1
|
Li X, Zhao C. Interleukin-6 in neuroimmunological disorders: Pathophysiology and therapeutic advances with satralizumab. Autoimmun Rev 2025; 24:103826. [PMID: 40324548 DOI: 10.1016/j.autrev.2025.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine produced by various cells of the innate and adaptive immune systems. It acts as a regulatory factor in immunity, inflammation, metabolism, and cellular function in multiple organs and systems. The functionality of IL-6 is achieved through multiple signal transduction pathways, such as the JAK/STAT and the NF-κB signaling pathways. In this review, we highlighted the inflammatory and non-inflammatory functions of IL-6, as well as the associated signaling pathways. The involvement of IL-6 in neuroimmunological disorders suggests that the interleukin-6 receptor (IL-6R) monoclonal antibody, satralizumab, is a potential therapeutic strategy. Phase III clinical trials have already validated the safety and efficiency of satralizumab in treating neuromyelitis optica spectrum disorders (NMOSD) and acetylcholine receptor (AChR) seropositive generalized myasthenia gravis (gMG). This review aims to elucidate the pathophysiological role of IL-6, and explore the clinical implications of satralizumab in neuroimmunological diseases, providing insights into its potential therapeutic applications.
Collapse
Affiliation(s)
- Xicheng Li
- Department of Neurology and Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), China
| | - Chongbo Zhao
- Department of Neurology and Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), China.
| |
Collapse
|
2
|
Sun C. Case report: Satralizumab therapy for bilateral refractory optic neuritis following the first dose of bivalent human papilloma virus vaccine. Front Immunol 2024; 15:1499045. [PMID: 39628490 PMCID: PMC11611897 DOI: 10.3389/fimmu.2024.1499045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Demyelinating optic neuritis (DON) is a rare but sight-threatening ophthalmic condition which occasionally occurs after human papilloma virus (HPV) vaccination. We herein report a case of previously healthy 13-year-old girl who developed a bilateral refractory DON three days after the first dose of bivalent HPV vaccine. The patient experienced bilateral severe visual loss three days after HPV vaccination, and her vision was quickly deteriorated to no light perception one day after the onset of DON. Ophthalmic examination revealed sluggish pupillary light reflex and swollen optic disc in both eyes, and an emergent orbital MRI examination revealed bilateral hyperintensity and enlargement of the intraorbital optic nerve with contrast enhancement. Serological tests for aquaporin-4 IgG antibody, myelin oligodendrocyte glycoprotein IgG antibody, and other common autoantibodies were all negative. The patient showed poor response to 10 days of intravenous methylprednisolone pulse therapy (500 mg, 250 mg, and 125 mg twice per day for 4, 4, and 2 days, respectively). Hence, three-dosed subcutaneous satralizumab was used in the acute stage of DON as an adjunct therapy. Her vision gradually improved after satralizumab therapy, and increased to 20/20 and 20/32 in the right and left eye at the 3-month follow-up. To the best of our knowledge, this is the first case report of satralizumab therapy in the AQP-4 Ab and MOG-Ab dual seronegative isolated DON. Our study indicates that satralizumab may be a safe and efficient adjunct therapy which can be used in the acute stage of the refractory DON poorly responding to steroid pulse therapy.
Collapse
|
3
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Rodin RE, Chitnis T. Soluble biomarkers for Neuromyelitis Optica Spectrum Disorders: a mini review. Front Neurol 2024; 15:1415535. [PMID: 38817544 PMCID: PMC11137173 DOI: 10.3389/fneur.2024.1415535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
The Neuromyelitis Optica Spectrum Disorders (NMOSD) constitute a spectrum of rare autoimmune diseases of the central nervous system characterized by episodes of transverse myelitis, optic neuritis, and other demyelinating attacks. Previously thought to be a subtype of multiple sclerosis, NMOSD is now known to be a distinct disease with unique pathophysiology, clinical course, and treatment options. Although there have been significant recent advances in the diagnosis and treatment of NMOSD, the field still lacks clinically validated biomarkers that can be used to stratify disease severity, monitor disease activity, and inform treatment decisions. Here we review many emerging NMOSD biomarkers including markers of cellular damage, neutrophil-to-lymphocyte ratio, complement, and cytokines, with a focus on how each biomarker can potentially be used for initial diagnosis, relapse surveillance, disability prediction, and treatment monitoring.
Collapse
Affiliation(s)
- Rachel E. Rodin
- Department of Neurology, Brigham MS Center, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tanuja Chitnis
- Department of Neurology, Brigham MS Center, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
6
|
Rechtman A, Zveik O, Haham N, Freidman-Korn T, Vaknin-Dembinsky A. Thyroid hormone dysfunction in MOGAD and other demyelinating diseases. J Neurol Sci 2024; 457:122866. [PMID: 38242048 DOI: 10.1016/j.jns.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Thyroid hormones play a critical role in both neuronal and glial cell functions. Multiple sclerosis (MS) has increased co-occurrence with autoimmune thyroid diseases, and recent studies have suggested a potential link between neuromyelitis optica spectrum disorder (NMOSD) and thyroid hormones. However, no previous studies have examined the relationship between thyroid hormones and myelin oligodendrocyte glycoprotein-associated demyelination (MOGAD). METHODS We investigated the role of thyroid hormones in central nervous system (CNS) autoimmune demyelinating diseases in 26 MOGAD patients, 52 NMOSD patients, 167 patients with MS, and 16 patients with other noninflammatory neurological disorders. Thyroid hormone levels and clinical data (Expanded Disability Status Scale [EDSS]) were analyzed. Volumetric brain information was determined in brain magnetic resonance imaging (MRI) using the MDbrain platform. RESULTS MOGAD patients had significantly higher levels of free triiodothyronine (FT3) compared to NMOSD patients. No correlation was found between FT3 levels and disease severity or brain volume. Thyroid-stimulating hormone (TSH) levels did not differ significantly between the groups, but in NMOSD patients, higher TSH levels were associated with lower disability scores and increased brain volume. No significant differences in free thyroxine (FT4) levels were observed between the different groups, however, FT4 levels were significantly higher in relapsing versus monophasic MOGAD patients and increased FT4 levels were associated with a higher EDSS and lower brain volume in NMOSD patients. CONCLUSION Our findings highlight the potential involvement of thyroid hormones specifically in MOGAD patients and other demyelinating CNS disorders. Understanding the role of thyroid hormones in relapsing vs monophasic MOGAD patients and in comparison to other demyelinating disorder could lead to the development of therapeutic interventions. Further studies are needed to explore the precise mechanisms and potential interventions targeting the thyroid axis as a treatment strategy.
Collapse
Affiliation(s)
- Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem. Jerusalem, Israel
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem. Jerusalem, Israel
| | - Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem. Jerusalem, Israel
| | - Tal Freidman-Korn
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem. Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem. Jerusalem, Israel.
| |
Collapse
|
7
|
Xu H, Jiang W, Li X, Jiang J, Afridi SK, Deng L, Li R, Luo E, Zhang Z, Huang YWA, Cui Y, So KF, Chen H, Qiu W, Tang C. hUC-MSCs-derived MFGE8 ameliorates locomotor dysfunction via inhibition of ITGB3/ NF-κB signaling in an NMO mouse model. NPJ Regen Med 2024; 9:4. [PMID: 38242900 PMCID: PMC10798960 DOI: 10.1038/s41536-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvβ3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.
Collapse
Affiliation(s)
- Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Jiaohua Jiang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Longhui Deng
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Ermei Luo
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Zhaoqing Zhang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship 15 Street, Providence, RI, 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kwok-Fai So
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
8
|
Li X, Wu W, Zeng Y, Wu W, Hou C, Zhu H, Liao Y, Tian Y, Chen Z, Peng B, Chen WX. Satralizumab as an add-on treatment in refractory pediatric AQP4-antibody-positive neuromyelitis optica spectrum disorder: a case report. Front Immunol 2023; 14:1257955. [PMID: 37915570 PMCID: PMC10616785 DOI: 10.3389/fimmu.2023.1257955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disease of the central nervous system. Relapse and incomplete recovery from relapse are common in NMOSD. Most patients with NMOSD have IgG to aquaporin-4 (AQP4-IgG). New biological agents for AQP4-IgG-seropositive NMOSD, such as satralizumab, have become available for maintenance therapy. Satralizumab is an anti-interleukin-6 receptor monoclonal antibody. To date, few studies have evaluated satralizumab as an add-on treatment in pediatric NMOSD patients. Here, we report an 11-year-old girl with NMOSD who frequently relapsed under long-term treatment, including oral prednisone, rituximab, mycophenolate mofetil (MMF), and maintenance intravenous immunoglobulin treatment even with B-cell depletion. For the poor treatment response and to improve the efficacy of relapse prevention further, the patient received satralizumab treatment as an add-on therapy to MMF plus oral prednisone, with a dose of 120 mg administered subcutaneously at weeks 0, 2, and 4 and every 4 weeks after that. After initiating satralizumab, the patient remained relapse-free for 14 months at the last follow-up. Satralizumab might be effective and safe as an add-on treatment in refractory pediatric AQP4-IgG-seropositive NMOSD under B-cell depletion.
Collapse
Affiliation(s)
- Xiaojing Li
- *Correspondence: Xiaojing Li, ; Wen-Xiong Chen,
| | | | | | | | | | | | | | | | | | | | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Poisson K, Moeller K, Fisher KS. Pediatric Neuromyelitis Optica Spectrum Disorder. Semin Pediatr Neurol 2023; 46:101051. [PMID: 37451749 DOI: 10.1016/j.spen.2023.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/02/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating disease with a high relapse rate and risk of disability accrual. The condition is an astrocytopathy, with antibodies to the aquaporin-4 (AQP4) water channel being detected in AQP4-IgG seropositive disease. Presentation is uncommon in the pediatric age range, accounting for about 3%-5% of cases. NMOSD is more prevalent in populations of Black or East Asian ancestry. Core clinical syndromes include optic neuritis, acute myelitis, area postrema syndrome, acute brainstem syndrome, acute diencephalic syndrome, and symptomatic cerebral syndrome. First-line treatment options in pediatrics include rituximab, azathioprine, and mycophenolate mofetil. Over half of children with AQP4-IgG seropositive NMOSD develop permanent disability, particularly in visual and motor domains. Novel therapeutic targets in the adult population have been developed and are changing the treatment landscape for this disorder.
Collapse
Affiliation(s)
- Kelsey Poisson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL; Department of Pediatrics, Division of Pediatric Neurology, Children's of Alabama, Birmingham, AL
| | - Karen Moeller
- Department of Radiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kristen S Fisher
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
10
|
Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int J Mol Sci 2023; 24:7960. [PMID: 37175665 PMCID: PMC10178921 DOI: 10.3390/ijms24097960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Moon-Jung Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
11
|
郑 雅, 蒋 莉. [Recent research on cytokines associated with anti-N-methyl-D-aspartate receptor encephalitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:321-327. [PMID: 36946170 PMCID: PMC10032080 DOI: 10.7499/j.issn.1008-8830.2211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune inflammatory disease of the central nervous system, and little is known about its immune mechanism at present. There is a lack of disease-related biomarkers in cerebrospinal fluid except anti-NMDAR antibody, which leads to delayed diagnosis and treatment in some patients. Therefore, there has been an increasing number of studies on related cytokines in recent years to assess whether they can be used as new biomarkers for evaluating disease conditions and assisting diagnosis and treatment. Current studies have shown that some cytokines may be associated with the progression of anti-NMDAR encephalitis, and this article reviews the research advances in such cytokines associated with anti-NMDAR encephalitis.
Collapse
|
12
|
Peng F, She H, Wang Y, Xu L, Shan Y, Chang Y, Zhong X, Li R, Qiu W, Shu Y, Tan S. Decreased kynurenine in cerebrospinal fluid and potential role in neuromyelitis optica spectrum disorder. J Neurochem 2023; 165:259-267. [PMID: 36718502 DOI: 10.1111/jnc.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Tryptophan (Trp) metabolism has been implicated in neuroinflammatory and neurodegenerative disorders, but its relationship with neuromyelitis optica spectrum disorder (NMOSD) is unclear. In this pilot study, cerebrospinal fluid (CSF) was prospectively collected from 26 NMOSD patients in relapse and 16 controls with noninflammatory diseases and 6 neurometabolites in the tryptophan metabolic pathway, including 5-hydroxytryptamine (5-HT), kynurenine (KYN), melatonin (MLT), 5-hydroxyindoleacetic acid (5HIAA), 3-hydroxy-o-aminobenzoic acid (3-HAA), and kynurenic acid (KYA), were measured by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The association of Trp metabolites with NMOSD and its clinical parameters was evaluated. The role of KYN, which is a Trp metabolite involved in the binding of NMOSD-IgG antibody to aquaporin 4 (AQP4), was also evaluated in vitro. CSF KYN was significantly decreased in patients with relapsing NMOSD compared to controls, and CSF KYN was associated with CSF white blood cells in NMOSD. In vitro experiments showed that NMOSD-IgG specifically recognized KYN, which reversed the NMOSD-IgG-induced downregulation of AQP4 expression. Our results show that abnormal Trp metabolism occurs in NMOSD and that KYN might be a potential target for the treatment of AQP4-IgG-positive NMOSD patients.
Collapse
Affiliation(s)
- Fuhua Peng
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongda She
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Xu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Zhong
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Bauer A, Rudzki D, Berek K, Dinoto A, Lechner C, Wendel EM, Hegen H, Deisenhammer F, Berger T, Höftberger R, Rostasy K, Mariotto S, Reindl M. Increased peripheral inflammatory responses in myelin oligodendrocyte glycoprotein associated disease and aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Front Immunol 2022; 13:1037812. [PMID: 36451827 PMCID: PMC9703059 DOI: 10.3389/fimmu.2022.1037812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 09/30/2023] Open
Abstract
Autoantibody-associated demyelinating diseases of the central nervous system such as myelin oligodendrocyte glycoprotein-antibody associated disease (MOGAD) and aquaporin 4-antibody positive neuromyelitis optica spectrum disorders (AQP4+ NMOSD) are rare diseases but can cause severe disability. In both diseases, associated neuroinflammation is accompanied by blood and cerebrospinal fluid cytokine and chemokine signatures, which were shown to be distinct from those observed in patients with multiple sclerosis (MS). In this study, we aimed to confirm and extend these findings by analyzing a larger number of serum cytokines, chemokines and related molecules in patients with MOGAD or AQP4+ NMOSD in comparison to MS, to better understand the pathophysiology and to identify biomarkers potentially useful in clinical practice for diagnostic and treatment purposes. A total of 65 serum cytokines, chemokines and related molecules like growth factors and soluble receptors were measured by Procartaplex multiplex immunoassays in 40 MOGAD, 40 AQP4+ NMOSD and 54 MS patients at baseline. Furthermore, follow-up samples of 25 AQP4+ NMOSD and 40 MOGAD patients were measured after 6-12 months. Selected analytes were validated in a subgroup of samples using other bead-based assays and ELISA. At baseline, 36 analytes in MOGAD and 30 in AQP4+ NMOSD were significantly increased compared to MS. K-means cluster analysis of all significantly altered molecules revealed three distinct groups: Cluster I, including 12 MOGAD, 2 AQP4+ NMOSD and 3 MS patients, had a specific association with 11 IL-6/IL-17A associated cytokines. In this cluster, 9/17 (53%) patients were children. Cluster II with 13 MOGAD, 24 AQP4+ NMOSD and 1 MS patient was associated with 31 upregulated analytes. Cluster III contained 15 MOGAD, 14 AQP4+ NMOSD and 50 MS patients. In cluster II and III the majority were adults (82% and 92%). Most measured analytes remained stable over time. Validation of selected cytokines and chemokines using other analytical methods revealed moderate to high correlation coefficients, but absolute values differed between assays. In conclusion, these results obtained by bead-based multiplex assays highlight a significant association of biomarkers of peripheral inflammation in patients with antibody-associated demyelinating diseases in comparison with MS.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Dagmar Rudzki
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Klaus Berek
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Lechner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva-Maria Wendel
- Department of Neuropediatrics, Olgahospital/Klinikum Stuttgart, Stuttgart, Germany
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Deisenhammer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kevin Rostasy
- Paediatric Neurology, Witten/Herdecke University, Children’s Hospital Datteln, Datteln, Germany
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|