1
|
Gutiérrez IL, Martín-Hernández D, MacDowell KS, García-Bueno B, Caso JR, Leza JC, Madrigal JLM. CX3CL1 Regulation of Gliosis in Neuroinflammatory and Neuroprotective Processes. Int J Mol Sci 2025; 26:959. [PMID: 39940727 PMCID: PMC11817243 DOI: 10.3390/ijms26030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound form and in a soluble form, among others. However, undoubtedly, its most relevant characteristic from the neuroscientific point of view is its role as a messenger used by neurons to communicate with microglia. The study of the interaction between both cell types and the key role that CX3CL1 seems to play has facilitated the identification of CX3CL1 as a crucial modulator of microglial activation and a promising target in the fight against neuroinflammation. As a result, numerous studies have contributed to elucidate the involvement of CX3CL1 and its specific receptor CCX3CR1 in the progression of different neuroinflammatory and neurodegenerative processes, with Alzheimer's and Parkinson's diseases being the most studied ones. However, the different animal and cellular models used to reproduce the pathological conditions to be analyzed, as well as the difficulties inherent to studies performed on human samples, have hindered the collection of compatible results in many cases. In this review, we summarize some of the most relevant data describing the alterations found for the CX3CL1/CX3CR1 signaling axis in different neurodegenerative conditions in which neuroinflammation is known to play a relevant role.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| |
Collapse
|
2
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
3
|
Hirose K, Li SZ, Gill R, Hartsock J. Pneumococcal Meningitis Induces Hearing Loss and Cochlear Ossification Modulated by Chemokine Receptors CX3CR1 and CCR2. J Assoc Res Otolaryngol 2024; 25:179-199. [PMID: 38472515 PMCID: PMC11018586 DOI: 10.1007/s10162-024-00935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE Pneumococcal meningitis is a major cause of hearing loss and permanent neurological impairment despite widely available antimicrobial therapies to control infection. Methods to improve hearing outcomes for those who survive bacterial meningitis remains elusive. We used a mouse model of pneumococcal meningitis to evaluate the impact of mononuclear phagocytes on hearing outcomes and cochlear ossification by altering the expression of CX3CR1 and CCR2 in these infected mice. METHODS We induced pneumococcal meningitis in approximately 500 C57Bl6 adult mice using live Streptococcus pneumoniae (serotype 3, 1 × 105 colony forming units (cfu) in 10 µl) injected directly into the cisterna magna of anesthetized mice and treated these mice with ceftriaxone daily until recovered. We evaluated hearing thresholds over time, characterized the cochlear inflammatory response, and quantified the amount of new bone formation during meningitis recovery. We used microcomputed tomography (microCT) scans to quantify cochlear volume loss caused by neo-ossification. We also performed perilymph sampling in live mice to assess the integrity of the blood-perilymph barrier during various time intervals after meningitis. We then evaluated the effect of CX3CR1 or CCR2 deletion in meningitis symptoms, hearing loss, macrophage/monocyte recruitment, neo-ossification, and blood labyrinth barrier function. RESULTS Sixty percent of mice with pneumococcal meningitis developed hearing loss. Cochlear fibrosis could be detected within 4 days of infection, and neo-ossification by 14 days. Loss of spiral ganglion neurons was common, and inner ear anatomy was distorted by scarring caused by new soft tissue and bone deposited within the scalae. The blood-perilymph barrier was disrupted at 3 days post infection (DPI) and was restored by seven DPI. Both CCR2 and CX3CR1 monocytes and macrophages were present in the cochlea in large numbers after infection. Neither chemokine receptor was necessary for the induction of hearing loss, cochlear fibrosis, ossification, or disruption of the blood-perilymph barrier. CCR2 knockout (KO) mice suffered the most severe hearing loss. CX3CR1 KO mice demonstrated an intermediate phenotype with greater susceptibility to hearing loss compared to control mice. Elimination of CX3CR1 mononuclear phagocytes during the first 2 weeks after meningitis in CX3CR1-DTR transgenic mice did not protect mice from any of the systemic or hearing sequelae of pneumococcal meningitis. CONCLUSIONS Pneumococcal meningitis can have devastating effects on cochlear structure and function, although not all mice experienced hearing loss or cochlear damage. Meningitis can result in rapid progression of hearing loss with fibrosis starting at four DPI and ossification within 2 weeks of infection detectable by light microscopy. The inflammatory response to bacterial meningitis is robust and can affect all three scalae. Our results suggest that CCR2 may assist in controlling infection and maintaining cochlear patency, as CCR2 knockout mice experienced more severe disease, more rapid hearing loss, and more advanced cochlear ossification after pneumococcal meningitis. CX3CR1 also may play an important role in the maintenance of cochlear patency.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA.
| | - Song Zhe Li
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
| | - Ruth Gill
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Department of Obstetric and Gynecology, Washington University, St. Louis, MO, USA
| | - Jared Hartsock
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Turner Scientific, Jacksonville, IL, USA
| |
Collapse
|
4
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Mendiola AS, Church KA, Cardona SM, Vanegas D, Garcia SA, Macklin W, Lira SA, Ransohoff RM, Kokovay E, Lin CHA, Cardona AE. Defective fractalkine-CX3CR1 signaling aggravates neuroinflammation and affects recovery from cuprizone-induced demyelination. J Neurochem 2022; 162:430-443. [PMID: 35560167 PMCID: PMC9427683 DOI: 10.1111/jnc.15616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Microglia have been implicated in multiple sclerosis (MS) pathogenesis. The fractalkine receptor CX3CR1 limits the activation of pathogenic microglia and the human polymorphic CX3CR1I249/M280 (hCX3CR1I249/M280 ) variant increases disease progression in models of MS. However, the role of hCX3CR1I249/M280 variant on microglial activation and central nervous system repair mechanisms remains unknown. Therefore, using transgenic mice expressing the hCX3CR1I249/M280 variant, we aimed to determine the contribution of defective CX3CR1 signaling to neuroinflammation and remyelination in the cuprizone model of focal demyelination. Here, we report that mice expressing hCX3CR1I249/M280 exhibit marked demyelination and microgliosis following acute cuprizone treatment. Nanostring gene expression analysis in demyelinated lesions showed that hCX3CR1I249/M280 but not CX3CR1-deficient mice up-regulated the cuprizone-induced gene profile linked to inflammatory, oxidative stress, and phagocytic pathways. Although CX3CR1-deficient (CX3CR1-KO) and fractalkine-deficient (FKN-KO) mice displayed a comparable demyelination and microglial activation phenotype to hCX3CR1I249/M280 mice, only CX3CR1-deficient and CX3CR1-WT mice showed significant myelin recovery 1 week from cuprizone withdrawal. Confocal microscopy showed that hCX3CR1I249/M280 variant inhibits the generation of cells involved in myelin repair. Our results show that defective fractalkine signaling contributes to regional differences in demyelination, and suggest that the CX3CR1 pathway activity may be a key mechanism for limiting toxic gene responses in neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15416.
Collapse
Affiliation(s)
- Andrew S. Mendiola
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- Current address: Gladstone Institutes, San Francisco, California, 94158, USA
| | - Kaira A. Church
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sandra M. Cardona
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shannon A. Garcia
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Wendy Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sergio A. Lira
- Precision Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Erzsebet Kokovay
- Cell Systems and Anatomy, UT-Health Science Center San Antonio, San Antonio TX 78229, USA
- Barshop Institute of Longevity and Aging Studies, San Antonio, TX 78245, USA
| | - Chin-Hsing Annie Lin
- Department of Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021; 231:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
Collapse
Affiliation(s)
- Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
7
|
Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021; 15:694292. [PMID: 34408629 PMCID: PMC8365835 DOI: 10.3389/fncel.2021.694292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Immune system dysregulation is increasingly being attributed to the development of a multitude of neurodegenerative diseases. This, in large part, is due to the delicate relationship that exists between neurons in the central nervous system (CNS) and peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis and immune surveillance within a tissue. Classically, the inner ear was thought to be immune privileged due to the presence of a blood-labyrinth barrier. However, it is now well-established that both vestibular and auditory end organs in the inner ear contain a resident (local) population of macrophages which are the phagocytic cells of the innate-immune system. Upon cochlear sterile injury or infection, there is robust activation of these resident macrophages and a predominant increase in the numbers of macrophages as well as other types of leukocytes. Despite this, the source, nature, fate, and functions of these immune cells during cochlear physiology and pathology remains unclear. Migration of local macrophages and infiltration of bone-marrow-derived peripheral blood macrophages into the damaged cochlea occur through various signaling cascades, mediated by the release of specific chemical signals from damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of the cochlea. Despite the known importance of this neuron-immune axis in CNS function and pathology, until recently it was not clear whether this signaling axis played a role in macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will explore the importance of innate immunity in neurodegenerative disease development, specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence for a role of FKN signaling in cochlear neuroprotection.
Collapse
Affiliation(s)
- Andrew Rigel Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
8
|
Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2020; 12:474-495. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
As an integral part of the innate immune system of the brain, resident microglia must react rapidly to the onset of brain injury and neurological disease. These dynamic cells then continue to shift their phenotype along a multidimensional continuum with overlapping pro- and anti-inflammatory states, allowing them to adapt to microenvironmental changes during the progression of brain disorders. However, the ability of microglia to shift phenotype through nimble molecular, structural, and functional changes comes at a cost, as the extreme pro-inflammatory states may prevent these professional phagocytes from clearing toxic debris and secreting tissue-repairing neurotrophic factors. Evolution has strongly favored heterogeneity in microglia in both the spatial and temporal dimensions-they can assume diverse roles in different brain regions, throughout the course of brain development and aging, and during the spatiotemporal progression of brain injuries and neurological diseases. Age and sex differences add further diversity to microglia functional status under physiological and pathological conditions. This article reviews recent advances in our knowledge of microglia with emphases on molecular mediators of phenotype shifts and functional diversity. We describe microglia-targeted therapeutic opportunities, including pharmacologic modulation of phenotype and repopulation of the brain with fresh microglia. With the advent of powerful new tools, research on microglia has recently accelerated in pace and may translate into potential therapeutics against brain injury and neurological disease.
Collapse
Affiliation(s)
- Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett 2020; 715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
10
|
Mai W, Liu X, Wang J, Zheng J, Wang X, Zhou W. Protective effects of CX3CR1 on autoimmune inflammation in a chronic EAE model for MS through modulation of antigen-presenting cell-related molecular MHC-II and its regulators. Neurol Sci 2019; 40:779-791. [PMID: 30671738 DOI: 10.1007/s10072-019-3721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent evidences have implicated neuroprotective effects of CX3CR1 in multiple sclerosis (MS). But whether CX3CR1 is involved in modulation of antigen-presenting cell (APC)-related molecular MHC-II and what the possible mechanism is remain unidentified. OBJECTIVE In this study, we intended to investigate the effects of CX3CR1 on MHC-II expressions on brain myeloid cells in experimental autoimmune encephalomyelitis (EAE) mice and explore the possible regulators for it. METHODS CX3CR1-deficient EAE mice were created. Disease severity, pathological damage, and the expressions of MHC-II and its mediators on myeloid cells were detected. RESULTS We found that compare with wile-typed EAE mice, CX3CR1-deficient EAE mice exhibited more severe disease severity. An accumulation of CD45+CD115+Ly6C-CD11c+ cells was reserved in the affected EAE brain of CX3CR1-deficient mice, consistent with disease severity and pathological damage in the brain. The expressions of MHC-II on the brain CD45+CD115+Ly6C-CD11c+ cells of CX3CR1-deficient EAE mice were elevated, in accord with the increased protein and mRNA expressions of class II transactivator (CIITA) and interferon regulatory factor-1 (IRF-1). CONCLUSIONS The findings indicated that CX3CR1 might be an important regulator for MHC-II expressions on APCs, playing a beneficial role in EAE. The mechanism was probably through regulation on the MHC-II regulators CIITA and IRF-1.
Collapse
Affiliation(s)
- Weihua Mai
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, NO. 52 East Meihua Road, Zhuhai, 519000, Guangdong Province, China.
| | - Xingwei Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Junfeng Wang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, NO. 52 East Meihua Road, Zhuhai, 519000, Guangdong Province, China
| | - Jing Zheng
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiao Wang
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wenying Zhou
- Department of Laboratory Science, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
11
|
Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE. Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1 I249/M280 Variant. Front Cell Neurosci 2018; 12:365. [PMID: 30386211 PMCID: PMC6199958 DOI: 10.3389/fncel.2018.00365] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, United States
| | - Kaira A Church
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Vanessa O Torres
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ian A Cleary
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, United States
| | - Andrew S Mendiola
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Stephen P Saville
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Stephanie S Watowich
- Department of Immunology, Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alejandro Soto-Ospina
- Basic Sciences Department, Research and Innovation in Chemical Formulations, University EIA, Envigado, Colombia
| | - Pedronel Araque
- Basic Sciences Department, Research and Innovation in Chemical Formulations, University EIA, Envigado, Colombia
| | | | - Astrid E Cardona
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
13
|
Rajendran R, Giraldo-Velásquez M, Stadelmann C, Berghoff M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol 2017; 28:212-224. [PMID: 28117910 DOI: 10.1111/bpa.12487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023] Open
Abstract
Fibroblast growth factors (FGFs) exert diverse biological effects by binding and activation of specific fibroblast growth factor receptors (FGFRs). FGFs and FGFRs have been implicated in demyelinating pathologies including multiple sclerosis. In vitro activation of the FGF2/FGFR1 pathway results in downregulation of myelin proteins. FGF1, 2 and 9 have been shown to be involved in the pathology of multiple sclerosis. Recent studies on the function of oligodendroglial FGFR1 in a model of toxic demyelination showed that deletion of FGFR1 led to increased remyelination and preservation of axonal density and an increased number of mature oligodendrocytes. In the present study the in vivo function of oligodendroglial FGFR1 was characterized using an oligodendrocyte-specific genetic approach in the most frequently used model of multiple sclerosis the MOG35-55 -induced EAE. Oligodendroglial FGFR1 deficient mice (referred to as Fgfr1ind-/- ) showed a significantly ameliorated disease course in MOG35-55 -induced EAE. Less myelin and axonal loss, and reduced lymphocyte and macrophage/microglia infiltration were found in Fgfr1ind-/- mice. The reduction in disease severity in Fgfr1ind-/- mice was accompanied by ERK/AKT phosphorylation, and increased expression of BDNF and TrkB. Reduced proinflammatory cytokine and chemokine expression was seen in Fgfr1ind-/- mice compared with control mice. Considering that FGFR inhibitors are used in cancer trials, the oligodendroglial FGFR1 pathway may provide a new target for therapy in multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Department of Neurology, University of Giessen, Klinikstrasse 33, Giessen, 35385, Germany
| | | | - Christine Stadelmann
- Institute of Neuropathology, University of Göttingen, Robert-Koch-Strasse 40, Göttingen, 37099, Germany
| | - Martin Berghoff
- Department of Neurology, University of Giessen, Klinikstrasse 33, Giessen, 35385, Germany
| |
Collapse
|
14
|
CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8090918. [PMID: 27429982 PMCID: PMC4939332 DOI: 10.1155/2016/8090918] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022]
Abstract
CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer's disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.
Collapse
|
15
|
Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 2013; 3:130181. [PMID: 24352739 PMCID: PMC3877844 DOI: 10.1098/rsob.130181] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An essential aspect of normal brain function is the bidirectional interaction and communication between neurons and neighbouring glial cells. To this end, the brain has evolved ligand-receptor partnerships that facilitate crosstalk between different cell types. The chemokine, fractalkine (FKN), is expressed on neuronal cells, and its receptor, CX(3)CR1, is predominantly expressed on microglia. This review focuses on several important functional roles for FKN/CX(3)CR1 in both health and disease of the central nervous system. It has been posited that FKN is involved in microglial infiltration of the brain during development. Microglia, in turn, are implicated in the developmental synaptic pruning that occurs during brain maturation. The abundance of FKN on mature hippocampal neurons suggests a homeostatic non-inflammatory role in mechanisms of learning and memory. There is substantial evidence describing a role for FKN in hippocampal synaptic plasticity. FKN, on the one hand, appears to prevent excess microglial activation in the absence of injury while promoting activation of microglia and astrocytes during inflammatory episodes. Thus, FKN appears to be neuroprotective in some settings, whereas it contributes to neuronal damage in others. Many progressive neuroinflammatory disorders that are associated with increased microglial activation, such as Alzheimer's disease, show disruption of the FKN/CX(3)CR1 communication system. Thus, targeting CX(3)CR1 receptor hyperactivation with specific antagonists in such neuroinflammatory conditions may eventually lead to novel neurotherapeutics.
Collapse
Affiliation(s)
- Graham K Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
16
|
Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1063-72. [PMID: 23817416 DOI: 10.4049/jimmunol.1300040] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fractalkine, a chemokine anchored to neurons or peripheral endothelial cells, serves as an adhesion molecule or as a soluble chemoattractant. Fractalkine binds CX3CR1 on microglia and circulating monocytes, dendritic cells, and NK cells. The aim of this study is to determine the role of CX3CR1 in the trafficking and function of myeloid cells to the CNS during experimental autoimmune encephalomyelitis (EAE). Our results show that, in models of active EAE, Cx3cr1(-/-) mice exhibited more severe neurologic deficiencies. Bone marrow chimeric mice confirmed that CX3CR1 deficiency in bone marrow enhanced EAE severity. Notably, CX3CR1 deficiency was associated with an increased accumulation of CD115(+)Ly6C(-)CD11c(+) dendritic cells into EAE-affected brains that correlated with enhanced demyelination and neuronal damage. Furthermore, higher IFN-γ and IL-17 levels were detected in cerebellar and spinal cord tissues of CX3CR1-deficient mice. Analyses of peripheral responses during disease initiation revealed a higher frequency of IFN-γ- and IL-17-producing T cells in lymphoid tissues of CX3CR1-deficient as well as enhanced T cell proliferation induced by CX3CR1-deficient dendritic cells. In addition, adoptive transfer of myelin oligodendrocyte glycoprotein35-55-reactive wild-type T cells induced substantially more severe EAE in CX3CR1-deficient recipients when compared with wild-type recipients. Collectively, the data demonstrate that besides its role in chemoattraction, CX3CR1 is a key regulator of myeloid cell activation contributing to the establishment of adaptive immune responses.
Collapse
Affiliation(s)
- Jenny A Garcia
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|