1
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025; 51:296-316. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Drosu N, Bjornevik K, Cortese M, Levy M, Sollid LM. Coeliac disease as a model for understanding multiple sclerosis. Nat Rev Neurol 2024; 20:685-690. [PMID: 39379493 DOI: 10.1038/s41582-024-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The genetic architecture of multiple sclerosis (MS) is similar to that of coeliac disease, with human leukocyte antigen (HLA) being the greatest genetic determinant in both diseases. Furthermore, similar to the involvement of gluten in coeliac disease, Epstein-Barr virus (EBV) infection is now widely considered to be an important environmental factor in MS. The molecular basis for the HLA association in coeliac disease is well defined, and B cells have a clear role in antigen presentation to gluten-specific CD4+ T cells. By contrast, the mechanisms underlying the HLA association of MS are unknown but accumulating evidence indicates a similar role of B cells acting as antigen-presenting cells. The growing parallels suggest that much could be learned about the mechanisms of MS by using coeliac disease as a model. In this Perspective article, we discuss the insights that could be gained from these parallels and consider the possibility of antiviral treatment against EBV as a therapy for MS that is analogous to the gluten-free diet in coeliac disease.
Collapse
Affiliation(s)
- Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianna Cortese
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ludvig M Sollid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
3
|
Bose A, Khalighinejad F, Hoaglin DC, Hemond CC. Evaluating the Clinical Utility of Epstein-Barr Virus Antibodies as Biomarkers in Multiple Sclerosis: A Systematic Review. Mult Scler Relat Disord 2024; 84:105410. [PMID: 38401201 DOI: 10.1016/j.msard.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND EBV is a necessary but not sufficient factor in the pathophysiology of multiple sclerosis (MS). EBV antibodies to the nuclear antigen (EBNA1) and viral capsid antigen (VCA) rise rapidly prior to MS disease manifestations, and their absence has clinical utility with a high negative predictive value. It remains unclear whether EBV levels act as prognostic, monitoring, or pharmacodynamic/response biomarkers. Substantial literature on this topic exists but has not been systematically reviewed. We hypothesized that EBV levels against EBNA1 and VCA are potential prognostic and monitoring biomarkers in MS, and that patient population, MS clinical phenotype, and EBV assay method may play important roles in explaining variation among study outcomes. METHODS We systematically searched PubMed and EMBASE from inception to April 1, 2022. After removal of duplicates, records were screened by abstract. Remaining full-text articles were reviewed. Clinical and MRI data were extracted from full-text articles for comparison and synthesis. RESULTS Searches yielded 696 unique results; 285 were reviewed in full, and 36 met criteria for data extraction. Heterogeneity in sample population, clinical outcome measures, assay methods and statistical analyses precluded a meta-analysis. EBV levels were not consistently associated with clinical disease markers including conversion from CIS to RRMS, neurological disability, or disease phenotype. Studies using repeated-measures design suggest that EBNA1 levels may temporarily reflect inflammatory disease activity as assessed by gadolinium-enhancing Magnetic Resonance Imaging (MRI) lesions. Limited data also suggest a decrease in EBV levels following initiation of certain disease-modifying therapies. CONCLUSION Heterogeneous methodology limited generalization and meta-analysis. EBV antibody levels are unlikely to represent prognostic biomarkers in MS. The areas of highest ongoing promise relate to diagnostic exclusion and pharmacodynamic/disease response. Use of EBV antibodies as biomarkers in clinical practice remains additionally limited by lack of methodological precision, reliability, and validation.
Collapse
Affiliation(s)
- Abigail Bose
- University of Massachusetts Chan Medical School.
| | | | | | | |
Collapse
|
4
|
Jons D, Grut V, Bergström T, Zetterberg H, Biström M, Gunnarsson M, Vrethem M, Brenner N, Butt J, Blennow K, Nilsson S, Kockum I, Olsson T, Waterboer T, Sundström P, Andersen O. Seroreactivity against lytic, latent and possible cross-reactive EBV antigens appears on average 10 years before MS induced preclinical neuroaxonal damage. J Neurol Neurosurg Psychiatry 2024; 95:325-332. [PMID: 37802637 PMCID: PMC10958269 DOI: 10.1136/jnnp-2023-331868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) and presymptomatic axonal injury appear to develop only after an Epstein-Barr virus (EBV) infection. This association remains to be confirmed across a broad preclinical time range, for lytic and latent EBV seroreactivity, and for potential cross-reacting antigens. METHODS We performed a case-control study with 669 individual serum samples obtained before clinical MS onset, identified through cross-linkage with the Swedish MS register. We assayed antibodies against EBV nuclear antigen 1 (EBNA1), viral capsid antigen p18, glycoprotein 350 (gp350), the potential cross-reacting protein anoctamin 2 (ANO2) and the level of sNfL, a marker of axonal injury. RESULTS EBNA1 (latency) seroreactivity increased in the pre-MS group, at 15-20 years before clinical MS onset, followed by gp350 (lytic) seroreactivity (p=0.001-0.009), ANO2 seropositivity appeared shortly after EBNA1-seropositivity in 16.7% of pre-MS cases and 10.0% of controls (p=0.001).With an average lag of almost a decade after EBV, sNfL gradually increased, mainly in the increasing subgroup of seropositive pre-MS cases (p=8.10-5 compared with non-MS controls). Seropositive pre-MS cases reached higher sNfL levels than seronegative pre-MS (p=0.038). In the EBNA1-seropositive pre-MS group, ANO2 seropositive cases had 26% higher sNfL level (p=0.0026). CONCLUSIONS Seroreactivity against latent and lytic EBV antigens, and in a subset ANO2, was detectable on average a decade before the appearance of a gradually increasing axonal injury occurring in the last decade before the onset of clinical MS. These findings strengthen the hypothesis of latent EBV involvement in the pathogenesis of MS.
Collapse
Affiliation(s)
- Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Gunnarsson
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Center, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
5
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
6
|
Pham HPT, Saroukhani S, Lindsey JW. The concentrations of antibodies to Epstein-Barr virus decrease during ocrelizumab treatment. Mult Scler Relat Disord 2023; 70:104497. [PMID: 36603289 DOI: 10.1016/j.msard.2023.104497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) is strongly associated with multiple sclerosis (MS). After initial infection, EBV maintains a life-long latent infection in B lymphocytes. Depletion of B lymphocytes from the blood with the anti-CD20 antibody ocrelizumab (OCR) markedly reduces disease activity in MS. Our objective was to measure the effect of OCR treatment on the antibody response to EBV and human antigens that are cross-reactive with EBV. METHODS Blood was collected from MS patients before and during OCR treatment. Antibodies to three EBV antigens (EBNA-1, BFRF3, and gp350) and three human proteins that are cross-reactive with EBV (septin-9, DLST, and HNRNPL) were quantified with Western blots. Antibodies to EBNA-1 and BFRF3 were also quantified with ELISA. RESULTS Antibodies to the EBV proteins BFRF3 and EBNA-1 measured on Western blot were significantly decreased after 12 months on OCR. Subsequent testing with ELISA confirmed the decrease for both BFRF3 and EBNA-1. With Western blots, there was a trend to decreased antibody response to septin-9 and DLST, but not HNRNPL. Total IgG concentration did not change. CONCLUSION The antibody response to some EBV antigens decreases in OCR treated patients. The benefit of OCR for MS may be through removal of EBV antigenic stimulus.
Collapse
Affiliation(s)
- H Phuong T Pham
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Biostatistics/Epidemiology/Research Design (BERD) component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J William Lindsey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
7
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Läderach F, Münz C. Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms 2021; 9:2191. [PMID: 34835317 PMCID: PMC8625064 DOI: 10.3390/microorganisms9112191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) for which both genetic and environmental risk factors have been identified. The strongest synergy among them exists between the MHC class II haplotype and infection with the Epstein Barr virus (EBV), especially symptomatic primary EBV infection (infectious mononucleosis) and elevated EBV-specific antibodies. In this review, we will summarize the epidemiological evidence that EBV infection is a prerequisite for MS development, describe altered EBV specific immune responses in MS patients, and speculate about possible pathogenic mechanisms for the synergy between EBV infection and the MS-associated MHC class II haplotype. We will also discuss how at least one of these mechanisms might explain the recent success of B cell-depleting therapies for MS. While a better mechanistic understanding of the role of EBV infection and its immune control during MS pathogenesis is required and calls for the development of innovative experimental systems to test the proposed mechanisms, therapies targeting EBV-infected B cells are already starting to be explored in MS patients.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; or
| |
Collapse
|
9
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Zdimerova H, Murer A, Engelmann C, Raykova A, Deng Y, Gujer C, Rühl J, McHugh D, Caduff N, Naghavian R, Pezzino G, Capaul R, Zbinden A, Ferlazzo G, Lünemann JD, Martin R, Chatterjee B, Münz C. Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur J Immunol 2020; 51:64-75. [PMID: 32949466 DOI: 10.1002/eji.202048655] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Immune responses to Epstein-Barr virus (EBV) infection synergize with the main genetic risk factor HLA-DRB1*15:01 (HLA-DR15) to increase the likelihood to develop the autoimmune disease multiple sclerosis (MS) at least sevenfold. In order to gain insights into this synergy, we investigated HLA-DR15 positive human immune compartments after reconstitution in immune-compromised mice (humanized mice) with and without EBV infection. We detected elevated activation of both CD4+ and CD8+ T cells in HLA-DR15 donor-reconstituted humanized mice at steady state, even when compared to immune compartments carrying HLA-DRB1*04:01 (HLA-DR4), which is associated with other autoimmune diseases. Increased CD8+ T cell expansion and activation was also observed in HLA-DR15 donor-reconstituted humanized mice after EBV infection. Despite this higher immune activation, EBV viral loads were less well controlled in the context of HLA-DR15. Indeed, HLA-DR15-restricted CD4+ T cell clones recognized EBV-transformed B cell lines less efficiently and demonstrated cross-reactivity toward allogeneic target cells and one MS autoantigen. These findings suggest that EBV as one of the main environmental risk factors and HLA-DR15 as the main genetic risk factor for MS synergize by priming hyperreactive T-cell compartments, which then control the viral infection less efficiently and contain cross-reactive CD4+ T cell clones.
Collapse
Affiliation(s)
- Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Raykova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Cornelia Gujer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy.,Cell Factory Center, University of Messina, Messina, Italy.,Cell Therapy Program, University Hospital Policlinico G.Martino, Messina, Italy.,Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy.,Cell Factory Center, University of Messina, Messina, Italy.,Cell Therapy Program, University Hospital Policlinico G.Martino, Messina, Italy.,Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, Medical Faculty, University of Münster, Münster, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Jog NR, McClain MT, Heinlen LD, Gross T, Towner R, Guthridge JM, Axtell RC, Pardo G, Harley JB, James JA. Epstein Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model. J Autoimmun 2020; 106:102332. [PMID: 31515129 PMCID: PMC6930324 DOI: 10.1016/j.jaut.2019.102332] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease with progressive neurodegeneration and complex etiology likely involving genetic and environmental factors. MS has been associated with Epstein Barr virus (EBV) infection, with patients often showing enhanced responses to EBV antigens. To determine whether abnormal EBV nuclear antigen-1 (EBNA-1) humoral immunity can serve as an initiator of autoimmune responses in MS, we investigated the fine specificities of the humoral immune response against EBNA-1 in MS patients using solid phase epitope mapping. Antibodies from MS patients recognized an EBNA-1 epitope spanning amino acids 411-426, previously unknown to be recognized specifically by untreated MS patients. Antibodies against this epitope cross-reacted to myelin basic protein (MBP). Furthermore, animals immunized with this EBNA-1 polypeptide mounted a response against MBP and developed signs of experimental autoimmune encephalitis (EAE). These data support a link between MS and EBV through antibodies that cross-react between EBV proteins and the MBP autoantigen.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Micah T McClain
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Latisha D Heinlen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy Gross
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Veterans Affairs VA Medical Center, Cincinnati, OH, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Evaluation of Epstein-Barr virus-specific antibodies in Cypriot multiple sclerosis patients. Mol Immunol 2019; 105:270-275. [DOI: 10.1016/j.molimm.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
|
13
|
Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One 2018; 13:e0192109. [PMID: 29394264 PMCID: PMC5796799 DOI: 10.1371/journal.pone.0192109] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory condition of the central nervous system (CNS). It is a major cause of neurological disability in young adults, particularly women. What triggers the destruction of myelin sheaths covering nerve fibres is unknown. Both genetic and infectious agents have been implicated. Of the infectious agents, Epstein-Barr virus (EBV), a common herpesvirus, has the strongest epidemiological and serological evidence. However, the presence of EBV in the CNS and demonstration of the underlying mechanism(s) linking EBV to the pathogenesis of MS remain to be elucidated. We aimed at understanding the contribution of EBV infection in the pathology of MS. We examined 1055 specimens (440 DNA samples and 615 brain tissues) from 101 MS and 21 non-MS cases for the presence of EBV using PCR and EBER-in situ hybridization (EBER-ISH). EBV was detected by PCR and/or EBER-ISH in 91/101 (90%) of MS cases compared to only 5/21 (24%) of non-MS cases with other neuropathologies. None of the samples were PCR positive for other common herpesviruses (HSV-1, CMV, HHV-6). By quantitative PCR, EBV viral load in MS brain was mainly low to moderate in most cases. However, in 18/101 (18%) of MS cases, widespread but scattered presence of EBV infected cells was noted in the affected tissues by EBER-ISH. Immunohistochemical analysis of EBV gene expression in the 18 heavily infected cases, revealed that the EBV latent protein EBNA1, and to a lesser extent the early lytic protein BZLF1 were expressed. Furthermore, using double-staining we show for the first time that astrocytes and microglia, in addition to B-cells can also be infected. To the best of our knowledge, this is the most comprehensive study demonstrating that EBV is present and transcriptionally active in the brain of most cases of MS and supports a role for the virus in MS pathogenesis. Further studies are required to address the mechanism of EBV involvement in MS pathology.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - John R. Corboy
- Department of Neurology, University of Colorado School of Medicine, Rocky Mountain MS Center at University of Colorado, Aurora, United States of America
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, UAE
- * E-mail:
| |
Collapse
|
14
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
15
|
Antibodies to the Epstein-Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. J Neuroimmunol 2017; 310:131-134. [DOI: 10.1016/j.jneuroim.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/08/2023]
|
16
|
Burnard S, Lechner-Scott J, Scott RJ. EBV and MS: Major cause, minor contribution or red-herring? Mult Scler Relat Disord 2017; 16:24-30. [DOI: 10.1016/j.msard.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|