
Collapse
Affiliation(s)
- Edward Fernandez
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine
| | - Elizabeth Phillips
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine
- Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hajirah N Saeed
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, University of Illinois Chicago, Chicago, Illinois
- Department of Ophthalmology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
3
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
4
|
Increased Retinal Ganglion Cell Survival by Exogenous IL-2 Depends on IL-10, Dopamine D1 Receptors, and Classical IL-2/IL-2R Signaling Pathways. Neurochem Res 2021; 46:1701-1716. [PMID: 33792824 DOI: 10.1007/s11064-021-03313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Interleukin-2 (IL-2) is a classical pro-inflammatory cytokine known to display neuroprotective roles in the central nervous system including the retina. In the present study, we investigate the molecular targets involved in the neurotrophic effect of IL-2 on retinal ganglion cells (RGC) after optic nerve axotomy. Analysis of retrograde labeling of RGC showed that common cell survival mediators, as Trk receptors, Src, PI3K, PKC, and intracellular calcium do not mediate the neurotrophic effect of IL-2 on RGC. No involvement of MAPK p38 was also observed. However, other MAPKs as MEK and JNK appear to be mediating this IL-2 effect. Our data also indicate that JAK2/3 are important intracellular proteins for the IL-2 effect. Interestingly, we demonstrate that the IL-2 effect depends on dopamine D1 receptors (D1R), the cAMP/PKA pathway, interleukin-10 (IL-10), and NF-κB, suggesting that RGC survival induced by IL-2 encompasses a molecular network of major complexity. In addition, treatment of retinal cells with recombinant IL-10 or 6-Cl-pb (D1R full agonist) was able to increase RGC survival similar to IL-2. Taken together, our results suggest that after optic nerve axotomy, the increase in RGC survival triggered by IL-2 is mediated by IL-10 and D1R along with the intracellular pathways of MAPKs, JAK/STAT, and cAMP/PKA.
Collapse
|
5
|
Huang W, Lan Q, Jiang L, Yan W, Tang F, Shen C, Huang H, Zhong H, Lv J, Zeng S, Li M, Mo Z, Hu B, Liang N, Chen Q, Zhang M, Xu F, Cui L. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Mol Biol Rep 2020; 47:8963-8973. [PMID: 33161529 DOI: 10.1007/s11033-020-05953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes (GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apoptosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fasudil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Abstract
PURPOSE Mitogen-activates protein kinase (MAPK) inhibitors, particularly MEK inhibitors, have shifted the treatment paradigm for metastatic BRAF-mutant cutaneous melanoma; however, oncologists, ophthalmologists, and patients have noticed different toxicities of variable importance. This review aims to provide an update of the ocular adverse events (OAEs), especially retinal toxicity, associated with the use of MEK inhibitors. METHODS We conducted a scientific literature search using the PubMed database up to July 2018 with the terms "MEK inhibitors" with a "review" filter and "MEK inhibitors" with a "clinical trials" filter. Phase I-III experimental studies and reviews were selected. Current principles and techniques for diagnosing and managing MEK inhibitor retinopathy and other OAEs are discussed. RESULTS In patients treated with MEK inhibitors, including asymptomatic patients, OAEs occur with an incidence of up to 90%. Mild to severe ophthalmic toxicities are described, including visual disturbances, a 2-line decrease in Snellen visual acuity, dry eye symptoms, ocular adnexal abnormalities, visual field defects, panuveitis, and retinal toxicities, such as different degrees of MEK-associated retinopathy, vascular injury, and retinal vein occlusion. CONCLUSION MEK inhibitors can lead to different degrees of retinal, uveal, and adnexal OAE, causing visual disturbances or discomfort. One of the most relevant OAE of MEK therapy is MEK inhibitor-associated retinopathy (MEKAR), which is usually mild, self-limited, and may subside after continuous use of the drug for weeks or months, or discontinuation, thereby restoring the normal visual function of the retina, with some exceptions. Ocular adverse events are often associated with other systemic adverse effects that can modify the dosage of treatment, so the communication with the oncologist is fundamental.
Collapse
|
7
|
Guo Y, Guo C, Ha W, Ding Z. Carnosine improves diabetic retinopathy via the MAPK/ERK pathway. Exp Ther Med 2019; 17:2641-2647. [PMID: 30930967 PMCID: PMC6425270 DOI: 10.3892/etm.2019.7223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common causes of blindness in developed countries. Due to its asymptomatic onset and progressive disease course, DR is typically diagnosed at a late stage when treatment options are limited and therefore often results in irreversible blindness. Studies have demonstrated that carnosine may prevent and treat DR. In a previous study, the positive effect of carnosine on DR was determined and it was revealed that there may be an association between carnosine and the mitogen-activated protein kinase (MAPK)/extracellular signal related kinase (ERK) signaling pathway. To assess the interaction between carnosine and the MAPK/ERK signaling pathway, changes in PKC, ERK and p-ERK expression was assessed in diabetic rats following treatment with carnosine, PD98059 or U46619 via reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that the expression of ERK and p-ERK were significantly suppressed following treatment with carnosine, but no significant effect on the expression of PKC was identified, which indicates that suppressing the activation of the MAPK/ERK signaling pathway may serve an important role in carnosine-induced DR prevention and treatment.
Collapse
Affiliation(s)
- Yong Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wenjing Ha
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhenhua Ding
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
8
|
Yang Y, Xu C, Chen Y, Liang JJ, Xu Y, Chen SL, Huang S, Yang Q, Cen LP, Pang CP, Sun XH, Ng TK. Green Tea Extract Ameliorates Ischemia-Induced Retinal Ganglion Cell Degeneration in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8407206. [PMID: 31379990 PMCID: PMC6652088 DOI: 10.1155/2019/8407206] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Oxidative stress induced by reduced blood circulation is a critical pathological damage to retinal ganglion cells (RGCs) in glaucoma. We previously showed that green tea extract (GTE) and its catechin constituents alleviate sodium iodate-induced retinal degeneration in rats. Here, we investigated the therapeutic effect of GTE on ischemia-induced RGC degeneration in rats. METHODS RGC degeneration was induced by ischemic reperfusion in adult Fischer F344 rats. Green tea extract (Theaphenon E) was intragastrically administered 4 times within 48 hours after ischemia. RGC survival, pupillary light reflex, expressions of cell apoptosis, oxidative stress, and inflammation-related proteins were studied. RESULTS Ischemic reperfusion significantly induced apoptotic RGCs, RGC loss, and larger constricted pupil area compared to the untreated normal rats. Expressions of activated caspase-3 and caspase-8, Sod2, and inflammation-related proteins as well as p38 phosphorylation were significantly upregulated in the ischemia-injured rats. Compared to the saline-fed ischemic rats, significantly higher number of surviving RGCs, less apoptotic RGCs, and smaller constricted pupil area were observed in the GTE-fed ischemic rats. GTE also reduced the increased protein expressions caused by ischemic injury but enhanced the Jak phosphorylation in the retina. Notably, green tea extract did not affect the survival of RGCs in the uninjured normal rats. CONCLUSIONS In summary, GTE offers neuroprotection to RGCs under ischemic challenge, suggesting a potential therapeutic strategy for glaucoma and optic neuropathies.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Ophthalmology and Vision Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuhong Chen
- Department of Ophthalmology and Vision Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaofen Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Qichen Yang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xing-huai Sun
- Department of Ophthalmology and Vision Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
9
|
van Dijk EHC, Duits DEM, Versluis M, Luyten GPM, Bergen AAB, Kapiteijn EW, de Lange MJ, Boon CJF, van der Velden PA. Loss of MAPK Pathway Activation in Post-Mitotic Retinal Cells as Mechanism in MEK Inhibition-Related Retinopathy in Cancer Patients. Medicine (Baltimore) 2016; 95:e3457. [PMID: 27149444 PMCID: PMC4863761 DOI: 10.1097/md.0000000000003457] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recently, treatment with MEK inhibitors has been shown to be an effective treatment option for metastatic melanoma. Treatment efficacy is dependent on inhibition of MAPK-related melanoma proliferation. However, targeting of MEK can be accompanied by a time-dependent and reversible serous retinopathy of unknown origin.We analyzed the molecular mechanism by which the MEK inhibitor binimetinib may lead to retinopathy, using neuroretina and cell models of retinal pigment epithelium (RPE).Binimetinib inhibited the MAPK pathway while discontinuation of treatment resulted in reactivation. However, cell proliferation was not inhibited correspondingly during binimetinib treatment of ARPE19 cells. Remarkably, post-mitotic neuroretinal tissue displayed a strong MAPK activation that was lost after binimetinib treatment.We propose that binimetinib-associated retinopathy is correlated with inhibition of the MAPK pathway in multiple retinal components. Retinal cells are able to regain the activation after binimetinib treatment, mimicking the reversibility of the retinopathy. As most retinal cells are nonregenerating, other mechanisms than stimulation of proliferation must be involved.
Collapse
Affiliation(s)
- Elon H C van Dijk
- From the Department of Ophthalmology (EHCVD, DEMD, MV, GPML, MJDL, CJFB, PAVDV), Leiden University Medical Center, Leiden; Department of Ophthalmology (AABB); Department of Clinical Genetics (AABB), Academic Medical Center; Department of Clinical and Molecular Ophthalmogenetics (AABB), The Netherlands Institute for Neurosciences/Royal Netherlands Academy of Arts and Sciences, Amsterdam; and Department of Medical Oncology (EWK), Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm 2015; 2015:531518. [PMID: 25729218 PMCID: PMC4333561 DOI: 10.1155/2015/531518] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023] Open
Abstract
Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF) of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β), and granulocyte-macrophage colony-stimulating factor (GM-CSF), is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders.
Collapse
|
11
|
Mueller BH, Park Y, Ma HY, Dibas A, Ellis DZ, Clark AF, Yorio T. Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2. Exp Eye Res 2014; 128:156-169. [PMID: 25305575 DOI: 10.1016/j.exer.2014.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/18/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Sigma-1 receptor (σ-1) activation and mitogen-activated protein kinases (MAPKs) have been shown to protect retinal ganglion cells (RGCs) from cell death. The purpose of this study was to determine if σ-1 receptor stimulation with pentazocine could promote neuroprotection under conditions of an ischemia-like insult (oxygen glucose deprivation (OGD)) through the phosphorylation of extracellular signal regulated kinase (pERK)1/2. Primary RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using Thy1.1 antibodies. RGCs were cultured for 7 days before subjecting the cells to an OGD insult (0.5% oxygen in glucose-free medium) for 6 h. During the OGD, RGCs were treated with pentazocine (σ-1 receptor agonist) with or without BD 1047 (σ-1 receptor antagonist). In other experiments, primary RGCs were treated with pentazocine in the presence or absence of an MEK1/2 inhibitor, PD098059. Cell survival/death was assessed by staining with the calcein-AM/ethidium homodimer reagent. Levels of pERK1/2, total ERK1/2, and beta tubulin expression were determined by immunoblotting and immunofluorescence staining. RGCs subjected to OGD for 6 h induced 50% cell death in primary RGCs (p < 0.001) and inhibited pERK1/2 expression by 65% (p < 0.001). Cell death was attenuated when RGCs were treated with pentazocine under OGD (p < 0.001) and pERK1/2 expression was increased by 1.6 fold (p < 0.05) compared to OGD treated RGCs without pentazocine treatment. The co-treatment of PD098059 (MEK1/2 inhibitor) with pentazocine significantly abolished the protective effects of pentazocine on the RGCs during this OGD insult. Activation of the σ-1 receptor is a neuroprotective target that can protect RGCs from an ischemia-like insult. These results also established a direct relationship between σ-1 receptor stimulation and the neuroprotective effects of the ERK1/2 pathway in purified RGCs subjected to OGD. These findings suggest that activation of the σ-1 receptor may be a therapeutic target for neuroprotection particularly relevant to ocular neurodegenerative diseases that effect RGCs.
Collapse
Affiliation(s)
- Brett H Mueller
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yong Park
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Adnan Dibas
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Dorette Z Ellis
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
12
|
Kucharska J, Del Río P, Arango-Gonzalez B, Gorza M, Feuchtinger A, Hauck SM, Ueffing M. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 2014; 130:227-40. [PMID: 24593181 DOI: 10.1111/jnc.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 01/08/2023]
Abstract
Subretinal injections with glial cell line-derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up-regulated in primary RMG after glial cell line-derived neurotrophic factor stimulation, provides neuroprotective and pro-survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6b(rd1) retinas. To identify stimulated pathways in the retina, we treated Pde6b(rd1) retinal explants with Cyr61 and observed an overall increase in activated Erk1/2 and Stat3 signalling molecules characterized by activation-site-specific phosphorylation. To identify Cyr61 retinal target cells, we isolated primary porcine PR, RMG and retinal pigment epithelium (RPE) cells and exposed them separately to Cyr61. Here, RMG as well as RPE cells responded with induced phosphorylation of Erk1/2, Stat3 and Akt. In PR, no increase in phosphorylation in any of the studied proteins was detected, suggesting an indirect neuroprotective effect of Cyr61. Cyr61 may thus act as an endogenous pro-survival factor for PR, contributing to the complex repertoire of neuroprotective activities generated by RMG and RPE cells. We propose the following model of Cyr61 neuroprotection within the retina: Cyr61 stimulates retinal Müller glial (RMG) and retinal pigment epithelium (RPE) cells and activates PI3K/Akt, mitogen-activated protein kinase(MAPK)/Erk and Janus kinase(JAK)/Stat-signalling pathways in these cells. Phosphorylated Stat3 and Erk1/2 presumably translocate to the nucleus, induce transcriptional changes, which increase secretion of neuroprotective agents that protect photoreceptors (PR) from mutation-induced death.
Collapse
Affiliation(s)
- Joanna Kucharska
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R, Bull ND, Martin KR, Tomarev SI. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. ACTA ACUST UNITED AC 2013; 137:503-19. [PMID: 24176979 DOI: 10.1093/brain/awt292] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neuroprotective strategies to attenuate retinal ganglion cell death could lead to novel therapies for chronic optic neuropathies such as glaucoma. Intravitreal transplantation of mesenchymal stem cells slows retinal ganglion cell death in models of optic nerve injury, but the mechanism of action remains unclear. Here we characterized the neuroprotective effects of mesenchymal stem cells and mesenchymal stem cell-derived factors in organotypic retinal explant culture and an in vivo model of ocular hypertensive glaucoma. Co-culture of rat and human bone marrow-derived mesenchymal stem cells with retinal explants increased retinal ganglion cell survival, after 7 days ex vivo, by ∼2-fold and was associated with reduced apoptosis and increased nerve fibre layer and inner plexiform layer thicknesses. These effects were not demonstrated by co-culture with human or mouse fibroblasts. Conditioned media from mesenchymal stem cells conferred neuroprotection, suggesting that the neuroprotection is mediated, at least partly, by secreted factors. We compared the concentrations of 29 factors in human mesenchymal stem cell and fibroblast conditioned media, and identified 11 enriched in the mesenchymal stem cell secretome. Treatment of retinal explants with a cocktail of these factors conferred retinal ganglion cell neuroprotection, with factors from the platelet-derived growth factor family being the most potent. Blockade of platelet-derived growth factor signalling with neutralizing antibody or with small molecule inhibitors of platelet-derived growth factor receptor kinase or downstream phosphatidylinositol 3 kinase eliminated retinal ganglion cell neuroprotection conferred by mesenchymal stem cell co-culture. Intravitreal injection of platelet-derived growth factor -AA or -AB led to profound optic nerve neuroprotection in vivo following experimental induction of elevated intraocular pressure. These data demonstrate that mesenchymal stem cells secrete a number of neuroprotective proteins and suggest that platelet-derived growth factor secretion in particular may play an important role in mesenchymal stem cell-mediated retinal ganglion cell neuroprotection. Furthermore, platelet-derived growth factor may represent an independent target for achieving retinal ganglion cell neuroprotection.
Collapse
Affiliation(s)
- Thomas V Johnson
- 1 Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rac1 selective activation improves retina ganglion cell survival and regeneration. PLoS One 2013; 8:e64350. [PMID: 23734197 PMCID: PMC3667179 DOI: 10.1371/journal.pone.0064350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs) do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.
Collapse
|
15
|
Rankin JS, Zalcman SS, Zhu Y, Siegel A. Short- and long-term effects of interleukin-2 treatment on the sensitivity of periadolescent female mice to interleukin-2 and dopamine uptake inhibitor. PLoS One 2013; 8:e64473. [PMID: 23717619 PMCID: PMC3663806 DOI: 10.1371/journal.pone.0064473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Interleukin (IL)-2, a T-helper 1 (Th1) cell-derived cytokine, which potently modulates dopamine activity and neuronal excitability in mesolimbic structures, is linked with pathological outcomes (e.g., schizophrenia, depression, etc.) that at least partly reflect alterations in central dopaminergic processes. It has been suggested that dopamine neurons undergo pruning during adolescence and abnormalities in pruning predispose individuals to behavioral disorders. Since IL-2 is known as a neurodevelopmental factor affecting associated behavioral processes, the present study tested whether IL-2 can modulate stereotypic behaviors in both the periadolescent and adult periods. This study determined whether IL-2 treatment would produce long-lasting changes in sensitivity to a later challenge with IL-2 or GBR 12909, a highly selective dopamine uptake inhibitor. Four experiments were conducted. Firstly, a decrease in novelty-induced stereotypic behavior was observed in BALB/c periadolescent mice (38 days of age) following IL-2 administration (0.4 µg/2 ml) relative to vehicle control. In the second experiment, an initial dose of IL-2 was given in the periadolescent period, but did not affect rearing responses. A second dose of IL-2 given to the animals 30 days later as adults, resulted in a significant increase in rearing behaviors relative to control animals. In the third experiment, separate groups of experimental and control mice were administered GBR 12909, a highly selective dopamine reuptake inhibitor, 30 days following treatment with either IL-2 or vehicle. It was noted that this experimental group, which initially received IL-2, exhibited stereotypy, as evidenced by increased sniffing behavior. A fourth experiment revealed that IL-2 administered in periadolesecence and adulthood had no effect on other motor responses, indicating that IL-2 selectively modulates selective stereotypic behaviors. The results provide evidence, for the first time, that long-term changes in stereotypy in periadolescent mice are linked to an IL-2 mechanism, possibly utilizing dopamine.
Collapse
Affiliation(s)
- James S Rankin
- Department of Psychiatry, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America.
| | | | | | | |
Collapse
|
16
|
Schallner N, Fuchs M, Schwer CI, Loop T, Buerkle H, Lagrèze WA, van Oterendorp C, Biermann J, Goebel U. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012; 7:e46479. [PMID: 23029526 PMCID: PMC3460901 DOI: 10.1371/journal.pone.0046479] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose Ischemia and reperfusion injury (I/R) of neuronal structures and organs is associated with increased morbidity and mortality due to neuronal cell death. We hypothesized that inhalation of carbon monoxide (CO) after I/R injury (‘postconditioning’) would protect retinal ganglion cells (RGC). Methods Retinal I/R injury was performed in Sprague-Dawley rats (n = 8) by increasing ocular pressure (120 mmHg, 1 h). Rats inhaled room air or CO (250 ppm) for 1 h immediately following ischemia or with 1.5 and 3 h latency. Retinal tissue was harvested to analyze Bcl-2, Bax, Caspase-3, HO-1 expression and phosphorylation of the nuclear transcription factor (NF)-κB, p38 and ERK-1/2 MAPK. NF-κB activation was determined and inhibition of ERK-1/2 was performed using PD98059 (2 mg/kg). Densities of fluorogold prelabeled RGC were analyzed 7 days after injury. Microglia, macrophage and Müller cell activation and proliferation were evaluated by Iba-1, GFAP and Ki-67 staining. Results Inhalation of CO after I/R inhibited Bax and Caspase-3 expression (Bax: 1.9±0.3 vs. 1.4±0.2, p = 0.028; caspase-3: 2.0±0.2 vs. 1.5±0.1, p = 0.007; mean±S.D., fold induction at 12 h), while expression of Bcl-2 was induced (1.2±0.2 vs. 1.6±0.2, p = 0.001; mean±S.D., fold induction at 12 h). CO postconditioning suppressed retinal p38 phosphorylation (p = 0.023 at 24 h) and induced the phosphorylation of ERK-1/2 (p<0.001 at 24 h). CO postconditioning inhibited the expression of HO-1. The activation of NF-κB, microglia and Müller cells was potently inhibited by CO as well as immigration of proliferative microglia and macrophages into the retina. CO protected I/R-injured RGC with a therapeutic window at least up to 3 h (n = 8; RGC/mm2; mean±S.D.: 1255±327 I/R only vs. 1956±157 immediate CO treatment, vs. 1830±109 1.5 h time lag and vs. 1626±122 3 h time lag; p<0.001). Inhibition of ERK-1/2 did not counteract the CO effects (RGC/mm2: 1956±157 vs. 1931±124, mean±S.D., p = 0.799). Conclusion Inhaled CO, administered after retinal ischemic injury, protects RGC through its strong anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Nils Schallner
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
- * E-mail:
| | - Matthias Fuchs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
| | - Christian I. Schwer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
| | - Torsten Loop
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
| | | | | | - Julia Biermann
- University Eye Hospital, University Medical Center, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Intravitreous interleukin-2 treatment and inflammation modulates glial cells activation and uncrossed retinotectal development. Neuroscience 2011; 200:223-36. [PMID: 22067607 DOI: 10.1016/j.neuroscience.2011.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 11/23/2022]
Abstract
Interleukin-2 (IL-2) plays regulatory functions both in immune and nervous system. However, in the visual system, little is known about the cellular types which respond to IL-2 and its effects. Herein, we investigated the influence of IL-2 in the development of central visual pathways. Lister Hooded rats were submitted to multiple (at postnatal days [PND]7/10/13) or single (at PND10) intravitreous injections of phosphate-buffered saline (PBS) (vehicle), zymosan, or IL-2. IL-2 receptor α subunit was detected in the whole postnatal retina. Chronic treatment with either PBS or IL-2 increases retinal glial fibrillary acidic protein (GFAP) expression, induces intravitreous inflammation revealed by the presence of macrophages, and results in a slight rearrangement of retinotectal axons. Acute zymosan treatment disrupts retinotectal axons distribution, confirming the influence of inflammation on retinotectal pathway reordering. Furthermore, acute IL-2 treatment increases GFAP expression in the retina without inflammation and produces a robust sprouting of the intact uncrossed retinotectal pathway. No difference was observed in glial cells activity in superior colliculus. Taken together, these data suggest that inflammation and interleukin-2 modulate retinal ganglion cells development and the distribution of their axons within central targets.
Collapse
|