1
|
Hattori N, Sato S. Mitochondrial dysfunction in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1415-1428. [PMID: 39585446 DOI: 10.1007/s00702-024-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The exact cause of nigral cell death in Parkinson's disease (PD) is still unknown. However, research on MPTP-induced experimental parkinsonism has significantly advanced our understanding. In this model, it is widely accepted that mitochondrial respiratory failure is the primary mechanism of cell death. Studies have shown that a toxic metabolite of MPTP inhibits Complex I and alpha-ketoglutarate dehydrogenase activities in mitochondria. Since then, many research groups have focused on mitochondrial dysfunction in PD, identifying deficiencies in Complex I or III in PD patients' brains, skeletal muscle, and platelets. There is some debate about the decline in mitochondrial function in peripheral organs. However, since α-synuclein, the main component protein of Lewy bodies, accumulates in peripheral organs, it is reasonable to consider PD a systemic disease. Additionally, mutant mitochondrial DNA with a 4,977 base pair deletion has been found in the brains of PD patients, suggesting that age-related accumulation of deleted mtDNA is accelerated in the striatum and may contribute to the pathophysiology of PD. While the cause of PD remains unknown, mitochondrial dysfunction is undoubtedly a factor in cell death in PD. In addition, the causative gene for familial PD, parkin (now PRKN), and PTEN-induced putative kinase 1 (PINK1), both gene products are also involved in mitochondrial quality control. Moreover, we have successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system. There is no doubt that mitochondrial dysfunction contributes to cell death in PD.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
| | - Shigeto Sato
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Cossu D, Tomizawa Y, Noda S, Momotani E, Sakanishi T, Okada H, Yokoyama K, Sechi LA, Hattori N. Impact of Epstein-Barr Virus Nuclear Antigen 1 on Neuroinflammation in PARK2 Knockout Mice. Int J Mol Sci 2024; 25:10697. [PMID: 39409029 PMCID: PMC11477094 DOI: 10.3390/ijms251910697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to explore the intricate relationship between mitochondrial dysfunction, infection, and neuroinflammation, focusing specifically on the impact of pathogenic epitopes of the Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) in a mouse model of mitochondrial dysfunctions. The investigation included female middle-aged PARK2-/- and C57BL/6J wild-type mice immunized with EBNA1386-405 or with active experimental autoimmune encephalomyelitis (EAE) induction by the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. The PARK2-/- mice developed more severe EAE than the wild-type mice. Following immunization with EBNA1386-405, only PARK2-/- exhibited symptoms resembling EAE. During the acute phase, PARK2-/- mice immunized with either MOG35-55 or EBNA1386-405 exhibited a similar infiltration of the T cells and macrophages in the spinal cord and decreased glial fibrillary acidic protein (GFAP) expression in the brain. However, the EBNA1386-405 -immunized PARK2-/- mice showed significantly increased frequencies of CD8a+ T cells and CD11c+ B cells, and distinct cytokine profiles in the periphery compared to the wild-type controls. These findings highlight the role of EBV in exacerbating inflammation, particularly in the context of mitochondrial deficiencies.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
- Biomedical Research Core Facilities, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy;
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
| | - Sachiko Noda
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
| | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba 305-0856, Japan;
| | - Tamami Sakanishi
- Division of Cell Biology, Juntendo University, Tokyo 1138431, Japan;
| | - Hanna Okada
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy;
- Complex Structure of Microbiology and Virology, University Hospital, 07100 Sassari, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan; (Y.T.); (S.N.); (H.O.); (K.Y.); (N.H.)
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
3
|
Banaeeyeh S, Afkhami-Goli A, Moosavi Z, Razavi BM, Hosseinzadeh H. Anti-inflammatory, antioxidant and anti-mitophagy effects of trans sodium crocetinate on experimental autoimmune encephalomyelitis in BALB/C57 mice. Metab Brain Dis 2024; 39:783-801. [PMID: 38739183 DOI: 10.1007/s11011-024-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by the degeneration of myelin and inflammation in the central nervous system. Trans sodium crocetinate (TSC), a novel synthetic carotenoid compound, possesses antioxidant, anti-inflammatory and neuroprotective effects. This study aimed to evaluate the protective effects of TSC against the development of experimental autoimmune encephalomyelitis (EAE), a well-established model for MS. Female BALB/C57 mice were divided into different groups, including control, EAE, vehicle, TSC-treated (25, 50, and 100 mg/kg, administered via gavage) + EAE, methyl prednisone acetate + EAE, and TSC-treated (100 mg/kg, administered via gavage for 28 days) groups. EAE was induced using MOG35-55, complete Freund's adjuvant, and pertussis toxin. In the mice spinal cord tissues, the oxidative markers (GSH and MDA) were measured using spectrophotometry and histological evaluation was performed. Mitophagic pathway proteins (PINK1and PARKIN) and inflammatory factors (IL-1β and TNF-α) were evaluated by western blot. Following 21 days post-induction, EAE mice exhibited weight loss, and the paralysis scores increased on day 13 but recovered after TSC (100 mg/kg) administration on day 16. Furthermore, TSC (50 and 100 mg/kg) reversed the altered levels of MDA and GSH in the spinal cord tissue of EAE mice. TSC (100 mg/kg) also decreased microgliosis, demyelination, and the levels of inflammatory markers IL-1β and TNF-α. Notably, TSC (100 mg/kg) modulated the mitophagy pathway by reducing PINK1 and Parkin protein levels. These findings demonstrate that TSC protects spinal cord tissue against EAE-induced MS through anti-inflammatory, antioxidant, and anti-mitophagy mechanisms.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Afkhami-Goli
- Division of Pharmacology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Hattori N, Funayama M, Imai Y, Hatano T. Pathogenesis of Parkinson's disease: from hints from monogenic familial PD to biomarkers. J Neural Transm (Vienna) 2024; 131:709-719. [PMID: 38478097 DOI: 10.1007/s00702-024-02747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 06/22/2024]
Abstract
Twenty-five years have passed since the causative gene for familial Parkinson's disease (PD), Parkin (now PRKN), was identified in 1998; PRKN is the most common causative gene in young-onset PD. Parkin encodes a ubiquitin-protein ligase, and Parkin is involved in mitophagy, a type of macroautophagy, in concert with PTEN-induced kinase 1 (PINK1). Both gene products are also involved in mitochondrial quality control. Among the many genetic PD-causing genes discovered, discovering PRKN as a cause of juvenile-onset PD has significantly impacted other neurodegenerative disorders. This is because the involvement of proteolytic systems has been suggested as a common mechanism in neurodegenerative diseases in which inclusion body formation is observed. The discovery of the participation of PRKN in PD has brought attention to the involvement of the proteolytic system in neurodegenerative diseases. Our research group has successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system, and prosaposin (PSAP), which is involved in the lysosomal system, in this Parkin mechanism. Hereditary PD is undoubtedly an essential clue to solitary PD, and at least 25 or so genes and loci have been reported so far. This number of genes indicates that PD is a very diverse group of diseases. Currently, the diagnosis of PD is based on clinical symptoms and imaging studies. Although highly accurate diagnostic criteria have been published, early diagnosis is becoming increasingly important in treatment strategies for neurodegenerative diseases. Here, we also describe biomarkers that our group is working on.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
5
|
Cossu D, Hattori N. Influence of aging, mitochondrial dysfunction, and inflammation on Parkinson's disease. Neural Regen Res 2024; 19:1197-1198. [PMID: 37905862 PMCID: PMC11467919 DOI: 10.4103/1673-5374.385873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan
- Department of Biomedical Sciences, Sassari University, Sassari, Italy
| | | |
Collapse
|
6
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Cossu D, Hatano T, Hattori N. The Role of Immune Dysfunction in Parkinson's Disease Development. Int J Mol Sci 2023; 24:16766. [PMID: 38069088 PMCID: PMC10706591 DOI: 10.3390/ijms242316766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Recent research has unveiled intriguing insights suggesting that the body's immune system may be implicated in Parkinson's disease (PD) development. Studies have observed disparities in pro-inflammatory and anti-inflammatory markers between PD patients and healthy individuals. This finding underscores the potential influence of immune system dysfunction in the genesis of this condition. A dysfunctional immune system can serve as a primary catalyst for systemic inflammation in the body, which may contribute to the emergence of various brain disorders. The identification of several genes associated with PD, as well as their connection to neuroinflammation, raises the likelihood of disease susceptibility. Moreover, advancing age and mitochondrial dysfunction can weaken the immune system, potentially implicating them in the onset of the disease, particularly among older individuals. Compromised integrity of the blood-brain barrier could facilitate the immune system's access to brain tissue. This exposure may lead to encounters with native antigens or infections, potentially triggering an autoimmune response. Furthermore, there is mounting evidence supporting the notion that gut dysbiosis might represent an initial trigger for brain inflammation, ultimately promoting neurodegeneration. In this comprehensive review, we will delve into the numerous hypotheses surrounding the role of both innate and adaptive immunity in PD.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Taku Hatano
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
8
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Mei X, Lei Y, Ouyang L, Zhao M, Lu Q. Deficiency of Pink1 promotes the differentiation of Th1 cells. Mol Immunol 2023; 160:23-31. [PMID: 37331031 DOI: 10.1016/j.molimm.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Previous studies have found that Pink1 is crucial for T cell activation and the function of Treg cells. However, the effect of Pink1 on inflammatory Th1 cells is largely unknown. In the process of Th1 differentiation from human naïve T cells, we found a reduction of Pink1 and Parkin. We then focused our attention on the Pink1 KO mice. Although there was no difference in the baseline of the T cell subset of Pink1 KO mice, Th1 differentiation from Pink1 KO naïve T cells in vitro showed a significant increase. Subsequently, we transferred naïve CD4+ T cells into Rag2 KO mice to establish a T-cell colitis mouse model and found that CD4+ T cells in mesentery lymph nodes of mice receiving Pink1 KO cells increased significantly, especially Th1 cells. Intestinal IHC staining also showed that the transcription factor T-bet of Th1 increased. Treatment of CD4+ T cells from lupus-like mice with mitophagy agonist urolithin A, a reduction of Th1 cells was observed, suggesting the clinical value of using mitophagy agonists to suppress Th1-dominated disease in the future.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yu Lei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Lianlian Ouyang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
10
|
Cossu D, Yokoyama K, Sato S, Noda S, Sakanishi T, Sechi LA, Hattori N. Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice. Front Immunol 2022; 13:1036680. [PMID: 36466826 PMCID: PMC9714542 DOI: 10.3389/fimmu.2022.1036680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Recent research has shown that Parkin, an E3 ubiquitin ligase, modulates peripheral immune cells-mediated immunity during experimental autoimmune encephalomyelitis (EAE). Because the PTEN-induced putative kinase 1 (PINK1) protein acts upstream of Parkin in a common mitochondrial quality control pathway, we hypothesized that the systemic deletion of PINK1 could also modify the clinical course of EAE, altering the peripheral and central nervous systems' immune responses. METHODS EAE was induced in female PINK1-/- mice of different age groups by immunization with myelin oligodendrocyte glycoprotein peptide. RESULTS Compared to young wild-type controls, PINK1-/- mice showed earlier disease onset, albeit with a slightly less severe disease, while adult PINK1-/- mice displayed early onset and more severe acute symptoms than controls, showing persistent disease during the recovery phase. In adult mice, EAE severity was associated with significant increases in frequency of dendritic cells (CD11C+, IAIE+), lymphocytes (CD8+), neutrophils (Ly6G+, CD11b+), and a dysregulated cytokine profile in spleen. Furthermore, a massive macrophage (CD68+) infiltration and microglia (TMEM119+) and astrocyte (GFAP+) activation were detected in the spinal cord of adult PINK1-/- mice. CONCLUSIONS PINK1 plays an age-related role in modulating the peripheral inflammatory response during EAE, potentially contributing to the pathogenesis of neuroinflammatory and other associated conditions.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan
- Biomedical Research Core Facilities, Juntendo University, Tokyo, Japan
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | | | - Shigeto Sato
- Department of Neurology, Juntendo University, Tokyo, Japan
| | - Sachiko Noda
- Department of Neurology, Juntendo University, Tokyo, Japan
| | | | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
- SC Microbiologia Azienda Ospedaliero Universitaria (AOU) Sassari, Sassari, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
11
|
Dow CT, Kidess L. BCG Vaccine-The Road Not Taken. Microorganisms 2022; 10:1919. [PMID: 36296196 PMCID: PMC9609351 DOI: 10.3390/microorganisms10101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine has been used for over one hundred years to protect against the most lethal infectious agent in human history, tuberculosis. Over four billion BCG doses have been given and, worldwide, most newborns receive BCG. A few countries, including the United States, did not adopt the WHO recommendation for routine use of BCG. Moreover, within the past several decades, most of Western Europe and Australia, having originally employed routine BCG, have discontinued its use. This review article articulates the impacts of those decisions. The suggested consequences include increased tuberculosis, increased infections caused by non-tuberculous mycobacteria (NTM), increased autoimmune disease (autoimmune diabetes and multiple sclerosis) and increased neurodegenerative disease (Parkinson's disease and Alzheimer's disease). This review also offers an emerged zoonotic pathogen, Mycobacteriumavium ss. paratuberculosis (MAP), as a mostly unrecognized NTM that may have a causal role in some, if not all, of these diseases. Current clinical trials with BCG for varied infectious, autoimmune and neurodegenerative diseases have brought this century-old vaccine to the fore due to its presumed immuno-modulating capacity. With its historic success and strong safety profile, the new and novel applications for BCG may lead to its universal use-putting the Western World back onto the road not taken.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, Madison, WI 53705, USA
- Mindful Diagnostics and Therapeutics, Eau Claire, WI 54701, USA
| | - Laith Kidess
- Department of Biochemistry, University of St. Thomas, St. Paul, MN 55105, USA
| |
Collapse
|
12
|
Cossu D, Ruberto S, Yokoyama K, Hattori N, Sechi LA. Efficacy of BCG vaccine in animal models of neurological disorders. Vaccine 2021; 40:432-436. [PMID: 34906393 DOI: 10.1016/j.vaccine.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) vaccine can modulate the immune response via antigen-specific immune response, but also it can confer nonspecific protection and therapeutic benefits in several neurological conditions through different heterologous effects of vaccination. However, the precise mechanism of action of BCG remains unclear. In this review, different mechanisms underlying BCG-mediated immunity will be explained in animal models that reflects characteristic feature of neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, Alzheimer's and Parkinson's diseases. Furthermore, evidence for a beneficial effect of the BCG on neuropsychiatric disorders, will be also discussed.
Collapse
Affiliation(s)
- Davide Cossu
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; Juntendo University, Department of Neurology, Tokyo 113-8431, Japan.
| | - Stefano Ruberto
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy
| | | | - Nobutaka Hattori
- Juntendo University, Department of Neurology, Tokyo 113-8431, Japan
| | - Leonardo A Sechi
- University of Sassari, Department of Biomedical Sciences, Division of Microbiology and Virology, Sassari 09100, Italy; SC Microbiologia AOU Sassari, Sassari, Italy.
| |
Collapse
|