1
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
2
|
Aloisi F, Veroni C, Serafini B. EBV as the 'gluten of MS' hypothesis: Bypassing autoimmunity. Mult Scler Relat Disord 2022; 66:104069. [PMID: 35908445 DOI: 10.1016/j.msard.2022.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
The EBV as the 'gluten of MS' hypothesis discussed by Drosu et al. in a recent Editorial envisages the existence of similar mechanisms leading to celiac disease and multiple sclerosis, such as induction of immunity against an ubiquitous exogenous antigen - gluten and EBV, respectively - and subsequent development of autoimmunity that is maintained by persistence of the initial trigger. While this hypothesis provides the rationale for treating MS with antivirals to lower EBV load, it can be misleading when trying to translate concepts of T cell-B cell interaction and autoimmunity development in celiac disease to multiple sclerosis. Here, we propose that EBV might act as the driver of multiple sclerosis without involving autoimmunity.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
3
|
Hedström AK, Huang J, Brenner N, Butt J, Kockum I, Waterboer T, Olsson T, Alfredsson L. Low sun exposure acts synergistically with high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels in multiple sclerosis etiology. Eur J Neurol 2021; 28:4146-4152. [PMID: 34435414 DOI: 10.1111/ene.15082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Among multiple sclerosis (MS) patients, an association has been observed between low levels of vitamin D and high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels. However, whether sun exposure/vitamin D moderates the role of Epstein-Barr virus (EBV) infection in MS etiology is unclear. We aimed to investigate potential synergistic effects between low sun exposure and elevated EBNA-1 antibody levels regarding MS risk. METHODS We used a population-based case-control study involving 2017 incident cases of MS and 2443 matched controls. We used logistic regression models to calculate the odds ratios of MS with 95% confidence intervals (CIs) in subjects with different sun exposure habits and EBNA-1 status. Potential interaction on the additive scale was evaluated by calculating the attributable proportion due to interaction (AP). RESULTS Low sun exposure acted synergistically with high EBNA-1 antibody levels (AP 0.2, 95% CI 0.03-0.3) in its association to increased MS risk. The interaction was present regardless of HLA-DRB1*15:01 status. CONCLUSIONS Low sun exposure may either directly, or indirectly by affecting vitamin D levels, synergistically reinforce pathogenic mechanisms, such as aspects of the adaptive immune response, related to MS risk conveyed by EBV infection.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Brenner
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
4
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Munroe ME, Anderson JR, Gross TF, Stunz LL, Bishop GA, James JA. Epstein-Barr Functional Mimicry: Pathogenicity of Oncogenic Latent Membrane Protein-1 in Systemic Lupus Erythematosus and Autoimmunity. Front Immunol 2021; 11:606936. [PMID: 33613527 PMCID: PMC7886997 DOI: 10.3389/fimmu.2020.606936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are propelled by immune dysregulation and pathogenic, disease-specific autoantibodies. Autoimmunity against the lupus autoantigen Sm is associated with cross-reactivity to Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1). Additionally, EBV latent membrane protein-1 (LMP1), initially noted for its oncogenic activity, is an aberrantly active functional mimic of the B cell co-stimulatory molecule CD40. Mice expressing a transgene (Tg) for the mCD40-LMP1 hybrid molecule (containing the cytoplasmic tail of LMP1) have mild autoantibody production and other features of immune dysregulation by 2-3 months of age, but no overt autoimmune disease. This study evaluates whether exposure to the EBV molecular mimic, EBNA-1, stimulates antigen-specific and concurrently-reactive humoral and cellular immunity, as well as lupus-like features. After immunization with EBNA-1, mCD40-LMP1 Tg mice exhibited enhanced, antigen-specific, cellular and humoral responses compared to immunized WT congenic mice. EBNA-1 specific proliferative and inflammatory cytokine responses, including IL-17 and IFN-γ, were significantly increased (p<0.0001) in mCD40-LMP1 Tg mice, as well as antibody responses to amino- and carboxy-domains of EBNA-1. Of particular interest was the ability of mCD40-LMP1 to drive EBNA-1 associated molecular mimicry with the lupus-associated autoantigen, Sm. EBNA-1 immunized mCD40-LMP1 Tg mice exhibited enhanced proliferative and cytokine cellular responses (p<0.0001) to the EBNA-1 homologous epitope PPPGRRP and the Sm B/B' cross-reactive sequence PPPGMRPP. When immunized with the SLE autoantigen Sm, mCD40-LMP1 Tg mice again exhibited enhanced cellular and humoral immune responses to both Sm and EBNA-1. Cellular immune dysregulation with EBNA-1 immunization in mCD40-LMP1 Tg mice was accompanied by enhanced splenomegaly, increased serum blood urea nitrogen (BUN) and creatinine levels, and elevated anti-dsDNA and antinuclear antibody (ANA) levels (p<0.0001 compared to mCD40 WT mice). However, no evidence of immune-complex glomerulonephritis pathology was noted, suggesting that a combination of EBV and genetic factors may be required to drive lupus-associated renal disease. These data support that the expression of LMP1 in the context of EBNA-1 may interact to increase immune dysregulation that leads to pathogenic, autoantigen-specific lupus inflammation.
Collapse
Affiliation(s)
- Melissa E. Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jourdan R. Anderson
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Timothy F. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, The University of Iowa, Iowa City, IA, United States
| | - Gail A. Bishop
- Department of Microbiology & Immunology, The University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Medicine and Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Mrad MF, El Ayoubi NK, Esmerian MO, Kazan JM, Khoury SJ. Effect of vitamin D replacement on immunological biomarkers in patients with multiple sclerosis. Clin Immunol 2017; 181:9-15. [DOI: 10.1016/j.clim.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/21/2023]
|
7
|
Wergeland S, Myhr KM, Løken-Amsrud KI, Beiske AG, Bjerve KS, Hovdal H, Midgard R, Kvistad SS, Holmøy T, Riise T, Torkildsen Ø. Vitamin D, HLA-DRB1 and Epstein-Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur J Neurol 2016; 23:1064-70. [PMID: 26998820 DOI: 10.1111/ene.12986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Our objective was to study the association between serum levels of anti Epstein-Barr virus nuclear antigen 1 (EBNA-1) antibody and 25-hydroxyvitamin D (25(OH)D) in a prospective cohort of patients with relapsing-remitting multiple sclerosis. METHOD The study comprised 90 patients with relapsing-remitting multiple sclerosis, all participants in a randomized clinical trial of ω-3 fatty acids (the OFAMS study). Repeated, paired measurements of serum 25(OH)D and serum EBNA-1 immunoglobulin G (IgG) levels were obtained at baseline and every 6 months for 24 months. The association between serum EBNA-1 IgG and serum 25(OH)D levels was analysed using generalized linear models for hierarchical data. RESULTS There was a significant variation in EBNA-1 IgG antibody level between sampling months (Fdf 11 = 1.8, P = 0.043, one-way anova). There was a negative association between EBNA-1 IgG and 25(OH)D [B = -0.230, 95% confidence interval (CI) (-0.440, -0.023), P = 0.030] and a positive association between EBNA-1 IgG and HLA-DRB1*15 positive status [B = 94.7, 95% CI (2.423, 186.9), P = 0.044]. The association between 25(OH)D and EBNA-1 IgG remained significant after adjusting for the patient's age, gender, HLA-DRB1*15, retinol levels and interferon β-1a treatment. CONCLUSION Our study demonstrates monthly differences in EBNA-1 IgG levels and an association between EBNA-1 IgG, 25(OH)D levels and HLA-DRB1*15. These results indicate that EBNA-1 IgG serum levels are affected by genetic and environmental factors that also modulate multiple sclerosis risk.
Collapse
Affiliation(s)
- S Wergeland
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Bergen, Norway
| | - K-M Myhr
- Department of Clinical Medicine, KG Jebsen MS Research Centre, University of Bergen, Bergen, Norway.,Institute of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - K I Løken-Amsrud
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway
| | - A G Beiske
- Multiple Sclerosis Centre Hakadal, Hakadal, Norway
| | - K S Bjerve
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - H Hovdal
- Department of Neurology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - R Midgard
- Department of Neurology, Molde Hospital, Molde, Norway.,Unit for Applied Clinical Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - S S Kvistad
- Department of Laboratory Medicine, Haukeland University Hospital, Bergen, Norway
| | - T Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - T Riise
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ø Torkildsen
- Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Sundström P, Salzer J. Vitamin D and multiple sclerosis—from epidemiology to prevention. Acta Neurol Scand 2016; 132:56-61. [PMID: 26046560 DOI: 10.1111/ane.12432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
In the present review, we discuss observational and experimental data suggesting a protective effect from sun exposure and/or vitamin D in multiple sclerosis (MS). These data include geographic variations in MS occurrence, temporal trends, genetics, biobank, and questionnaire data. We look more closely at the differentiation between general effects from UV exposure, and those of vitamin D per se, including plausible mechanisms of action. Finally, primary prevention is touched upon, and we suggest actions to be taken while awaiting the results from ongoing randomized controlled trials with vitamin D in MS.
Collapse
Affiliation(s)
- P. Sundström
- Department of Pharmacology and Clinical Neuroscience; Section of Neurology; Umeå University; Umeå Sweden
| | - J. Salzer
- Department of Pharmacology and Clinical Neuroscience; Section of Neurology; Umeå University; Umeå Sweden
| |
Collapse
|
9
|
Toghianifar N, Ashtari F, Zarkesh-Esfahani SH, Mansourian M. Effect of high dose vitamin D intake on interleukin-17 levels in multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial. J Neuroimmunol 2015. [DOI: 10.1016/j.jneuroim.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
van Nierop GP, Mautner J, Mitterreiter JG, Hintzen RQ, Verjans GMGM. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult Scler 2015; 22:279-91. [PMID: 26041797 DOI: 10.1177/1352458515588581] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between Epstein-Barr virus (EBV) and multiple sclerosis (MS) may involve intrathecal EBV-specific T-cell responses targeting the virus or indirectly, autoantigens. OBJECTIVE Compare the prevalence and fine-specificity of EBV-specific T-cells in the cerebrospinal fluid (CSF) of patients with MS (n = 12), clinically-isolated syndrome (CIS) (n = 17) and other neurological diseases (OND) (n = 13). METHODS Intrathecal EBV-specific T-cell reactivity was assayed using CSF-derived T-cell lines (CSF-TCL) and autologous EBV-transformed B-cells (autoBLCL) as antigen-presenting cells (APC). EBV proteins recognized by autoBLCL-specific CD8 T-cells were identified using human leukocyte antigen class I (HLA-I)-negative monkey cells as artificial APC, co-transfected with 59 different EBV genes and the corresponding patient's HLA-I alleles that were involved in autoBLCL T-cell reactivity. Reactivity towards the MS-associated autoantigen αB-crystallin (CRYAB) was determined analogously. RESULTS CSF-TCL from CIS and MS patients had significantly higher frequencies of autoBLCL-reactive CD4 T-cells, compared to the OND patients. CIS patients also had significantly higher autoBLCL-reactive CD8 T cells, which correlated with reactive CD4 T-cell frequencies. AutoBLCL-specific CD8 T-cell responses of four CSF-TCL analyzed in detail were oligoclonal and directed to lytic EBV proteins, but not CRYAB endogenously expressed by autoBLCL. CONCLUSIONS Enhanced intrathecal autoBLCL-specific T-cell reactivity, selectively directed towards lytic EBV proteins in two CSF-TCL, suggested a localized T-cell response to EBV in patients with MS. Our data warrant further characterization of the magnitude and breadth of intrathecal EBV-specific T-cell responses in larger patient cohorts.
Collapse
Affiliation(s)
- Gijsbert P van Nierop
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands/Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Josef Mautner
- Helmholtz Zentrum München and Technical University, Munich, Germany
| | - Johanna G Mitterreiter
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands/Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rogier Q Hintzen
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands/Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
11
|
Mouhieddine TH, Darwish H, Fawaz L, Yamout B, Tamim H, Khoury SJ. Risk factors for multiple sclerosis and associations with anti-EBV antibody titers. Clin Immunol 2015; 158:59-66. [DOI: 10.1016/j.clim.2015.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/18/2022]
|
12
|
Duffy MM, McNicholas BA, Monaghan DA, Hanley SA, McMahon JM, Pindjakova J, Alagesan S, Fearnhead HO, Griffin MD. Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the related inflammatory response in the kidney. Am J Physiol Renal Physiol 2014; 307:F1412-26. [DOI: 10.1152/ajprenal.00024.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) suppress T helper (Th)17 cell differentiation and are being clinically pursued for conditions associated with aberrant Th17 responses. Whether such immunomodulatory effects are enhanced by coadministration of MSCs with other agents is not well known. In the present study, individual and combined effects of MSCs and the vitamin D receptor (VDR) agonist paricalcitol on Th17 induction were investigated in vitro and in a mouse model of sterile kidney inflammation (unilateral ureteral obstruction). In vitro, MSCs and paricalcitol additively suppressed Th17 differentiation, although only MSCs suppressed expression of Th17-associated transcriptions factors. Combined administration of MSCs and paricalcitol resulted in an early ( day 3) reduction of intrarenal CD4+ and CD8+ T cells, CD11b+/lymphocyte antigen 6G+ neutrophils, and inflammatory (lymphocyte antigen 6Chi) monocytes as well as reduced transcript for IL-17 compared with untreated animals. Later ( day 8), obstructed kidneys of MSC/paricalcitol double-treated mice, but not mice treated with either intervention alone, had reduced tubular injury and interstitial fibrosis as well as lower numbers of neutrophils and inflammatory monocytes and an increase in the ratio between M2 (CD206+) and M1 (CD206−) macrophages compared with control mice. Adjunctive therapy with VDR agonists may enhance the immunosuppressive properties of MSCs in the setting of pathogenic Th17-type immune responses and related inflammatory responses.
Collapse
Affiliation(s)
- Michelle M. Duffy
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - David A. Monaghan
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Shirley A. Hanley
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jill M. McMahon
- National Centre for Biomedical Engineering Science and College of Science, National University of Ireland, Galway, Galway, Ireland; and
| | - Jana Pindjakova
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Howard O. Fearnhead
- National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Lossius A, Johansen JN, Vartdal F, Robins H, Jūratė Šaltytė B, Holmøy T, Olweus J. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol 2014; 44:3439-52. [PMID: 25103993 DOI: 10.1002/eji.201444662] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
14
|
Holmøy T, Kampman MT, Smolders J. Vitamin D in multiple sclerosis: implications for assessment and treatment. Expert Rev Neurother 2014; 12:1101-12. [DOI: 10.1586/ern.12.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2013; 4:3701-30. [PMID: 23342374 PMCID: PMC3528287 DOI: 10.3390/v4123701] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
16
|
Salzer J, Nyström M, Hallmans G, Stenlund H, Wadell G, Sundström P. Epstein-Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult Scler 2013; 19:1587-91. [DOI: 10.1177/1352458513483888] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The antibody reactivity against Epstein-Barr nuclear antigen-1 (EBNA-1), and 25-hydroxyvitamin D (25(OH)D) status have been associated with multiple sclerosis (MS) risk. Interaction between these two factors has been proposed. Objectives: The objective of this paper is to examine the association between antibody reactivity against EBNA-1 and five EBNA-1 domains, and the risk of MS, and to examine if these antibodies and 25(OH)D status interact regarding MS risk in prospectively collected blood samples. Methods: Antibody reactivity and 25(OH)D levels were measured using ELISAs in n = 192 MS cases and n = 384 matched controls. The risk of MS was analysed using matched logistic regression. Interaction on the additive scale was assessed. Results: The risk of MS increased across tertiles of antibody reactivity against EBNA-1, domain EBNA-1402–502, and domain EBNA-1385–420; p trends < 0.001. In young individuals (below median age at sampling, < 26.4 years), these associations were stronger, and 25(OH)D levels correlated inversely to antibody reactivity against EBNA-1 and the EBNA-1 domains. No statistical interaction was found. Conclusions: We confirm that increased antibody reactivity against EBNA-1 is a risk factor of MS. 25(OH)D status might influence the immune response towards Epstein-Barr virus in young subjects, and thereby modulate MS risk.
Collapse
Affiliation(s)
- Jonatan Salzer
- Department of Pharmacology and Clinical Neuroscience, Section of Neurology at Umeå University, Sweden
| | - Maria Nyström
- Department of Pharmacology and Clinical Neuroscience, Section of Neurology at Umeå University, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Hans Stenlund
- Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Göran Wadell
- Department of Clinical Microbiology Umeå University, Sweden
| | - Peter Sundström
- Department of Pharmacology and Clinical Neuroscience, Section of Neurology at Umeå University, Sweden
| |
Collapse
|
17
|
Pierrot-Deseilligny C, Souberbielle JC. Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Ther Adv Neurol Disord 2013; 6:81-116. [PMID: 23483715 PMCID: PMC3582312 DOI: 10.1177/1756285612473513] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis (MS) is reviewed. Among the multiple recently discovered actions of vitamin D, an immunomodulatory role has been documented in experimental autoimmune encephalomyelitis and in humans. This action in the peripheral immune system is currently the main known mechanism through which vitamin D might influence MS, but other types of actions could be involved within the central nervous system. Furthermore, vitamin D insufficiency is widespread in temperate countries and in patients with MS at the earliest stages of the disease, suggesting that the deleterious effects related to vitamin D insufficiency may be exerted in these patients. In fact, many genetic and environmental risk factors appear to interact and contribute to MS. In genetics, several human leukocyte antigen (HLA) alleles (more particularly HLA-DRB1*1501) could favour the disease whereas some others could be protective. Some of the genes involved in vitamin D metabolism (e.g. CYP27B1) also play a significant role. Furthermore, three environmental risk factors have been identified: past Epstein-Barr virus infection, vitamin D insufficiency and cigarette smoking. Interactions between genetic and environmental risk or protective factors may occur during the mother's pregnancy and could continue during childhood and adolescence and until the disease is triggered in adulthood, therefore possibly modulating the MS risk throughout the first decades of life. Furthermore, some clinical findings already strongly suggest that vitamin D status influences the relapse rate and radiological lesions in patients with MS, although the results of adequately powered randomized clinical trials using vitamin D supplementation have not yet been reported. While awaiting these incontrovertible results, which might be long in coming, patients with MS who are currently in vitamin D insufficiency should be supplemented, at least for their general health status, using moderate doses of the vitamin.
Collapse
Affiliation(s)
- Charles Pierrot-Deseilligny
- Service de Neurologie 1, Hôpital de la Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (Paris VI), Paris, France
| | | |
Collapse
|
18
|
Carlson NG, Rose JW. Vitamin D as a clinical biomarker in multiple sclerosis. ACTA ACUST UNITED AC 2013; 7:231-42. [DOI: 10.1517/17530059.2013.772978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Benešová Y, Vašků A, Štourač P, Hladíková M, Fiala A, Bednařík J. Association of HLA-DRB1*1501 tagging rs3135388 gene polymorphism with multiple sclerosis. J Neuroimmunol 2013. [DOI: 10.1016/j.jneuroim.2012.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment. PLoS One 2013; 8:e53798. [PMID: 23365642 PMCID: PMC3554710 DOI: 10.1371/journal.pone.0053798] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is associated with chronic inflammation and Helicobacter pylori infection. Th17 cells are CD4(+) T cells associated with infections and inflammation; but their role and mechanism of induction during carcinogenesis is not understood. Gastric myofibroblasts/fibroblasts (GMF) are abundant class II MHC expressing cells that act as novel antigen presenting cells. Here we have demonstrated the accumulation of Th17 in H. pylori-infected human tissues and in the gastric tumor microenvironment. GMF isolated from human gastric cancer and H. pylori infected tissues co-cultured with CD4(+) T cells induced substantially higher levels of Th17 than GMF from normal tissues in an IL-6, TGF-β, and IL-21 dependent manner. Th17 required interaction with class II MHC on GMF for activation and proliferation. These studies suggest that Th17 are induced during both H. pylori infection and gastric cancer in the inflammatory milieu of gastric stroma and may be an important link between inflammation and carcinogenesis.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review provides a brief update of new research findings on the role of vitamin D in multiple sclerosis (MS). RECENT FINDINGS Evidence continues to accumulate supporting a protective role for vitamin D in MS risk and progression. Notable recent findings are that high 25-hydroxyvitamin D [25(OH)D] at the time of a first demyelinating event predicts a lower MS risk and a decreased risk of MS among offspring whose mothers had high predicted 25(OH)D levels. While a small vitamin D intervention study did not find an association between vitamin D and MS progression, this study had little statistical power, and larger trials will be needed to assess the therapeutic potential of vitamin D. Recent immunological studies also show modulation of the immune system by vitamin D that may be favorable for preventing or slowing the progression of MS. The demonstration that rare variants in CYP27B1, which encodes the enzyme that converts vitamin D to its active form, are strongly associated with MS risk supports a causal role of vitamin D deficiency as a risk factor for MS. SUMMARY Research on the nature of the association between vitamin D and MS risk and progression continues to progress; however, additional research on the timing and dose-response relationship will be crucial for designing future prevention and treatment trials.
Collapse
Affiliation(s)
- Kelly C Simon
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|