1
|
Wang G, Zhang C, Jiang F, Zhao M, Xie S, Liu X. NOD2-RIP2 signaling alleviates microglial ROS damage and pyroptosis via ULK1-mediated autophagy during Streptococcus pneumonia infection. Neurosci Lett 2022; 783:136743. [PMID: 35716964 DOI: 10.1016/j.neulet.2022.136743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Meningitis occurs when S. pneumonia invade the blood-brain barrier, provoking inflammatory host response and neurological injury. Nucleotide-binding oligomerization domain 2 (NOD2) has been identified to promote microglial activation and autophagy during pneumococcal meningitis, but the mechanism remains unclear. In the present study, we investigated the passway of NOD2-mediated autophagy activation and the role of autophagy in inflammatory damage of murine microglia and mouse meningitis model. We demonstrated that autophagy was activated during S. pneumonia infection, and NOD2-RIP2 signaling was involved in the process. Treatment of microglia with GSK583, the RIP2 kinase inhibitor resulted in reduced autophagy-related protein and p-ULK1, indicating that RIP2 regulated autophagy in a kinase-dependent manner by phosphorylating ULK1. In addition, microglia with ULK1 knockdown exhibited enhanced production of ROS, leading to IL-1β and IL-18 release and cellular pyroptosis. Similar to the in vitro results, NOD2-RIP2 signaling induced autophagy in the brain in a mouse meningitis model. Moreover, ULK1 or RIP2 silencing significantly increased pyroptosis of brain and induced more inflammatory damage of pneumococcal meningitis mice. Taken together, our study demonstrate that NOD2-RIP2 signaling is involved in the activation of autophagy by promoting ULK1 phosphorylation, which alleviates microglial ROS damage and pyroptosis during S. pneumonia infection.
Collapse
Affiliation(s)
- Guan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Fang Jiang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Mei Zhao
- Department of Pediatrics, Shandong Maternal and Child Health Hospital, No.238 East Jingshi Road, Jinan 250000, Shandong Province, China
| | - Shaohua Xie
- Department of Pediatrics, Liaocheng People's Hospital, No.67 West Dongchang Road, Liaocheng 252000, Shandong Province, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
2
|
Salaria M, Singhi S, Singhi P, Sharma M, Mangat N, Bhatia T, Wickstrom R, Aggarwal R. Deciphering the TLR transcriptome and downstream signaling pathway in cerebrospinal fluid in pediatric meningitis. Inflamm Res 2022; 71:513-520. [PMID: 35301550 DOI: 10.1007/s00011-022-01562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE/DESIGN Pediatric meningitis is characterized by a colossal inflammatory response to the pathogen in the central nervous system (CNS). This unabated inflammatory response persists even after the removal of the pathogen by antibiotics/steroids causing collateral damage to CNS tissue. Toll-like receptors (TLRs) are the key players in the recognition and elicitation of innate-immune response against bacterial/viral components in cerebrospinal fluid (CSF). Till date, the precise understanding of TLR-triggered inflammatory response in pediatric meningitis is lacking. The present study was designed to delineate the role of TLR transcriptome and downstream signaling pathways in CSF of pediatric meningitis. METHODS Children in the age group of > 3 months to 12 years with pediatric meningitis were included. A total of 249 cases of pediatric meningitis (bacterial = 89, viral = 160) were included. In addition, 71 children who tested negative to the pathogen in CSF tap and did not have signs of infection clinically constituted the controls. RNA was extracted from the CSF samples of both cases and controls. The relative gene expression profile of 42 TLR signaling pathway genes was performed. For the analysis of secretory cytokines and chemokines in CSF, Luminex assay was performed. RESULTS We report global upregulation of TLR genes in patients with acute bacterial meningitis (ABM). The downstream signaling molecules were upregulated as well. The CSF of pediatric ABM patients revealed a predominant pro-inflammatory milieu marked by increased levels of pro-inflammatory cytokines. A significant correlation between poor clinical outcomes of patients and an increased expression of TLR/pro-inflammatory cytokine genes was observed. CONCLUSION Our findings provide support for future studies exploring TLR-based adjunct therapy to limit the neurological sequelae, owing to persistent inflammation in pediatric ABM patients.
Collapse
Affiliation(s)
- Manila Salaria
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunit Singhi
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Department of Pediatrics, Medanta, The Medicity, Gurugram, NCR, India
| | - Pratibha Singhi
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.,Department of Pediatrics, Medanta, The Medicity, Gurugram, NCR, India
| | - Madhulika Sharma
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navdeep Mangat
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanvi Bhatia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ronny Wickstrom
- Neuropediatric Unit, Astrid Lindgren's Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ritu Aggarwal
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Room No. 19, Research Block A, Fourth Floor, Chandigarh, 160012, India.
| |
Collapse
|
3
|
Rüger M, Kipp E, Schubert N, Schröder N, Pufe T, Stope MB, Kipp M, Blume C, Tauber SC, Brandenburg LO. The formyl peptide receptor agonist Ac2-26 alleviates neuroinflammation in a mouse model of pneumococcal meningitis. J Neuroinflammation 2020; 17:325. [PMID: 33121515 PMCID: PMC7596991 DOI: 10.1186/s12974-020-02006-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background Bacterial meningitis is still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein-coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands, including pro- and anti-inflammatory ones. Here, we investigated the effects of the annexin A1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis. Methods Wildtype (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8, and 24 h post-infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR) 30 h post-infection. Results Ac2-26-treated WT mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glial cell responses in the hippocampal formation and cortex. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice. Irrespective of Ac2-26 treatment, inflammation was more severe in Fpr2-deficient compared to Fpr1-deficient mice. Conclusions In summary, this study demonstrates anti-inflammatory properties of Ac2-26 in a model of bacterial meningitis, which are mediated via FPR2, but not FPR1. Ac2-26 and other FPR2 modulators might be promising targets for the development of novel therapies for Streptococcus pneumoniae-induced meningitis.
Collapse
Affiliation(s)
- Marvin Rüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nadine Schubert
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.,Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
4
|
Voß F, van Beek LF, Schwudke D, Ederveen THA, van Opzeeland FJ, Thalheim D, Werner S, de Jonge MI, Hammerschmidt S. Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection. Vaccines (Basel) 2020; 8:vaccines8020310. [PMID: 32560374 PMCID: PMC7350230 DOI: 10.3390/vaccines8020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae infections lead to high morbidity and mortality rates worldwide. Pneumococcal polysaccharide conjugate vaccines significantly reduce the burden of disease but have a limited range of protection, which encourages the development of a broadly protective protein-based alternative. We and others have shown that immunization with pneumococcal lipoproteins that lack the lipid anchor protects against colonization. Since immunity against S. pneumoniae is mediated through Toll-like receptor 2 signaling induced by lipidated proteins, we investigated the effects of a lipid modification on the induced immune responses in either intranasally or subcutaneously vaccinated mice. Here, we demonstrate that lipidation of recombinant lipoproteins DacB and PnrA strongly improves their immunogenicity. Mice immunized with lipidated proteins showed enhanced antibody concentrations and different induction kinetics. The induced humoral immune response was modulated by lipidation, indicated by increased IgG2/IgG1 subclass ratios related to Th1-type immunity. In a mouse model of colonization, immunization with lipidated antigens led to a moderate but consistent reduction of pneumococcal colonization as compared to the non-lipidated proteins, indicating that protein lipidation can improve the protective capacity of the coupled antigen. Thus, protein lipidation represents a promising approach for the development of a serotype-independent pneumococcal vaccine.
Collapse
Affiliation(s)
- Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Lucille F. van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infection, Research Center Borstel, Leibniz Center for Medicine and Bioscience, 23845 Borstel, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL), 22927 Großhansdorf, Germany
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Fred J. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Daniela Thalheim
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Sidney Werner
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
- Correspondence: ; Tel.: +49-383-4420-5700; Fax: +49-3834-4205-709
| |
Collapse
|
5
|
Auger JP, Benoit-Biancamano MO, Bédard C, Segura M, Gottschalk M. Differential role of MyD88 signaling in Streptococcus suis serotype 2-induced systemic and central nervous system diseases. Int Immunol 2020; 31:697-714. [PMID: 30944920 DOI: 10.1093/intimm/dxz033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the systemic and central nervous system (CNS) infections. However, S. suis serotype 2 strains are genetically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies. Yet, most studies have used 'classical' virulent Eurasian ST1 or ST7 strains, even though ST25 and ST28 strains account for most isolates in North America. While recognition of S. suis by innate immune cells has been associated with the myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) pathway in vitro, particularly surface-associated TLR2, little information is available regarding its role in vivo. This study demonstrates for the first time a differential role of MyD88 signaling in S. suis-induced systemic and CNS diseases, regardless of strain background diversity. The MyD88-dependent pathway is critical for the development of systemic disease via its role in inflammation, which subsequently controls bacterial burden. However, and differently from what has been described in vitro, TLR2 and TLR4 individually do not contribute to systemic disease, suggesting possible compensation in their absence and/or a collaborative role with other MyD88-dependent TLRs. On the other hand, CNS disease does not necessarily require MyD88 signaling and, consequently, neither TLR2 nor TLR4, suggesting a partial implication of other pathways. Finally, regardless of its notable heterogeneity, recognition of S. suis serotype 2 appears to be similar, indicating that recognized components are conserved motifs.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
6
|
Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci. mBio 2020; 11:mBio.00415-20. [PMID: 32209688 PMCID: PMC7157524 DOI: 10.1128/mbio.00415-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.
Collapse
|
7
|
Xiang Q, Zhu L, Zheng K, Ding Y, Chen N, Liu G, He Q. Association of toll-like receptor 10 polymorphisms with pediatric pneumococcal meningitis. APMIS 2020; 128:335-342. [PMID: 31976578 DOI: 10.1111/apm.13028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
We aimed to investigate whether the gene polymorphisms of TLR10 were associated with risk and severity of pneumococcal meningitis (PM) and serum cytokine levels in children. Three single nucleotide polymorphisms (SNPs) of TLR10 rs4129009 (2676A > G), rs10004195 (1018T > A) and rs11466617 (40735A > G) were studied in 95 laboratory-confirmed PM pediatric patients and 330 healthy controls by PCR-based sequencing. Ten serum cytokines were determined by multiplex immunoassay. The frequency of variant haplotype GAG of TLR10 was significantly lower in patients than controls (11.3% vs 33.3%, p < 0.001), although frequencies of the genotypes and alleles of the three SNPs did not differ between patients and controls. Frequency of variant haplotype GAG was significantly lower in patients who had CSF protein >1000 mg/L than those who had CSF protein ≤1000 mg/L (3.50% vs 32.4%, p < 0.001). Moreover, higher frequency of the haplotype GAG was found in patients who had higher levels of inflammatory cytokines such as IFN-γ, TNF-α and IL-1β. Our finding suggested that the variant haplotype GAG in TLR10 is associated with decreased risk of PM in Chinese children.
Collapse
Affiliation(s)
- Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Liang Zhu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yiwei Ding
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Laboratory Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Too LK, Yau B, Baxter AG, McGregor IS, Hunt NH. Double deficiency of toll-like receptors 2 and 4 alters long-term neurological sequelae in mice cured of pneumococcal meningitis. Sci Rep 2019; 9:16189. [PMID: 31700009 PMCID: PMC6838097 DOI: 10.1038/s41598-019-52212-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body’s defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood. Here we investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. The absence of these TLRs significantly impaired survival in mice inoculated intracerebroventricularly with Streptococcus pneumoniae. During the acute phase of infection, TLR2/4-deficient mice had lower cerebrospinal fluid concentrations of interleukin-1β, and higher interferon-γ, than their wild-type counterparts. After antibiotic cure, TLR2/4 double deficiency was associated with aggravation of behavioural impairment in mice, as shown by diurnal hypolocomotion throughout the adaptation phases in the Intellicage of TLR-deficient mice compared to their wild-type counterparts. While TLR2/4 double deficiency did not affect the cognitive ability of mice in a patrolling task, it aggravated the impairment of cognitive flexibility. We conclude that TLR2 and TLR4 are central to regulating the host inflammatory response in pneumococcal meningitis, which may mediate diverse compensatory mechanisms that protect the host not only against mortality but also long-term neurological complications.
Collapse
Affiliation(s)
- Lay Khoon Too
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Belinda Yau
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, 4811, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicholas H Hunt
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
9
|
Influenza "Trains" the Host for Enhanced Susceptibility to Secondary Bacterial Infection. mBio 2019; 10:mBio.00810-19. [PMID: 31064834 PMCID: PMC6509193 DOI: 10.1128/mbio.00810-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhanced susceptibility to 2° bacterial infections following infection with influenza virus is a global health concern that accounts for many hospitalizations and deaths, particularly during pandemics. The complexity of the impaired host immune response during 2° bacterial infection has been widely studied. Both type I IFN and neutrophil dysfunction through decreased chemokine production have been implicated as mechanisms underlying enhanced susceptibility to 2° bacterial infections. Our findings support the conclusion that selective suppression of CXCL1/CXCL2 represents an IFN-β-mediated “training” of the macrophage transcriptional response to TLR2 agonists and that blocking of TLR4 therapeutically with Eritoran after influenza virus infection reverses this suppression by blunting influenza-induced IFN-β. We previously reported that the Toll-like receptor 4 (TLR4) antagonist Eritoran blocks acute lung injury (ALI) therapeutically in mouse and cotton rat models of influenza. However, secondary (2°) bacterial infection following influenza virus infection is associated with excess morbidity and mortality. Wild-type (WT) mice infected with mouse-adapted influenza A/Puerto Rico/8/34 virus (PR8) and, 7 days later, with Streptococcus pneumoniae serotype 3 (Sp3) exhibited significantly enhanced lung pathology and lethality that was reversed by Eritoran therapy after PR8 infection but before Sp3 infection. Cotton rats infected with nonadapted pH1N1 influenza virus and then superinfected with methicillin-resistant Staphylococcus aureus also exhibited increased lung pathology and serum high-mobility-group box 1 (HMGB1) levels, both of which were blunted by Eritoran therapy. In mice, PR8 infection suppressed Sp3-induced CXCL1 and CXCL2 mRNA, reducing neutrophil infiltration and increasing the bacterial burden, all of which were reversed by Eritoran treatment. While beta interferon (IFN-β)-deficient (IFN-β−/−) mice are highly susceptible to PR8, they exhibited delayed death upon Sp3 superinfection, indicating that while IFN-β was protective against influenza, it negatively impacted the host response to Sp3. IFN-β-treated WT macrophages selectively suppressed Sp3-induced CXCL1/CXCL2 transcriptionally, as evidenced by reduced recruitment of RNA polymerase II to the CXCL1 promoter. Thus, influenza establishes a “trained” state of immunosuppression toward 2° bacterial infection, in part through the potent induction of IFN-β and its downstream transcriptional regulation of chemokines, an effect reversed by Eritoran.
Collapse
|
10
|
Jiang YK, Wu JQ, Zhao HZ, Wang X, Wang RY, Zhou LH, Yip CW, Huang LP, Cheng JH, Chen YH, Li H, Zhu LP, Weng XH. Genetic influence of Toll-like receptors on non-HIV cryptococcal meningitis: An observational cohort study. EBioMedicine 2018; 37:401-409. [PMID: 30366814 PMCID: PMC6284510 DOI: 10.1016/j.ebiom.2018.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022] Open
Abstract
Background Cryptococcal meningitis (CM) is a significant source of mortality, the pathogenesis of which has not been fully understood, especially in non-HIV infected populations. We aimed to explore the potential genetic influence of Toll-like receptor (TLR) on non-HIV CM. Methods This observational cohort study was done in two stages: a discovery stage and a validation stage. A case-control genetic association study was conducted between 159 non-HIV CM patients and 468 healthy controls. TLR SNPs significantly related to susceptibility went further validation in a second cohort of 583 subjects from a certain district. Associations among TLR SNPs, cerebrospinal fluid (CSF) cytokine concentrations, and clinical severity were explored in a third cohort of 99 previously untreated non-HIV CM patients. Logistic regression model was used to determine the independent predictors for disease severity. Findings In the discovery stage, eight TLR SNPs exhibited significant genetic susceptibility to non-HIV CM, one of which was validated in a population validation of HIV-infected cases while none survived in non-HIV cases. CSF cytokine detections showed that 18 cytokines were significantly over-expressed in severely ill patients. Two of the 8 SNPs (rs5743604 and rs3804099) were also significantly associated with disease severity. Specifically, the rs3804099 C/T genotype was further found to be correlated to 12 of the 18 up-regulated cytokines in severe patients. In addition, high levels of interleukin (IL)-10 in CSF (OR 2·97, 95% CI 1·49–5·90; p = 0·002) was suggested as an independent predictor for severity after adjusted for possible confounders. Interpretation TLR participates in both the occurrence and the pathogenesis of non-HIV CM. The in situ immune responses of CM were under genetic influence of TLR and contributed to disease severity. Fund National Natural Science Foundation of China and National Key Basic Research Program of China (973 Program).
Collapse
Affiliation(s)
- Ying-Kui Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji-Qin Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-Ying Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling-Hong Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ching-Wan Yip
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya-Hong Chen
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian HIV/AIDS Diagnosis and Treatment Center, Fuzhou, Fujian, China
| | - Hua Li
- Department of Neurology, No. 476 Hospital of Fuzhou General Hospital, Nanjing Military Region, Chinese People's Liberation Army, Fuzhou, Fujian, China
| | - Li-Ping Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xin-Hua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Aust V, Kress E, Abraham S, Schröder N, Kipp M, Stope MB, Pufe T, Tauber SC, Brandenburg LO. Lack of chemokine (C-C motif) ligand 3 leads to decreased survival and reduced immune response after bacterial meningitis. Cytokine 2018; 111:246-254. [PMID: 30199766 DOI: 10.1016/j.cyto.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Pneumococcal meningitis, caused by Streptococcus pneumoniae, is the most common type of bacterial meningitis. The clinical management of this disease has been challenged by the emergence of multidrug-resistant Streptococcus pneumoniae, requiring the urgent development of new therapeutic alternatives. Over the course of bacterial meningitis, pathogen invasion is accompanied by a massive recruitment of peripheral immune cells, especially neutrophil granulocytes, which are recruited under the coordination of several cytokines and chemokines. Here, we used chemokine (C-C motif) ligand 3 (Ccl3)-deficient mice to investigate the functional role of CCL3 in a mouse model of pneumococcal meningitis. Following intrathecal infection with Streptococcus pneumoniae Ccl3-deficient mice presented a significantly shorter survival and higher bacterial load than wildtype mice, paralleled by an ameliorated infiltration of neutrophil granulocytes into the CNS. Blood sample analysis revealed that infected Ccl3-deficient mice showed a significant decrease in erythrocytes, hemoglobin and hematocrit as well as in the number of banded neutrophils. Moreover, infected Ccl3-deficient mice showed an altered cytokine expression profile. Glial cell activation remained unchanged in both genotypes. In summary, this study demonstrates that CCL3 is beneficial in Streptococcus pneumoniae-induced meningitis. Pharmacological modulation of the CCL3 pathways might, therefore, represent a future therapeutic option to manage Streptococcus pneumoniae meningitis.
Collapse
Affiliation(s)
- Vanessa Aust
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Stephanie Abraham
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany; Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Toll-Like Receptor 2-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. Mol Neurobiol 2017; 55:6237-6249. [PMID: 29288338 DOI: 10.1007/s12035-017-0838-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.
Collapse
|