1
|
Yuan J, Tao Y, Wang M, Chen Y, Han X, Wu H, Shi H, Huang F, Wu X. Astragaloside II, a natural saponin, facilitates remyelination in demyelination neurological diseases via p75NTR receptor mediated β-catenin/Id2/MBP signaling axis in oligodendrocyte precursor cells. J Adv Res 2025:S2090-1232(25)00273-5. [PMID: 40258474 DOI: 10.1016/j.jare.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Demyelination is a hallmark of neurological disorders such as multiple sclerosis and neuromyelitis optica, leading to neurological deficits. Existing therapies primarily modulate immune responses but lack efficacy in directly promoting myelin repair. Enhancing oligodendrocyte precursor cell (OPC) differentiation and oligodendrocytes (OLs) production is crucial for restoring myelin integrity. OBJECTIVES This study investigated the therapeutic potential of astragaloside II (AS-II), a bioactive saponin with neuroprotective and pro-differentiation properties, derived from Astragalus membranaceus, uniquely in promoting OPC differentiation and myelin endogenous repair, distinguishing it from existing immunomodulatory treatments. AS-II directly targets p75 neurotrophin receptor (p75NTR) signaling, a pathway linked to myelin regeneration but underestimated in current remyelination strategies. METHODS We conducted in vitro OPC differentiation assays and in vivo demyelination models, including cuprizone and experimental autoimmune encephalomyelitis. Drug affinity responsive target stability mass spectrometry, cellular thermal shift assay, and surface plasmon resonance assays identified and validated p75NTR as the direct target of AS-II. p75NTR knockout mice and lentiviral transduction were used to confirm its role. RESULTS AS-II improved neurobehavioral outcomes, increased OLs production, and enhanced myelin integrity by suppressing β-catenin/Id2/MBP signaling. Mechanistically, AS-II bound to p75NTR (Pro253, Ser257), stabilizing its structure and promoting remyelination. In p75NTR knockout mice, AS-II failed to restore myelin or neural function, confirming its p75NTR-dependent mechanism. CONCLUSION AS-II represents a novel therapeutic candidate for demyelinating diseases, offering a targeted approach to myelin regeneration through direct p75NTR modulation and addressing gaps in current treatment strategies.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute for Translational Brain Research, Fudan University, Shanghai 200433, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yufeng Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hailin Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Center for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Tong L, Ozes B, Moss K, Myers M, Attia Z, Vetter TA, Trapp BD, Sahenk Z. AAV1.NT3 gene therapy mitigates the severity of autoimmune encephalomyelitis in the mouse model for multiple sclerosis. Gene Ther 2025:10.1038/s41434-025-00518-9. [PMID: 39972161 DOI: 10.1038/s41434-025-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than 2.5 million patients worldwide. Chronic demyelination in the CNS has an important role in perpetuating axonal loss and increases difficulty in promoting remyelination. Therefore, regenerative, and neuroprotective strategies are essential to overcome this impediment to rescue axonal integrity and function. Neurotrophin 3 (NT-3) has immunomodulatory and anti-inflammatory properties, in addition to its well-recognized function in nervous system development, myelination, neuroprotection, and regeneration. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of experimental autoimmune encephalomyelitis (EAE) mice, the chronic relapsing mouse model of MS, at 3 weeks post EAE induction. Measurable NT-3 levels were found in serum at 7-weeks post gene delivery. The treated cohort showed improved clinical scores and performed significantly better in rotarod, and grip strength tests compared to their untreated counterparts. Histopathologic studies showed improved remyelination and axon protection. These data correlated with reduced expression of the pro-inflammatory cytokines in brain and spinal cord, and increased percentage of regulatory T cells in the spleens and lymph nodes. Collectively, these findings demonstrate the translational potential of AAV-delivered NT-3 for chronic progressive MS.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zayed Attia
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
3
|
Liu SS, Zha Z, Li C, Li CY, Wang L. The mechanism of exosomes of BMSCs modified with Bu Shen Yi Sui capsule in promoting remyelination via regulating miR-15b/Wnt signaling pathway-mediated differentiation of oligodendrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119283. [PMID: 39733800 DOI: 10.1016/j.jep.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated. AIM OF THE STUDY This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice. MATERIALS AND METHODS C57BL/6J mice were administered a 0.2% CPZ-containing diet for 5 weeks to induce demyelination, followed by treatment with exosomes derived from BMSC (BMSC-exos) and BSYS-modified BMSC exosomes (BSYS-BMSC-exos) twice weekly for 2 weeks. Body weight measurements were recorded, and motor function was evaluated using the rotarod test. Pathological changes in myelin and axons were assessed via Luxol fast blue (LFB) staining, transmission electron microscopy (TEM), and immunofluorescence (IF) staining. Oligodendrocyte proliferation, differentiation, and maturation were analyzed using IF double-staining, Western blot (WB), and real-time quantitative reverse transcription PCR (qRT-PCR). Additionally, microRNA (miRNA) sequencing and a luciferase reporter assay were conducted to verify miRNA binding to its target gene. Key markers of the Wnt/β-catenin signaling pathway were examined using WB and qRT-PCR. RESULTS BSYS-BMSC-exos treatment significantly increased both body weight and rotarod performance in CPZ mice. Moreover, BMSC-exos and BSYS-BMSC-exos reversed myelin loss and axonal damage. These treatments enhanced oligodendrocytes proliferation, differentiation, and maturation, with BSYS-BMSC-exos exhibiting a particularly pronounced effect on the expression of adenomatous polyposis coli clone CC1 (CC1), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin basic protein (MBP). Sequencing and luciferase assays revealed that miR-15b-5p, enriched in BSYS-BMSC-exos, directly targets Wnt3a. Furthermore, BSYS-BMSC-exos elevated axis inhibition protein 2 (Axin2) expression while markedly reducing Wnt family member 3A (Wnt3a), phospho-glycogen synthase kinase-3β (p-GSK3β), β-catenin, and T-cell specific transcription factor 4/transcription factor 7-like 2 (TCF4/TCF7L2) levels. CONCLUSIONS The findings suggest that BSYS-BMSC-exos alleviate neurological deficits, enhance oligodendrocytes differentiation and maturation, and promote remyelination in CPZ mice. miR-15b-5p, enriched in BSYS-BMSC-exos, targets and downregulates Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zheng Zha
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Yu Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Feng F, Li X, Wang W, Dou M, Li S, Jin X, Chu Y, Zhu L. Matrine protects against experimental autoimmune encephalomyelitis through modulating microglial ferroptosis. Biochem Biophys Res Commun 2024; 735:150651. [PMID: 39260333 DOI: 10.1016/j.bbrc.2024.150651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelination neurodegenerative disease of the central nervous system (CNS). Ferroptosis has been implicated in a range of brain disorders, and iron-loaded microglia are frequently found in affected brain regions. However, the molecular mechanisms linking ferroptosis with MS have not been well-defined. The present study seeks to bridge this gap and investigate the impact of matrine (MAT), a herbal medicine with immunomodulatory capacities, on the regulation of oxidative stress and ferroptosis in the CNS of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CNS of EAE mice contained elevated levels of ferroptosis-related molecules, e.g., MDA, LPCAT3 and PTGS2, but decreased expression of antioxidant molecules, including GSH and SOD, GPX4 and SLC7A11. This pathogenic process was reversed by MAT treatment, together with significant reduction of disease severity and CNS inflammatory demyelination. Furthermore, the expression of PTGS2 and LOX was largely increased in microglia of EAE mice, accompanied with increased production of IL-6 and TNF-α, indicating a proinflammatory phenotype of microglia that undergo oxidative stress/ferroptosis, and their expression was significantly reduced after MAT treatment. Together, our results indicate that ferroptosis/inflammation plays an important role in the pathogenesis of CNS autoimmunity, and inhibiting ferroptosis-induced microglial activation/inflammation could be a novel mechanism underlying the therapeutic effects of MAT on CNS inflammatory demyelination in EAE.
Collapse
Affiliation(s)
- Furui Feng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenbin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengmeng Dou
- Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Silu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Jin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Zan GX, Wang XF, Yan SK, Qin YC, Yao LQ, Gao CQ, Yan HC, Zhou JY, Wang XQ. Matrine reduced intestinal stem cell damage in eimeria necatrix-infected chicks via blocking hyperactivation of Wnt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155363. [PMID: 38493715 DOI: 10.1016/j.phymed.2024.155363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 μM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/β-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/β-catenin signaling. The fact that Wnt/β-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/β-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.
Collapse
Affiliation(s)
- Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Shao-Kang Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Lang-Qun Yao
- Institute of Feed Research of Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China.
| |
Collapse
|
6
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
7
|
Xie KH, Liu XH, Jia J, Zhong X, Han RY, Tan RZ, Wang L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int Immunopharmacol 2022; 112:109247. [PMID: 36155281 DOI: 10.1016/j.intimp.2022.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-Heng Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Chen Q, Zhang K, Wang M, Gao R, Wang Q, Xiao M, Chen C. A translational mouse model for investigation of the mechanism of preterm diffuse white matter injury. Transl Pediatr 2022; 11:1074-1084. [PMID: 35957997 PMCID: PMC9360811 DOI: 10.21037/tp-22-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The increasing incidence of preterm birth has led to a global problem of adverse neurodevelopmental outcomes in preterm neonates as a result of brain injury. There is still a lack of models mimicking diffuse white matter injury (WMI) in preterm neonates that can be applied to transgenic mice. METHODS The right common carotid artery of the neonatal mouse was ligated on postnatal day 3 (P3) C57BL/6 mice and followed by 80, 90, or 100 min of hypoxia using a mixture of 10%±0.2% oxygen-nitrogen. The most suitable model was chosen by characterizing the effects of this hypoxic-ischemic insult on development of myelin, glial cell conditions, and neurological outcomes by hematoxylin-eosin (HE) staining performed at postnatal day 17 (P17), western blot measuring myelin basic protein (MBP) at postnatal day 10 (P10) and P17, immunofluorescence staining of MBP-neurofilament protein heavy chain (NFH), oligodendrocyte transcription factor-2 (Olig2)-adenomatous polyposis coli clone (CC1), glial fibrillary acidic protein (GFAP) and ionic calcium linker protein (Iba-1) at P17, electron microscopy observing myelin microstructure at postnatal day 52 (P52) and behavioral testing at postnatal day 45-50 (P45-P50). RESULTS The 90-min group showed neuroanatomical changes in the ipsilateral side of the brain, the 80-min group showed minor changes, and the 100-min group showed severe injury. Mice in the 90-min group subsequently showed marked activation of astrocytes, augmentation of microglia, a notable decrease in expression of MBP with a normal level of NFH, long-term cognitive dysfunction, and impairment of the myelin ultrastructure in adulthood. CONCLUSIONS In conclusion, a mouse model of preterm diffuse WMI rather than cystic periventricular leukomalacia was successfully achieved by ligating one of the common carotid arteries on P3 followed by 90 min of hypoxia in a mixture of 10%±0.2% oxygen-nitrogen. The attempt provides an adequate translational animal model for elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Qiufan Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Ke Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Minjie Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Ruiwei Gao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Qian Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|