1
|
Coelewij L, Adriani M, Dönnes P, Waddington KE, Ciurtin C, Havrdova EK, Farrell R, Nytrova P, Pineda-Torra I, Jury EC. Patients with multiple sclerosis who develop immunogenicity to interferon-beta have distinct transcriptomic and proteomic signatures prior to treatment which are associated with disease severity. Clin Immunol 2024; 267:110339. [PMID: 39137826 DOI: 10.1016/j.clim.2024.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anti-drug antibodies (ADA) reduce the efficacy of immunotherapies in multiple sclerosis (MS) and are associated with increased disease progression risk. Blood biomarkers predicting immunogenicity to biopharmaceuticals represent an unmet clinical need. Patients with relapsing remitting (RR)MS were recruited before (baseline), three, and 12 (M12) months after commencing interferon-beta treatment. Neutralising ADA-status was determined at M12, and patients were stratified at baseline according to their M12 ADA-status (ADA-positive/ADA-negative). Patients stratified as ADA-positive were characterised by an early dampened response to interferon-beta (prior to serum ADA detection) and distinct proinflammatory transcriptomic/proteomic peripheral blood signatures enriched for 'immune response activation' including phosphoinositide 3-kinase-γ and NFκB-signalling pathways both at baseline and throughout the treatment course, compared to ADA-negative patients. These immunogenicity-associated proinflammatory signatures significantly overlapped with signatures of MS disease severity. Thus, whole blood molecular profiling is a promising tool for prediction of ADA-development in RRMS and could provide insight into mechanisms of immunogenicity.
Collapse
Affiliation(s)
- Leda Coelewij
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Marsilio Adriani
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Pierre Dönnes
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; SciCross AB, Skövde, Sweden
| | - Kirsty E Waddington
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Coziana Ciurtin
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London, Institute of Neurology and National Hospital of Neurology and Neurosurgery, London WC1N 3BG, United Kingdom
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Inés Pineda-Torra
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Parque Científico y Tecnológico Cartuja 93 Avda. Américo Vespucio, 24 41092 Sevilla, Spain
| | - Elizabeth C Jury
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom.
| |
Collapse
|
2
|
van der Weele L, Pollastro S, van Schaik BDC, van Kampen AHC, Niewold ITG, Kuijpers TW, Warnke C, Jensen PEH, Kramer D, Ryner M, Hermanrud C, Dönnes P, Pallardy M, Spindeldreher S, Deisenhammer F, Fogdell-Hahn A, de Vries N. Longitudinal analysis of anti-drug antibody development in multiple sclerosis patients treated with interferon beta-1a (Rebif™) using B cell receptor repertoire analysis. J Neuroimmunol 2022; 370:577932. [PMID: 35853357 DOI: 10.1016/j.jneuroim.2022.577932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
A significant proportion of multiple sclerosis (MS) patients treated with interferon beta-1a (Rebif™) develop anti-drug antibodies (ADA) with a negative impact on treatment efficacy. We hypothesized that high-throughput B-cell receptor (BCR) repertoire analysis could be used to predict and monitor ADA development. To study this we analyzed 228 peripheral blood samples from 68 longitudinally followed patients starting on interferon beta-1a. Our results show that whole blood BCR analysis does not reflect, and does not predict ADA development in MS patients treated with interferon beta-1a. We propose that BCR analysis of phenotypically selected cell subsets or tissues might be more informative.
Collapse
Affiliation(s)
- Linda van der Weele
- Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC228, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sabrina Pollastro
- Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC228, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Barbera D C van Schaik
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Infection & Immunity Institute (AIII), Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Infection & Immunity Institute (AIII), Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse T G Niewold
- Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC228, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University Hospital of Cologne, Germany
| | - Poul Erik H Jensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Malin Ryner
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christina Hermanrud
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunopathologie, Faculté Pharmacie, Châtenay-Malabry, France
| | | | | | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Niek de Vries
- Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC228, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
3
|
Andlauer TFM, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, Auer M, Hegen H, Aly L, Gasperi C, Knier B, Müller-Myhsok B, Jensen PEH, Sellebjerg F, Kockum I, Olsson T, Pallardy M, Spindeldreher S, Deisenhammer F, Fogdell-Hahn A, Hemmer B. Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Med 2020; 18:298. [PMID: 33143745 PMCID: PMC7641861 DOI: 10.1186/s12916-020-01769-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Upon treatment with biopharmaceuticals, the immune system may produce anti-drug antibodies (ADA) that inhibit the therapy. Up to 40% of multiple sclerosis patients treated with interferon β (IFNβ) develop ADA, for which a genetic predisposition exists. Here, we present a genome-wide association study on ADA and predict the occurrence of antibodies in multiple sclerosis patients treated with different interferon β preparations. METHODS We analyzed a large sample of 2757 genotyped and imputed patients from two cohorts (Sweden and Germany), split between a discovery and a replication dataset. Binding ADA (bADA) levels were measured by capture-ELISA, neutralizing ADA (nADA) titers using a bioassay. Genome-wide association analyses were conducted stratified by cohort and treatment preparation, followed by fixed-effects meta-analysis. RESULTS Binding ADA levels and nADA titers were correlated and showed a significant heritability (47% and 50%, respectively). The risk factors differed strongly by treatment preparation: The top-associated and replicated variants for nADA presence were the HLA-associated variants rs77278603 in IFNβ-1a s.c.- (odds ratio (OR) = 3.55 (95% confidence interval = 2.81-4.48), p = 2.1 × 10-26) and rs28366299 in IFNβ-1b s.c.-treated patients (OR = 3.56 (2.69-4.72), p = 6.6 × 10-19). The rs77278603-correlated HLA haplotype DR15-DQ6 conferred risk specifically for IFNβ-1a s.c. (OR = 2.88 (2.29-3.61), p = 7.4 × 10-20) while DR3-DQ2 was protective (OR = 0.37 (0.27-0.52), p = 3.7 × 10-09). The haplotype DR4-DQ3 was the major risk haplotype for IFNβ-1b s.c. (OR = 7.35 (4.33-12.47), p = 1.5 × 10-13). These haplotypes exhibit large population-specific frequency differences. The best prediction models were achieved for ADA in IFNβ-1a s.c.-treated patients. Here, the prediction in the Swedish cohort showed AUC = 0.91 (0.85-0.95), sensitivity = 0.78, and specificity = 0.90; patients with the top 30% of genetic risk had, compared to patients in the bottom 30%, an OR = 73.9 (11.8-463.6, p = 4.4 × 10-6) of developing nADA. In the German cohort, the AUC of the same model was 0.83 (0.71-0.92), sensitivity = 0.80, specificity = 0.76, with an OR = 13.8 (3.0-63.3, p = 7.5 × 10-4). CONCLUSIONS We identified several HLA-associated genetic risk factors for ADA against interferon β, which were specific for treatment preparations and population backgrounds. Genetic prediction models could robustly identify patients at risk for developing ADA and might be used for personalized therapy recommendations and stratified ADA screening in clinical practice. These analyses serve as a roadmap for genetic characterizations of ADA against other biopharmaceutical compounds.
Collapse
Affiliation(s)
- Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany.
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany.
| | - Jenny Link
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Dorothea Martin
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Malin Ryner
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Christina Hermanrud
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
- Institute of Experimental Neuroimmunology, Technical University of Munich, Trogerstr 9, 81675, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
- Institute of Experimental Neuroimmunology, Technical University of Munich, Trogerstr 9, 81675, Munich, Germany
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | | | - Finn Sellebjerg
- DMSC, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Faculté de Pharmacie, rue JB Clément, 92290, Châtenay-Malabry, France
| | - Sebastian Spindeldreher
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056, Basel, Switzerland
- Integrated Biologix GmbH, Steinenvorstadt 33, 4051, Basel, Switzerland
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
| |
Collapse
|
4
|
Dunn N, Fogdell-Hahn A, Hillert J, Spelman T. Long-Term Consequences of High Titer Neutralizing Antibodies to Interferon-β in Multiple Sclerosis. Front Immunol 2020; 11:583560. [PMID: 33178215 PMCID: PMC7593513 DOI: 10.3389/fimmu.2020.583560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Background Neutralizing anti-drug antibodies (NAbs) to interferon beta (IFNβ) develop in up to 47% of multiple sclerosis (MS) treated patients inhibiting treatment effect of IFNβ. However, the long-term effect of NAbs remain unknown. Objective To investigate the long-term consequences of high titer NAbs to IFNβ on disease activity and progression in MS patients. Methods An observational study including data from all IFNβ treated relapsing remitting MS patients with sufficient NAb test results from the Swedish MS registry. Patients were classified into either confirmed ‘high titer’ or ‘persistent negative’ groups and analyzed for differences in disease activity and progression over time. Results A total of 197 high-titer and 2907 persistent negative patients with 19969.6 follow up years of data were included. High titer NAbs were associated with a higher degree of disease activity at baseline. However, even when accounting for this, the presence of high titer NAbs were also associated with higher disease activity during IFNβ treatment. This persisted even after the next DMT start, suggesting that earlier high titers may partially reduce the effect of later treatments. No difference was found in confirmed disability progression. Conclusion High titer NAbs to IFNβ are associated with higher disease activity, persisting even after IFNβ discontinuation or switch. These results support use of highly efficient treatment earlier in patients with active disease, to avoid these complications.
Collapse
Affiliation(s)
- Nicky Dunn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroimmunology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroimmunology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tim Spelman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Hässler S, Bachelet D, Duhaze J, Szely N, Gleizes A, Hacein-Bey Abina S, Aktas O, Auer M, Avouac J, Birchler M, Bouhnik Y, Brocq O, Buck-Martin D, Cadiot G, Carbonnel F, Chowers Y, Comabella M, Derfuss T, De Vries N, Donnellan N, Doukani A, Guger M, Hartung HP, Kubala Havrdova E, Hemmer B, Huizinga T, Ingenhoven K, Hyldgaard-Jensen PE, Jury EC, Khalil M, Kieseier B, Laurén A, Lindberg R, Loercher A, Maggi E, Manson J, Mauri C, Mohand Oumoussa B, Montalban X, Nachury M, Nytrova P, Richez C, Ryner M, Sellebjerg F, Sievers C, Sikkema D, Soubrier M, Tourdot S, Trang C, Vultaggio A, Warnke C, Spindeldreher S, Dönnes P, Hickling TP, Hincelin Mery A, Allez M, Deisenhammer F, Fogdell-Hahn A, Mariette X, Pallardy M, Broët P. Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium. PLoS Med 2020; 17:e1003348. [PMID: 33125391 PMCID: PMC7598520 DOI: 10.1371/journal.pmed.1003348] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/18/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Biopharmaceutical products (BPs) are widely used to treat autoimmune diseases, but immunogenicity limits their efficacy for an important proportion of patients. Our knowledge of patient-related factors influencing the occurrence of antidrug antibodies (ADAs) is still limited. METHODS AND FINDINGS The European consortium ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) conducted a clinical and genomic multicohort prospective study of 560 patients with multiple sclerosis (MS, n = 147), rheumatoid arthritis (RA, n = 229), Crohn's disease (n = 148), or ulcerative colitis (n = 36) treated with 8 different biopharmaceuticals (etanercept, n = 84; infliximab, n = 101; adalimumab, n = 153; interferon [IFN]-beta-1a intramuscularly [IM], n = 38; IFN-beta-1a subcutaneously [SC], n = 68; IFN-beta-1b SC, n = 41; rituximab, n = 31; tocilizumab, n = 44) and followed during the first 12 months of therapy for time to ADA development. From the bioclinical data collected, we explored the relationships between patient-related factors and the occurrence of ADAs. Both baseline and time-dependent factors such as concomitant medications were analyzed using Cox proportional hazard regression models. Mean age and disease duration were 35.1 and 0.85 years, respectively, for MS; 54.2 and 3.17 years for RA; and 36.9 and 3.69 years for inflammatory bowel diseases (IBDs). In a multivariate Cox regression model including each of the clinical and genetic factors mentioned hereafter, among the clinical factors, immunosuppressants (adjusted hazard ratio [aHR] = 0.408 [95% confidence interval (CI) 0.253-0.657], p < 0.001) and antibiotics (aHR = 0.121 [0.0437-0.333], p < 0.0001) were independently negatively associated with time to ADA development, whereas infections during the study (aHR = 2.757 [1.616-4.704], p < 0.001) and tobacco smoking (aHR = 2.150 [1.319-3.503], p < 0.01) were positively associated. 351,824 Single-Nucleotide Polymorphisms (SNPs) and 38 imputed Human Leukocyte Antigen (HLA) alleles were analyzed through a genome-wide association study. We found that the HLA-DQA1*05 allele significantly increased the rate of immunogenicity (aHR = 3.9 [1.923-5.976], p < 0.0001 for the homozygotes). Among the 6 genetic variants selected at a 20% false discovery rate (FDR) threshold, the minor allele of rs10508884, which is situated in an intron of the CXCL12 gene, increased the rate of immunogenicity (aHR = 3.804 [2.139-6.764], p < 1 × 10-5 for patients homozygous for the minor allele) and was chosen for validation through a CXCL12 protein enzyme-linked immunosorbent assay (ELISA) on patient serum at baseline before therapy start. CXCL12 protein levels were higher for patients homozygous for the minor allele carrying higher ADA risk (mean: 2,693 pg/ml) than for the other genotypes (mean: 2,317 pg/ml; p = 0.014), and patients with CXCL12 levels above the median in serum were more prone to develop ADAs (aHR = 2.329 [1.106-4.90], p = 0.026). A limitation of the study is the lack of replication; therefore, other studies are required to confirm our findings. CONCLUSION In our study, we found that immunosuppressants and antibiotics were associated with decreased risk of ADA development, whereas tobacco smoking and infections during the study were associated with increased risk. We found that the HLA-DQA1*05 allele was associated with an increased rate of immunogenicity. Moreover, our results suggest a relationship between CXCL12 production and ADA development independent of the disease, which is consistent with its known function in affinity maturation of antibodies and plasma cell survival. Our findings may help physicians in the management of patients receiving biotherapies.
Collapse
Affiliation(s)
- Signe Hässler
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
- Sorbonne Université, INSERM UMR 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi), Paris, France
- * E-mail: (SH); (PB)
| | - Delphine Bachelet
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris AP-HP.Nord, INSERM CIC-EC 1425, Paris, France
| | - Julianne Duhaze
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
- CHU Ste-Justine Research Center, Montreal, Canada
| | - Natacha Szely
- INSERM UMR 996, Faculty of Pharmacy, Paris-Sud University, Paris-Saclay University, Châtenay-Malabry, France
| | - Aude Gleizes
- INSERM UMR 996, Faculty of Pharmacy, Paris-Sud University, Paris-Saclay University, Châtenay-Malabry, France
- Clinical Immunology Laboratory, AP-HP, Le Kremlin-Bicêtre Hospital, Paris-Sud University Hospitals, Le Kremlin-Bicêtre, France
| | - Salima Hacein-Bey Abina
- Clinical Immunology Laboratory, AP-HP, Le Kremlin-Bicêtre Hospital, Paris-Sud University Hospitals, Le Kremlin-Bicêtre, France
- UTCBS, CNRS UMR 8258, INSERM U1022, Faculty of Pharmacy, Paris-Descartes-Sorbonne-Cite University, Paris, France
| | - Orhan Aktas
- University of Düsseldorf, Medical Faculty, Department of Neurology, Düsseldorf, Germany
| | - Michael Auer
- Innsbruck Medical University, Department of Neurology, Innsbruck, Austria
| | - Jerôme Avouac
- Paris University, Paris Descartes University, INSERM U1016, Paris, France
- Rheumatology department, Cochin Hospital, AP-HP.CUP, Paris, France
| | - Mary Birchler
- GlaxoSmithKline, Clinical Immunology–Biopharm, Collegeville, Pennsylvania, United States of America
| | - Yoram Bouhnik
- AP-HP, Hôpital Beaujon, Paris, France
- GETAID, Paris, France
| | | | | | - Guillaume Cadiot
- GETAID, Paris, France
- Service d'hépato-gastroentérologie, University Hospital of Reims, Reims, France
| | - Franck Carbonnel
- GETAID, Paris, France
- Department of Gastroenterology, AP-HP, Hôpital Kremlin-Bicêtre, France
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d’Hebron (VHIR). Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tobias Derfuss
- Departments of Biomedicine and Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Niek De Vries
- Rheumatology & Clinical Immunology, Amsterdam UMC | AMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Abiba Doukani
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, UMS 37 PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Michael Guger
- Clinic for Neurology 2, Med Campus III, Kepler University Hospital GmbH, Linz, Austria
| | - Hans-Peter Hartung
- University of Düsseldorf, Medical Faculty, Department of Neurology, Düsseldorf, Germany
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Bernhard Hemmer
- Department of Neurology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tom Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kathleen Ingenhoven
- University of Düsseldorf, Medical Faculty, Department of Neurology, Düsseldorf, Germany
| | - Poul Erik Hyldgaard-Jensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, University College London, London, United Kingdom
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Bernd Kieseier
- University of Düsseldorf, Medical Faculty, Department of Neurology, Düsseldorf, Germany
| | | | - Raija Lindberg
- Departments of Biomedicine and Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Amy Loercher
- GlaxoSmithKline, Clinical Immunology–Biopharm, Collegeville, Pennsylvania, United States of America
| | - Enrico Maggi
- Dipartimento di Medicina Sperimentale e Clínica, Università di Firenze, Firenze, Italy
- Immunology Area of Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Jessica Manson
- Department of Rheumatology, University College London Hospital, London, United Kingdom
| | - Claudia Mauri
- Centre for Rheumatology Research, University College London, London, United Kingdom
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, UMS 37 PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d’Hebron (VHIR). Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Multiple Sclerosis, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Maria Nachury
- GETAID, Paris, France
- University hospital of Lille, Maladies de l'appareil digestif, Lille, France
| | - Petra Nytrova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Christophe Richez
- Rheumatology Department, CHU de Bordeaux-GH Pellegrin, Bordeaux, France
- UMR CNRS 5164, Bordeaux University, Bordeaux, France
| | - Malin Ryner
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Sievers
- Departments of Biomedicine and Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dan Sikkema
- GlaxoSmithKline, Clinical Immunology–Biopharm, Collegeville, Pennsylvania, United States of America
- Current address: Quanterix Corporation, Billerica, Massachusetts, United States of America
| | - Martin Soubrier
- Rheumatology, University Hospital of Clermont Ferrand, Clermont Ferrand, France
| | - Sophie Tourdot
- INSERM UMR 996, Faculty of Pharmacy, Paris-Sud University, Paris-Saclay University, Châtenay-Malabry, France
| | - Caroline Trang
- GETAID, Paris, France
- Institut des maladies de l'Appareil Digestif, University Hospital of Nantes, Nantes, France
| | - Alessandra Vultaggio
- Dipartimento di Medicina Sperimentale e Clínica, Università di Firenze, Firenze, Italy
| | - Clemens Warnke
- University of Düsseldorf, Medical Faculty, Department of Neurology, Düsseldorf, Germany
- Department of Neurology, University Hospital Köln, Köln, Germany
| | - Sebastian Spindeldreher
- Drug Metabolism Pharmacokinetics-Biologics, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Integrated Biologix GmbH, Basel, Switzerland
| | | | - Timothy P. Hickling
- BioMedicine Design, Pfizer, Inc., Andover, Massachusetts, United States of America
| | | | - Matthieu Allez
- GETAID, Paris, France
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, Université Paris-Diderot, Paris, France
| | | | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Mariette
- Centre for Immunology of Viral Infections and Autoimmune Diseases, INSERM UMR 1184, Université Paris-Saclay, AP-HP.Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Pallardy
- INSERM UMR 996, Faculty of Pharmacy, Paris-Sud University, Paris-Saclay University, Châtenay-Malabry, France
| | - Philippe Broët
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
- CHU Ste-Justine Research Center, Montreal, Canada
- AP-HP, Paris-Sud University Hospitals, Paul Brousse Hospital, Villejuif, France
- * E-mail: (SH); (PB)
| | | |
Collapse
|
6
|
Meunier S, de Bourayne M, Hamze M, Azam A, Correia E, Menier C, Maillère B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol 2020; 11:1550. [PMID: 32793213 PMCID: PMC7387651 DOI: 10.3389/fimmu.2020.01550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The anti-drug antibody (ADA) response is an undesired humoral response raised against protein biopharmaceuticals (BPs) which can dramatically disturb their therapeutic properties. One particularity of the ADA response resides in the nature of the immunogens, which are usually human(ized) proteins and are therefore expected to be tolerated. CD4 T cells initiate, maintain and regulate the ADA response and are therefore key players of this immune response. Over the last decade, advances have been made in characterizing the T cell responses developed by patients treated with BPs. Epitope specificity and phenotypes of BP-specific T cells have been reported and highlight the effector and regulatory roles of T cells in the ADA response. BP-specific T cell responses are assessed in healthy subjects to anticipate the immunogenicity of BP prior to their testing in clinical trials. Immunogenicity prediction, also called preclinical immunogenicity assessment, aims at identifying immunogenic BPs and immunogenic BP sequences before any BP injection in humans. All of the approaches that have been developed to date rely on the detection of BP-specific T cells in donors who have never been exposed to BPs. The number of BP-specific T cells circulating in the blood of these donors is therefore limited. T cell assays using cells collected from healthy donors might reveal the weak tolerance induced by BPs, whose endogenous form is expressed at a low level. These BPs have a complete human sequence, but the level of their endogenous form appears insufficient to promote the negative selection of autoreactive T cell clones. Multiple T cell epitopes have also been identified in therapeutic antibodies and some other BPs. The pattern of identified T cell epitopes differs across the antibodies, notwithstanding their humanized, human or chimeric nature. However, in all antibodies, the non-germline amino acid sequences mainly found in the CDRs appear to be the main driver of immunogenicity, provided they can be presented by HLA class II molecules. Considering the fact that the BP field is expanding to include new formats and gene and cell therapies, we face new challenges in understanding and mastering the immunogenicity of new biological products.
Collapse
Affiliation(s)
- Sylvain Meunier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Marie de Bourayne
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Moustafa Hamze
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Aurélien Azam
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Catherine Menier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Waddington KE, Papadaki A, Coelewij L, Adriani M, Nytrova P, Kubala Havrdova E, Fogdell-Hahn A, Farrell R, Dönnes P, Pineda-Torra I, Jury EC. Using Serum Metabolomics to Predict Development of Anti-drug Antibodies in Multiple Sclerosis Patients Treated With IFNβ. Front Immunol 2020; 11:1527. [PMID: 32765529 PMCID: PMC7380268 DOI: 10.3389/fimmu.2020.01527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Neutralizing anti-drug antibodies (ADA) can greatly reduce the efficacy of biopharmaceuticals used to treat patients with multiple sclerosis (MS). However, the biological factors pre-disposing an individual to develop ADA are poorly characterized. Thus, there is an unmet clinical need for biomarkers to predict the development of immunogenicity, and subsequent treatment failure. Up to 35% of MS patients treated with beta interferons (IFNβ) develop ADA. Here we use machine learning to predict immunogenicity against IFNβ utilizing serum metabolomics data. Methods: Serum samples were collected from 89 MS patients as part of the ABIRISK consortium-a multi-center prospective study of ADA development. Metabolites and ADA were quantified prior to and after IFNβ treatment. Thirty patients became ADA positive during the first year of treatment (ADA+). We tested the efficacy of six binary classification models using 10-fold cross validation; k-nearest neighbors, decision tree, random forest, support vector machine and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and without interactions. Results: We were able to predict future immunogenicity from baseline metabolomics data. Lasso logistic regression with/without interactions and support vector machines were the most successful at identifying ADA+ or ADA- cases, respectively. Furthermore, patients who become ADA+ had a distinct metabolic response to IFNβ in the first 3 months, with 29 differentially regulated metabolites. Machine learning algorithms could also predict ADA status based on metabolite concentrations at 3 months. Lasso logistic regressions had the greatest proportion of correct classifications [F1 score (accuracy measure) = 0.808, specificity = 0.913]. Finally, we hypothesized that serum lipids could contribute to ADA development by altering immune-cell lipid rafts. This was supported by experimental evidence demonstrating that, prior to IFNβ exposure, lipid raft-associated lipids were differentially expressed between MS patients who became ADA+ or remained ADA-. Conclusion: Serum metabolites are a promising biomarker for prediction of ADA development in MS patients treated with IFNβ, and could provide novel insight into mechanisms of immunogenicity.
Collapse
Affiliation(s)
- Kirsty E. Waddington
- Centre for Rheumatology, University College London, London, United Kingdom
- Centre for Cardiometabolic and Vascular Medicine, University College London, London, United Kingdom
| | - Artemis Papadaki
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Leda Coelewij
- Centre for Rheumatology, University College London, London, United Kingdom
- Centre for Cardiometabolic and Vascular Medicine, University College London, London, United Kingdom
| | - Marsilio Adriani
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Rachel Farrell
- Department of Neuroinflammation, University College London, Institute of Neurology and National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Pierre Dönnes
- Centre for Rheumatology, University College London, London, United Kingdom
- Scicross AB, Skövde, Sweden
| | - Inés Pineda-Torra
- Centre for Cardiometabolic and Vascular Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Functional effects of immune complexes formed between pembrolizumab and patient-generated anti-drug antibodies. Cancer Immunol Immunother 2020; 69:2453-2464. [PMID: 32556495 DOI: 10.1007/s00262-020-02636-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
The PD-1-targeting IgG4 antibody pembrolizumab has significant anti-tumor activity in a proportion of stage IV melanoma patients. A subset of patients develop anti-drug antibodies (ADA) which can form immune complexes (IC) with pembrolizumab. Although IC can induce powerful, Fc-mediated, immune-regulatory effects, their functional impact during pembrolizumab treatment is unclear. The functional effects of IC generated in vitro using pembrolizumab and patient-derived ADA was, therefore, investigated. Screening identified a patient whose trough serum samples from three treatment cycles contained both ADA with neutralizing activity and low levels of pembrolizumab. This patient responded well to therapy over 2 years and had ongoing, infusion-related, hypersensitivity reactions despite the later absence of detectable ADA. The components of IC were mimicked by forming a complex of pembrolizumab by absorption onto a solid phase with or without subsequent exposure to the ADA+ patient sera. Complexes comprised of pembrolizumab alone significantly inhibited TLR4 (LPS)-driven IL-10 production by PBMC and stimulated the generation of reactive oxygen species by granulocytes. In contrast, soluble and solid-phase F(ab´)2 fragments of pembrolizumab had no effect demonstrating the requirement for cross-linked Fc regions. IC containing pembrolizumab and ADA could additionally induce complement and NK activation. The results of this study demonstrate that, when oligomerized, the Fc region of pembrolizumab alone can provide immuno-regulatory signals. Furthermore, IC containing both pembrolizumab and patient-generated ADA can induce additional signals. These Fc-mediated signals may modulate both hypersensitivity reactions and anti-tumor responses associated with pembrolizumab therapy.
Collapse
|
9
|
Cassotta A, Mikol V, Bertrand T, Pouzieux S, Le Parc J, Ferrari P, Dumas J, Auer M, Deisenhammer F, Gastaldi M, Franciotta D, Silacci-Fregni C, Fernandez Rodriguez B, Giacchetto-Sasselli I, Foglierini M, Jarrossay D, Geiger R, Sallusto F, Lanzavecchia A, Piccoli L. A single T cell epitope drives the neutralizing anti-drug antibody response to natalizumab in multiple sclerosis patients. Nat Med 2019; 25:1402-1407. [PMID: 31501610 PMCID: PMC6795539 DOI: 10.1038/s41591-019-0568-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Natalizumab (NZM), a humanized monoclonal IgG4 antibody to α4
integrins, is used to treat patients with relapsing-remitting multiple sclerosis
(MS)1,2, but in about 6% of the cases persistent
neutralizing anti-drug antibodies (ADAs) are induced leading to therapy
discontinuation3,4. To understand the basis of the
ADA response and the mechanism of ADA-mediated neutralization, we performed an
in-depth analysis of the B and T cell responses in two patients. By
characterizing a large panel of NZM-specific monoclonal antibodies, we found
that, in both patients, the response was polyclonal and targeted different
epitopes of the NZM idiotype. The neutralizing activity was acquired through
somatic mutations and correlated with a slow dissociation rate, a finding that
was supported by structural data. Interestingly, in both patients, the analysis
of the CD4+ T cell response, combined with mass spectrometry-based
peptidomics, revealed a single immunodominant T cell epitope spanning the
FR2-CDR2 region of the NZM light chain. Moreover, a CDR2-modified version of NZM
was not recognized by T cells, while retaining binding to α4 integrins.
Collectively, our integrated analysis identifies the basis of T-B collaboration
that leads to ADA-mediated therapeutic resistance and delineates an approach to
design novel deimmunized antibodies for autoimmune disease and cancer
treatment.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Vincent Mikol
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | | | | | | | - Paul Ferrari
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | - Jacques Dumas
- Research Platform, Sanofi R&D, Vitry-sur-Seine, France
| | - Michael Auer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Matteo Gastaldi
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Laboratory of Neuroimmunology, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | | | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
10
|
Morgan H, Tseng SY, Gallais Y, Leineweber M, Buchmann P, Riccardi S, Nabhan M, Lo J, Gani Z, Szely N, Zhu CS, Yang M, Kiessling A, Vohr HW, Pallardy M, Aswad F, Turbica I. Evaluation of in vitro Assays to Assess the Modulation of Dendritic Cells Functions by Therapeutic Antibodies and Aggregates. Front Immunol 2019; 10:601. [PMID: 31001248 PMCID: PMC6455063 DOI: 10.3389/fimmu.2019.00601] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic antibodies have the potential to induce immunogenicity leading to the development of anti-drug antibodies (ADA) that consequently may result in reduced serum drug concentrations, a loss of efficacy or potential hypersensitivity reactions. Among other factors, aggregated antibodies have been suggested to promote immunogenicity, thus enhancing ADA production. Dendritic cells (DC) are the most efficient antigen-presenting cell population and are crucial for the initiation of T cell responses and the subsequent generation of an adaptive immune response. This work focuses on the development of predictive in vitro assays that can monitor DC maturation, in order to determine whether drug products have direct DC stimulatory capabilities. To this end, four independent laboratories aligned a common protocol to differentiate human monocyte-derived DC (moDC) that were treated with either native or aggregated preparations of infliximab, natalizumab, adalimumab, or rituximab. These drug products were subjected to different forms of physical stress, heat and shear, resulting in aggregation and the formation of subvisible particles. Each partner developed and optimized assays to monitor diverse end-points of moDC maturation: measuring the upregulation of DC activation markers via flow cytometry, analyzing cytokine, and chemokine production via mRNA and protein quantification and identifying cell signaling pathways via quantification of protein phosphorylation. These study results indicated that infliximab, with the highest propensity to form aggregates when heat-stressed, induced a marked activation of moDC as measured by an increase in CD83 and CD86 surface expression, IL-1β, IL-6, IL-8, IL-12, TNFα, CCL3, and CCL4 transcript upregulation and release of respective proteins, and phosphorylation of the intracellular signaling proteins Syk, ERK1/2, and Akt. In contrast, natalizumab, which does not aggregate under these stress conditions, induced no DC activation in any assay system, whereas adalimumab or rituximab aggregates induced only slight parameter variation. Importantly, the data generated in the different assay systems by each partner site correlated and supported the use of these assays to monitor drug-intrinsic propensities to drive maturation of DC. This moDC assay is also a valuable tool as an in vitro model to assess the intracellular mechanisms that drive DC activation by aggregated therapeutic proteins.
Collapse
Affiliation(s)
- Hannah Morgan
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Su-Yi Tseng
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Yann Gallais
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Margret Leineweber
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Pascale Buchmann
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Sabrina Riccardi
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Myriam Nabhan
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jeannette Lo
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Zaahira Gani
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Natacha Szely
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Cornelia S Zhu
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Ming Yang
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Andrea Kiessling
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hans-Werner Vohr
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Fred Aswad
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Isabelle Turbica
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|