1
|
Pistolesi A, Molli A, De Cesaris F, Chiarugi A, Buonvicino D. The anti-CGRP mAb Fremanezumab reverts the anti-inflammatory effects of CGRP in vitro but does not alter disease evolution in a mouse model of progressive multiple sclerosis. Eur J Pharmacol 2025; 995:177415. [PMID: 39988092 DOI: 10.1016/j.ejphar.2025.177415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Migraine has been reported to be twice as prevalent in patients with multiple sclerosis (MS) compared to the non-MS population, highlighting the importance of the treatment for migraine in the MS population. Because of their efficacy, safety profile, and target specificity, the anti-CGRP monoclonal antibodies (mAbs) represent a promising option in MS patients concomitantly exposed to disease-modifying drugs. However, growing evidence reports the role of CGRP in regulating the immune system, raising a question about the safety use of anti-CGRP mAbs in autoimmune disorders such as MS. In the present study, by adopting NOD mice immunized with MOG35-55 as a model of progressive experimental autoimmune encephalomyelitis (PEAE), we evaluated the effects of the anti-CGRP mAb fremanezumab on disease evolution. We report that CGRP inhibited both LPS-induced microglia activation and lymphocyte proliferation in a concentration-dependent manner and that a concomitant fremanezumab exposure counteracted these effects in vitro. However, we found that fremanezumab administered every 2 weeks from the day of immunization, did not worsen disease evolution or survival in PEAE mice. Accordingly, no difference in innate and adaptive immune responses as well as spinal cord degeneration was observed in immunized mice treated with fremanezumab. Notably, we also demonstrated the ability of fremanezumab to reach the site of neurodegeneration, showing its presence in the spinal cord. Data indicate that CGRP has an irrelevant immunosuppressant effect in the complex pathophysiological scenario of MS, and suggest that the use of anti-CGRP antibodies for migraine treatment in MS patients is safe.
Collapse
Affiliation(s)
- Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Alice Molli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Francesco De Cesaris
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy; Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Sarkar S, Porel P, Kosey S, Aran KR. Unraveling the role of CGRP in neurological diseases: a comprehensive exploration to pathological mechanisms and therapeutic implications. Mol Biol Rep 2025; 52:436. [PMID: 40299101 DOI: 10.1007/s11033-025-10542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Spinal muscular atrophy (SMA) are neurodegenerative diseases (NDDs) characterized by progressive neuronal degeneration. Recent studies provide compelling information regarding the contribution of Calcitonin Gene-Related Peptide (CGRP), a potent neuropeptide, in regulating neuroinflammation, vasodilation, and neuronal survival in these disorders. This review systematically delves into the multidimensional aspects of CGRP as both a neuroprotective agent and a neurotoxic factor in NDDs. The neuroprotective effects of CGRP include suppression of inflammation, regulation of intracellular signaling pathways, and promotion of neuronal growth and survival. However, under pathological conditions, its overexpression or dysregulation is associated with oxidative stress, excitotoxicity, and neuronal death. The therapeutic use of CGRP and its receptor antagonists in migraine provides substantial evidence for CGRP's therapeutic potential, which can be further explored for the management of NDDs. However, since the bidirectional nature of CGRP effects is evident, it is crucial to gain an accurate insight into its mechanisms to target only the neuropeptide's beneficial effects while completely avoiding the undesired consequences. Further studies should focus on understanding the context-dependent activity of CGRP in the hope of designing targeted therapy for NDDs, which could gradually transform the current pharmacological management of NDDs.
Collapse
Affiliation(s)
- Sampriti Sarkar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Nociti V, Romozzi M, Annovazzi P, Fantozzi R, Tortorella C, Vercellino M, Iannone LF, De Luca G, Tomassini V, Di Filippo M, Lorefice L, Maniscalco GT, Paolicelli D, Pinardi F, Ronzoni M, Solaro CM, Gasperini C, Calabresi P, Vollono C, Cocco E. Effectiveness, safety, and impact on multiple sclerosis course of anti-CGRP monoclonal antibodies. J Neurol Sci 2025; 469:123392. [PMID: 39808882 DOI: 10.1016/j.jns.2025.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Migraine affects up to 40% of people with multiple sclerosis (PwMS). This study aimed to evaluate the effectiveness and safety of the combination of antibodies (mAbs) against CGRP (anti-CGRP mAbs) with disease-modifying treatments (DMTs) for MS (mAb and non-mAbs) and their impact on MS disease course. METHODS This retrospective, multicentric study included PwMS from 14 MS Centers, treated with an anti-CGRP mAb and a stable treatment with DMTs. MS outcome measures included clinical relapses, EDSS score, and MRI activity from the year before starting anti-CGRP mAbs at the time of initiation (baseline) and last follow-up. Migraine outcomes included reductions in Monthly Headache Days (MHDs) and analgesic use. Adverse events (AEs) were recorded. RESULTS Twenty-five patients were included (mean age of 39.4 ± 9.7 years). Nine PwMS (36.0%) were treated with non-mAb DMTs and 16 (64.0%) with mAb DMTs. During the concurrent treatment, six patients (24.0%) stopped anti-CGRP mAbs after 12.7 ± 11.6 months due to ineffectiveness (n = 3) migraine sustained improvement (n = 2) and AEs (n = 1). MHDs significantly decreased from baseline (22.0 ± 8.2) to the last follow-up (11.5 ± 13.7) (p = 0.002). EDSS score did not significantly change from the year before initiating anti-CGRP mAb (1.9 ± 1.4) to baseline (1.9 ± 1.4) and last follow-up (1.9 ± 1.5)(p = 0.497). Two patients (8.0%) had a clinical relapse, and one (4.0%) had MRI activity during treatment with anti-CGRP mAbs. Overall, DMTs were discontinued in two patients (8%). Mild AEs were reported in 2 PwMS (8.0%), none leading to discontinuation. CONCLUSIONS Long-term treatment with anti-CGRP mAbs and DMTs for MS showed safety and effectiveness with no significant effect on MS disease course.
Collapse
Affiliation(s)
- Viviana Nociti
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Neurologia, Dipartimento di neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Marina Romozzi
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Neurologia, Dipartimento di neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Pietro Annovazzi
- Multiple Sclerosis Center, Hospital of Gallarate - ASST della Valle Olona, Gallarate, Italy
| | | | - Carla Tortorella
- Multiple Sclerosis Center, Neurology Unit S. Camillo-Forlanini Hospital, Rome, Italy
| | - Marco Vercellino
- Department of Neuroscience, City of Health and Science University Hospital of Turin, Turin, Italy
| | - Luigi Francesco Iannone
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanna De Luca
- Multiple Sclerosis Center, Policlinico SS. Annunziata, Chieti, Italy
| | | | | | - Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | | | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Pinardi
- IRCCS Istituto delle scienze neurologiche di Bologna, UOSI Riabilitazione Sclerosi Multipla, Bologna, Italy
| | - Marco Ronzoni
- ASST Rhodense, Ospedale Garbagnate Milanese, Neurology Unit, Garbagnate Milanese, Italy
| | | | - Claudio Gasperini
- Multiple Sclerosis Center, Neurology Unit S. Camillo-Forlanini Hospital, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Neurologia, Dipartimento di neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Catello Vollono
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Neurologia, Dipartimento di neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Italy
| |
Collapse
|
4
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
5
|
Mason A, Fragapane L, Toledo-Nieves Z, Moreo N, Aungst A, Robertson D, Maldonado J. Use of Calcitonin Gene-Related Peptide Monoclonal Antibodies for the Treatment of Migraines in Individuals With Multiple Sclerosis. Int J MS Care 2024; 26:104-107. [PMID: 38765303 PMCID: PMC11096852 DOI: 10.7224/1537-2073.2023-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Migraines are a common comorbidity and source of disability in patients with chronic inflammatory diseases like multiple sclerosis (MS). Recently, therapeutic agents for episodic and chronic migraine known as calcitonin gene-related peptide (CGRP) inhibitors have shown to effectively control migraine attacks and improve quality of life in the general population. This study explored the use of these novel agents in individuals with comorbid MS. METHODS This was a retrospective, population-based cohort study at the University of South Florida's neurology clinic; it evaluated individuals with both MS and migraine. RESULTS A total of 27 individuals with MS and chronic or episodic migraine who received treatment with a CGRP monoclonal antibody were identified. Of these, 63% reported a reduction in their migraine frequency of greater than 75%. Concurrent use of a disease-modifying therapy (DMT) for MS occurred in 82% of patients, and in 37% of these, the DMT used was also a monoclonal antibody. Adverse effects from CGRP monoclonal antibodies were mild and occurred in only 11% of patients, and no patient experienced worsening of their MS symptoms during cotreatment over the duration of the study. CONCLUSIONS Our study showed a significant reduction in migraine frequency and a favorable adverse event profile for individuals with comorbid MS who took CGRP monoclonal antibodies and experienced no worsening of MS symptoms. In individuals with MS, CGRP monoclonal antibodies seem to be a safe and effective therapy for episodic or chronic migraine.
Collapse
Affiliation(s)
- Ashley Mason
- From the Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lauren Fragapane
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | - Natalie Moreo
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Angela Aungst
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Derrick Robertson
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Janice Maldonado
- Department of Neurology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Al-Keilani MS, Almomani BA, Jaradat SA, Al-Sawalha NA, Qawasmeh MA. Alpha Calcitonin Gene-related Peptide, Neuropeptide Y, and Substance P as Biomarkers for Diagnosis and Disease Activity and Severity in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:512-524. [PMID: 37013432 DOI: 10.2174/1871527322666230403130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS). OBJECTIVE The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity. METHODS Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA. RESULTS We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (p < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (p = 0.007) and healthy controls (p = 0.001), and it positively correlated with EDSS (r = 0.270, p = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (p < 0.001 and p = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (p < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, p = 0.022) and duration of current DMT (r = -0.315, p = 0.042). CONCLUSION Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, College of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Majdi Al Qawasmeh
- Department of Neurology, College of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
7
|
Braida D, Ponzoni L, Dellarole I, Morara S, Sala M. Fluoxetine rescues the depressive-like behaviour induced by reserpine and the altered emotional behaviour induced by nicotine withdrawal in zebrafish: Involvement of tyrosine hydroxylase. J Psychopharmacol 2023; 37:1132-1148. [PMID: 37593958 DOI: 10.1177/02698811231191103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND Nicotine cessation leads to anxiety and depression. AIMS The suitability of the zebrafish model of anhedonia using reserpine and fluoxetine was evaluated. Fluoxetine was also used to reduce nicotine withdrawal-induced anhedonic state. METHODS Zebrafish were exposed to reserpine (40 mg/l) and then to fluoxetine (0.1 mg/l) for 1 week. Anhedonia was evaluated in the Novel Tank Diving and Compartment Preference tests. Another group was exposed to nicotine (1 mg/l/2 weeks) and then exposed to fluoxetine. Anxiety and anhedonia were evaluated 2-60 days after. Tyrosine hydroxylase (TH) immunoreactivity and microglial morphology (labelled by 4C4 monoclonal antibody) in the parvocellular pretectal nucleus (PPN), dorsal part, and of calcitonin gene-related peptide (CGRP) in the hypothalamus were also analysed. RESULTS Less time in the top and increased latency to the top in reserpine compared to a drug-free group was found. Fluoxetine rescued reserpine-induced the reduced time in the top. Seven and 30 days after nicotine withdrawal more time in the bottom and similar time in the Compartment Preference test, rescued by fluoxetine, were shown. In the PPN, 30-day withdrawal induced an increase in TH immunoreactivity, but fluoxetine induced a further significant increase. No changes in PPN microglia morphology and hypothalamic CGRP were detected. CONCLUSIONS Our findings validate the suitability of the zebrafish model of anhedonia using the reserpine-induced depression-like behaviour and the predictivity using fluoxetine. Fluoxetine rescued nicotine withdrawal-induced anhedonic state, opening the possibility to screen new drugs to alleviate anxiety and depression in smokers during abstinence.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
8
|
Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci 2023; 17:1184766. [PMID: 37529236 PMCID: PMC10387546 DOI: 10.3389/fnins.2023.1184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability and mortality rates, which severely burdens patients, their families, and society. At present, thrombolytic therapy is mainly used for the treatment of ischemic strokes. Even though it can achieve a good effect, thrombolytic recanalization can cause reperfusion injury. Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a neuroprotective role in the process of ischemia-reperfusion injury. By combining with its specific receptors, CGRP can induce vasodilation of local cerebral ischemia by directly activating the cAMP-PKA pathway in vascular smooth muscle cells and by indirectly activating the NO-cGMP pathway in an endothelial cell-dependent manner,thus rapidly increasing ischemic local blood flow together with reperfusion. CGRP, as a key effector molecule of neurogenic inflammation, can reduce the activation of microglia, downregulates Th1 classical inflammation, and reduce the production of TNF-α, IL-2, and IFN-γ and the innate immune response of macrophages, leading to the reduction of inflammatory factors. CGRP can reduce the overexpression of the aquaporin-4 (AQP-4) protein and its mRNA in the cerebral ischemic junction, and play a role in reducing cerebral edema. CGRP can protect endothelial cells from angiotensin II by reducing the production of oxidants and protecting antioxidant defense. Furthermore, CGRP-upregulated eNOS can further induce VEGF expression, which then promotes the survival and angiogenesis of vascular endothelial cells. CGRP can also reduce apoptosis by promoting the expression of Bcl-2 and inhibiting the expression of caspase-3. These effects suggest that CGRP can reduce brain injury and repair damaged nerve function. In this review, we focused on the role of CGRP in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiyong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junhui Bai
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Keling Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Ray JC, Allen P, Bacsi A, Bosco JJ, Chen L, Eller M, Kua H, Lim LL, Matharu MS, Monif M, Ruttledge M, Stark RJ, Hutton EJ. Inflammatory complications of CGRP monoclonal antibodies: a case series. J Headache Pain 2021; 22:121. [PMID: 34625019 PMCID: PMC8501661 DOI: 10.1186/s10194-021-01330-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is expressed throughout the body and is a known mediator of migraine, exerting this biological effect through activation of trigeminovascular, meningeal and associated neuronal pathways located in close proximity to the central nervous system. Monoclonal antibodies (mAb) targeting the CGRP pathway are an effective new preventive treatment for migraine, with a generally favourable adverse event profile. Pre-clinical evidence supports an anti-inflammatory/immunoregulatory role for CGRP in other organ systems, and therefore inhibition of the normal action of this peptide may promote a pro-inflammatory response. CASES We present a case series of eight patients with new or significantly worsened inflammatory pathology in close temporal association with the commencement of CGRP mAb therapy. CONCLUSION This case series provides novel insights on the potential molecular mechanisms and side-effects of CGRP antagonism in migraine and supports clinical vigilance in patient care going forward.
Collapse
Affiliation(s)
- Jason C Ray
- Department of Neurology, Alfred Hospital, Commercial Melbourne 3004, Melbourne, Australia. .,Department of Neurology, Austin Health, 145 Studley Road, 3084, Heidelberg, Germany. .,Department of Neuroscience, Monash University, Vic, Melbourne, 3004, Australia.
| | - Penelope Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Department of Surgery (Ophthalmology), University of Melbourne, Parkville, Australia
| | - Ann Bacsi
- Integrated Specialist Medical Care, Sydney, Australia
| | - Julian J Bosco
- Department of Allergy, asthma and clinical immunology, Alfred Hospital, Commercial Road 3004, Melbourne, Australia.,Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Luke Chen
- Department of Neuroscience, Monash University, Vic, Melbourne, 3004, Australia.,Otoneurology Diagnostic Unit, Alfred Hospital, Commercial Rd 3004, Melbourne, VIC, Australia
| | - Michael Eller
- Department of Neurology, Monash Medical Centre, Vic, Melbourne, Australia.,School of Clinical Sciences, Monash University, Vic, Melbourne, Australia
| | - Hock Kua
- Department of Pathology, Monash Medical Centre, Vic, Melbourne, Australia
| | - Lyndell L Lim
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Department of Surgery (Ophthalmology), University of Melbourne, Parkville, Australia
| | - Manjit S Matharu
- University College London (UCL) Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, University College London, Gower Street WC1E 6BT, London, UK
| | - Mastura Monif
- Department of Neuroscience, Monash University, Vic, Melbourne, 3004, Australia.,Department of Neurology, Royal Melbourne Hospital, Vic, Parkville, 3050, Australia.,MS and Neuroimmunology Department, Alfred Hospital, Vic, Melbourne, 3004, Australia
| | - Martin Ruttledge
- Consultant Neurologist & Headache Clinical Lead, Beaumont Hospital, Beaumont Road, Dublin, Ireland
| | - Richard J Stark
- Department of Neurology, Alfred Hospital, Commercial Melbourne 3004, Melbourne, Australia.,Department of Neuroscience, Monash University, Vic, Melbourne, 3004, Australia
| | - Elspeth J Hutton
- Department of Neurology, Alfred Hospital, Commercial Melbourne 3004, Melbourne, Australia.,Department of Neuroscience, Monash University, Vic, Melbourne, 3004, Australia
| |
Collapse
|
10
|
An Q, Sun C, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 2021; 18:117. [PMID: 34020664 PMCID: PMC8139106 DOI: 10.1186/s12974-021-02168-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. RESULTS Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. CONCLUSION Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
11
|
Ghareghani M, Ghanbari A, Eid A, Shaito A, Mohamed W, Mondello S, Zibara K. Hormones in experimental autoimmune encephalomyelitis (EAE) animal models. Transl Neurosci 2021; 12:164-189. [PMID: 34046214 PMCID: PMC8134801 DOI: 10.1515/tnsci-2020-0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which activated immune cells attack the CNS and cause inflammation and demyelination. While the etiology of MS is still largely unknown, the interaction between hormones and the immune system plays a role in disease progression, but the mechanisms by which this occurs are incompletely understood. Several in vitro and in vivo experimental, but also clinical studies, have addressed the possible role of the endocrine system in susceptibility and severity of autoimmune diseases. Although there are several demyelinating models, experimental autoimmune encephalomyelitis (EAE) is the oldest and most commonly used model for MS in laboratory animals which enables researchers to translate their findings from EAE into human. Evidences imply that there is great heterogeneity in the susceptibility to the induction, the method of induction, and the response to various immunological or pharmacological interventions, which led to conflicting results on the role of specific hormones in the EAE model. In this review, we address the role of endocrine system in EAE model to provide a comprehensive view and a better understanding of the interactions between the endocrine and the immune systems in various models of EAE, to open up a ground for further detailed studies in this field by considering and comparing the results and models used in previous studies.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Eid
- Biomedical and Pharmaceutical Research Unit and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shibin Al Kawm, Egypt
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences – I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
12
|
Argunhan F, Thapa D, Aubdool AA, Carlini E, Arkless K, Hendrikse ER, de Sousa Valente J, Kodji X, Barrett B, Ricciardi CA, Gnudi L, Hay DL, Brain SD. Calcitonin Gene-Related Peptide Protects Against Cardiovascular Dysfunction Independently of Nitric Oxide In Vivo. Hypertension 2021; 77:1178-1190. [PMID: 33641368 DOI: 10.1161/hypertensionaha.120.14851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fulye Argunhan
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Dibesh Thapa
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Aisah Aniisah Aubdool
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (A.A.A.)
| | - Emanuele Carlini
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Kate Arkless
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Erica Ruth Hendrikse
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Joao de Sousa Valente
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Xenia Kodji
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Brentton Barrett
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Carlo Alberto Ricciardi
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Luigi Gnudi
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| | - Debbie Lucy Hay
- School of Biological Sciences, University of Auckland, New Zealand (D.L.H.)
| | - Susan Diana Brain
- From the Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Cardiovascular Centre of Excellence, King's College London, Franklin-Wilkins Building, Waterloo Campus, United Kingdom (F.A., D.T., E.C., K.A., J.d.S.V., X.K., B.B., C.A.R., L.G., S.D.B.)
| |
Collapse
|
13
|
ChIP-seq Profiling Identifies Histone Deacetylase 2 Targeting Genes Involved in Immune and Inflammatory Regulation Induced by Calcitonin Gene-Related Peptide in Microglial Cells. J Immunol Res 2020; 2020:4384696. [PMID: 32832570 PMCID: PMC7424498 DOI: 10.1155/2020/4384696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a mediator of microglial activation at the transcriptional level. The involvement of the epigenetic mechanism in this process is largely undefined. Histone deacetylase (HDAC)1/2 are considered important epigenetic regulators of gene expression in activated microglia. In this study, we examined the effect of CGRP on HDAC2-mediated gene transcription in microglial cells through the chromatin immunoprecipitation sequencing (ChIP-seq) method. Immunofluorescence analysis showed that mouse microglial cells (BV2) expressed CGRP receptor components. Treatment of microglia with CGRP increased HDAC2 protein expression. ChIP-seq data indicated that CGRP remarkably altered promoter enrichments of HDAC2 in microglial cells. We identified 1271 gene promoters, whose HDAC2 enrichments are significantly altered in microglia after CGRP treatment, including 1181 upregulating genes and 90 downregulating genes. Bioinformatics analyses showed that HDAC2-enriched genes were mainly associated with immune- and inflammation-related pathways, such as nitric oxide synthase (NOS) biosynthetic process, retinoic acid-inducible gene- (RIG-) like receptor signaling pathway, and nuclear factor kappa B (NF-κB) signaling pathway. The expression of these key pathways (NOS, RIG-I, and NF-κB) were further verified by Western blot. Taken together, our findings suggest that genes with differential HDAC2 enrichments induced by CGRP function in diverse cellular pathways and many are involved in immune and inflammatory responses.
Collapse
|
14
|
Routledge SJ, Simms J, Clark A, Yeung HY, Wigglesworth MJ, Dickerson IM, Kitchen P, Ladds G, Poyner DR. Receptor component protein, an endogenous allosteric modulator of family B G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183174. [PMID: 31887275 PMCID: PMC6977087 DOI: 10.1016/j.bbamem.2019.183174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022]
Abstract
Receptor component protein (RCP) is a 148 amino acid intracellular peripheral membrane protein, previously identified as promoting the coupling of CGRP to cAMP production at the CGRP receptor, a heterodimer of calcitonin receptor like-receptor (CLR), a family B G protein-coupled receptor (GPCR) and receptor activity modifying protein 1 (RAMP1). We extend these observations to show that it selectively enhances CGRP receptor coupling to Gs but not Gq or pERK activation. At other family B GPCRs, it enhances cAMP production at the calcitonin, corticotrophin releasing factor type 1a and glucagon-like peptide type 2 receptors with their cognate ligands but not at the adrenomedullin type 1 (AM1), gastric inhibitory peptide and glucagon-like peptide type 1 receptors, all expressed in transfected HEK293S cells. However, there is also cell-line variability as RCP did not enhance cAMP production at the endogenous calcitonin receptor in HEK293T cells and it has previously been reported that it is active on the AM1 receptor expressed on NIH3T3 cells. RCP appears to behave as a positive allosteric modulator at coupling a number of family B GPCRs to Gs, albeit in a manner that is regulated by cell-specific factors. It may exert its effects at the interface between the 2nd intracellular loop of the GPCR and Gs, although there is likely to be some overlap between this location and that occupied by the C-terminus of RAMPs if they bind to the GPCRs. RCP promotes coupling of the CGRP receptor to Gs but not Gi or ERK activation. RCP enhances Gs coupling for the calcitonin, CRF 1a and GLP-2 receptors. RCP does not act on adrenomedullin 1, GIP or GLP-1 receptors in HEK293S cells. The actions of RCP depend on the cell line background.
Collapse
Affiliation(s)
- Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - John Simms
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Ashley Clark
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ho Yan Yeung
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Mark J Wigglesworth
- Hit Discovery, Discovery Sciences, R&D, BioPharmaceuticals, AstraZeneca, Macclesfield, UK.
| | - Ian M Dickerson
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Philip Kitchen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
15
|
Borkum JM. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019; 59:1339-1357. [DOI: 10.1111/head.13591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology University of Maine Orono ME USA
- Health Psych Maine Waterville ME USA
| |
Collapse
|
16
|
Rossetti I, Zambusi L, Maccioni P, Sau R, Provini L, Castelli MP, Gonciarz K, Colombo G, Morara S. Predisposition to Alcohol Drinking and Alcohol Consumption Alter Expression of Calcitonin Gene-Related Peptide, Neuropeptide Y, and Microglia in Bed Nucleus of Stria Terminalis in a Subnucleus-Specific Manner. Front Cell Neurosci 2019; 13:158. [PMID: 31114482 PMCID: PMC6502997 DOI: 10.3389/fncel.2019.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle “alcohol vs. water” regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Laura Zambusi
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Paola Maccioni
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Roberta Sau
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Luciano Provini
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Krzysztof Gonciarz
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giancarlo Colombo
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Abstract
The canonical CGRP receptor is a complex between calcitonin receptor-like receptor (CLR), a family B G-protein-coupled receptor (GPCR) and receptor activity-modifying protein 1 (RAMP1). A third protein, receptor component protein (RCP) is needed for coupling to Gs. CGRP can interact with other RAMP-receptor complexes, particularly the AMY1 receptor formed between the calcitonin receptor (CTR) and RAMP1. Crystal structures are available for the binding of CGRP27-37 [D31,P34,F35] to the extracellular domain (ECD) of CLR and RAMP1; these show that extreme C-terminal amide of CGRP interacts with W84 of RAMP1 but the rest of the analogue interacts with CLR. Comparison with the crystal structure of a fragment of the allied peptide adrenomedullin bound to the ECD of CLR/RAMP2 confirms the importance of the interaction of the ligand C-terminus and the RAMP in determining pharmacology specificity, although the RAMPs probably also have allosteric actions. A cryo-electron microscope structure of calcitonin bound to the full-length CTR associated with Gs gives important clues as to the structure of the complete receptor and suggests that the N-terminus of CGRP makes contact with His5.40b, high on TM5 of CLR. However, it is currently not known how the RAMPs interact with the TM bundle of any GPCR. Major challenges remain in understanding how the ECD and TM domains work together to determine ligand specificity, and how G-proteins influence this and the role of RCP. It seems likely that allosteric mechanisms are particularly important as are the dynamics of the receptors.
Collapse
Affiliation(s)
- John Simms
- School of Life and Health Science, Aston University, Birmingham, UK
- Coventry University, Coventry, UK
| | - Sarah Routledge
- School of Life and Health Science, Aston University, Birmingham, UK
| | - Romez Uddin
- School of Life and Health Science, Aston University, Birmingham, UK
| | - David Poyner
- School of Life and Health Science, Aston University, Birmingham, UK.
| |
Collapse
|
18
|
Cortese A, Conte A, Ferrazzano G, Sgarlata E, Millefiorini E, Frontoni M, Berardelli A. Photophobia in multiple sclerosis. Mult Scler Relat Disord 2018; 26:55-57. [DOI: 10.1016/j.msard.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/07/2018] [Indexed: 11/28/2022]
|
19
|
Rossetti I, Zambusi L, Finardi A, Bodini A, Provini L, Furlan R, Morara S. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 323:94-104. [PMID: 30196840 DOI: 10.1016/j.jneuroim.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Activation states of immune cells (among them, the so-called pro- or anti-inflammatory states) influence the pathogenesis of multiple sclerosis (MS). The neuropeptide calcitonin gene-related peptide (CGRP) can exert a pro- or anti-inflammatory role in a context-dependent manner. In mice CGRP was found to attenuate the development of experimental autoimmune encephalomyelitis (EAE, a common MS animal model). We analyzed CGRP effects on the expression of cytokines and markers of activation states, as well as its intracellular cascade, following intrathecal administration during EAE immunization. Real Time quantitative-PCR (RT-PCR) showed that IL-1beta and IL-6 (associated to a pro-inflammatory state in EAE), but also Ym1 (also known as Chil3), Arg1 and CD163 (associated to an anti-inflammatory state in EAE) were decreased in the encephalon (devoid of cerebellum). In the cerebellum itself, IL-1beta and Ym1 were decreased. TNF-alpha (associated to a pro-inflammatory state in EAE), but also IL-10 (associated to another type of anti-inflammatory state) and BDNF were unchanged in these two regions. No changes were detected in the spinal cord. Additional tendencies toward a change (as revealed by RT-PCR) were again decreases: IL-10 in the encephalon and Arg1 in the spinal cord. CGRP decreased percentage of Ym1+/CD68+ immunoreactive cells and cell density of infiltrates in the cervical spinal cord pia mater. Instead, Ym1 in the underlying parenchyma and at thoracic and lumbar levels, as well as Arg1, were unchanged. In cultured microglia the neuropeptide decreased Ym1, but not Arg1, immunoreactivity. Inducible NOS (iNOS) was unchanged in spinal cord microglia and astrocytes. The neuropeptide increased the activation of ERK1/2 in the astrocytes of the spinal cord and in culture, but did not influence the activation of ERK1/2 or p38 in the spinal cord microglia. Finally, in areas adjacent to infiltration sites CGRP-treated microglia showed a larger ramification radius. In conclusion, CGRP-induced EAE amelioration was associated to a concomitant, context-dependent decrease in the expression of markers belonging to both pro- or anti-inflammatory activation states of immune cells. It can be hypothesized that CGRP-induced EAE attenuation is obtained through a novel mechanism that promotes down-regulation of immune cell activation that facilitates the establishment of a beneficial environment in EAE provided possibly also by other factors.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Laura Zambusi
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Antonella Bodini
- Institute of Applied Mathematics and Information Technology "E. Magenes", National Research Council (CNR), Milano Unit, Via Bassini 15, 20133 Milano, (Italy).
| | - Luciano Provini
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Stefano Morara
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| |
Collapse
|
20
|
Ferrero H, Larrayoz IM, Gil-Bea FJ, Martínez A, Ramírez MJ. Adrenomedullin, a Novel Target for Neurodegenerative Diseases. Mol Neurobiol 2018; 55:8799-8814. [PMID: 29600350 DOI: 10.1007/s12035-018-1031-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hilda Ferrero
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Francisco J Gil-Bea
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
- Neuroscience Area, Biodonostia Health Research Institute, CIBERNED, San Sebastian, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain.
| |
Collapse
|
21
|
Ewanchuk BW, Allan ERO, Warren AL, Ramachandran R, Yates RM. The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response. FASEB J 2017; 32:1236-1249. [PMID: 29114087 DOI: 10.1096/fj.201700552r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthetic supercooling drug, icilin, and its primary receptor target, the cation channel transient receptor potential (TRP) melastatin-8 (TRPM8), have been described as potent negative regulators of inflammation in the colon. The aim of this study was to determine whether the anti-inflammatory action of icilin could potentially be used to treat autoimmune neuroinflammatory disorders, such as multiple sclerosis (MS). During experimental autoimmune encephalomyelitis (EAE)-a CD4+ T cell-driven murine model of MS-we found that both wild-type (WT) and TRPM8-deficient EAE mice were protected from disease progression during icilin treatment, as evidenced by delays in clinical onset and reductions in neuroinflammation. In vitro, icilin potently inhibited the proliferation of murine and human CD4+ T cells, with the peripheral expansion of autoantigen-restricted T cells similarly diminished by the administration of icilin in mice. Attenuation of both TRPM8-/- and TRP ankyrin-1-/- T-cell proliferation by icilin was consistent with the WT phenotype, which suggests a mechanism that is independent of these channels. In addition, icilin treatment altered the expressional profile of activated CD4+ T cells to one that was indicative of restricted effector function and limited neuroinflammatory potential. These findings identify a potent anti-inflammatory role for icilin in lymphocyte-mediated neuroinflammation and highlight clear pleiotropic effects of the compound beyond classic TRP channel activation.-Ewanchuk, B. W., Allan, E. R. O., Warren, A. L., Ramachandran, R., Yates, R. M. The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Euan R O Allan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
23
|
Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. J Control Release 2016; 226:21-34. [PMID: 26826306 DOI: 10.1016/j.jconrel.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that stimulates the differentiation and function of vascular endothelial cells. VEGF has been implicated in improving nervous system function after injury. However, uncontrolled overexpression of VEGF increases the risk of tumor formation at the site of gene delivery. For this reason, VEGF expression needs to be strictly controlled. The goal of the present study was to understand the effects of hypoxia-induced gene expression system to control VEGF gene expression in neural stem cells (NSCs) on the regeneration of neural tissue after sciatic nerve injury. In this study, we used the erythropoietin (Epo) enhancer-SV40 promoter system (EpoSV-VEGF-NSCs) for hypoxia-specific VEGF expression. We used three types of NSCs: DsRed-NSCs as controls, SV-VEGF-NSCs as uncontrolled VEGF overexpressing NSCs, and EpoSV-VEGF-NSCs. For comparison of VEGF expression at normoxia and hypoxia, we measured the amount of VEGF secreted. VEGF expression decreased at normoxia and increased at hypoxia for EpoSV-VEGF-NSCs; thus, EpoSV-VEGF-NSCs controlled VEGF expression, dependent upon oxygenation condition. To demonstrate the therapeutic effect of EpoSV-VEGF-NSCs, we transplanted each cell line in a neuropathic pain sciatic nerve injury rat model. The transplanted EpoSV-VEGF-NSCs improved sciatic nerve functional index (SFI), mechanical allodynia, and re-myelination similar to the SV-VEGF-NSCs. Additionally, the number of blood vessels increased to a level similar to that of the SV-VEGF-NSCs. However, we did not observe tumor generation in the EpoSV-VEGF-NSC animals that were unlikely to have tumor formation in the SV-VEGF-NSCs. From our results, we determined that EpoSV-VEGF-NSCs safely regulate VEGF gene expression which is dependent upon oxygenation status. In addition, we found that they are therapeutically appropriate for treating sciatic nerve injury.
Collapse
|
24
|
Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds. J Neurosci 2016; 35:12714-24. [PMID: 26377461 DOI: 10.1523/jneurosci.0100-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. SIGNIFICANCE STATEMENT The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain.
Collapse
|
25
|
Morara S, Colangelo AM, Provini L. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo. Neural Plast 2015; 2015:135342. [PMID: 26273481 PMCID: PMC4529944 DOI: 10.1155/2015/135342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies.
Collapse
Affiliation(s)
- Stefano Morara
- Neuroscience Institute (CNR), Via Vanvitelli 32, 20129 Milano, Italy
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luciano Provini
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
26
|
Guo W, Jin XJ, Yu J, Liu Y, Zhang JP, Yang DW, Zhang L, Guo JR. Effects of stellate ganglion block on the peri-operative vasomotor cytokine content and intrapulmonary shunt in patients with esophagus cancer. Asian Pac J Cancer Prev 2014; 15:9505-9. [PMID: 25422247 DOI: 10.7314/apjcp.2014.15.21.9505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effects of stellate ganglion block (SGB) on the peri-operative vasomotor cytokine content and intrapulmonary shunt in patients with esophagus cancer who underwent thoracotomy. MATERIALS AND METHODS Forty patients undergoing elective resection of esophageal cancer patients who had I~II American Society of Anesthesiologist (ASA) were randomly divided into total intravenous anesthesia group (group N, n=20) and total intravenous anesthesia combined with SGB group (group S, n=20, 0.12 mL/kg 1% lidocaine was used for SGB 10 min before induction). Heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), mean pulmonary arterial pressure (MPAP) and continuous cardiac output (CCO) were continuously monitored. The blood from internal jugular vein was drawn respectively before induction (T0), and 30 min (T1), 60 min (T2) and 120 min (T3) after one-lung ventilation (OLV), and 30 min (T4) after two-lung ventilation. The contents of plasma endothelin (ET), nitric oxide (NO) and calcitonin gene-related peptide (CGRP) were detected with enzyme linked immunosorbent assay (ELISA). Meanwhile, arterial and mixed venous blood samples were collected for determination of blood gas and calculation of intrapulmonary shunt fraction (Qs/Qt). RESULTS During OLV, ET contents were increased significantly in two groups (P<0.05), and no significant difference was presented (P>0.05). NO content in group S was obviously higher than in group N at T3 (P<0.05), whereas CGRP content in group N was markedly lower than in group S at each time point (P<0.05). Qs/Qt was significantly increased in both groups after OLV, but there was no statistical significant regarding the Qs/Qt at each time point between two groups. CONCLUSIONS Total intravenous anesthesia combined with SGB is conducive to regulation of perioperative vasomotor cytokines in thoracotomy, and has little effect on intrapulmonary shunt at the time of OLV.
Collapse
Affiliation(s)
- Wei Guo
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New District, Shanghai, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|