1
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
2
|
Rajpoot A, Yadav K, Yadav A, Mishra RK. Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signaling. J Ayurveda Integr Med 2024; 15:100930. [PMID: 39121783 PMCID: PMC11362644 DOI: 10.1016/j.jaim.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Medications, including chemotherapeutic drugs, contribute to male infertility as external factors by inducing oxidative stress in testicular cells. Shilajit is a naturally occurring bioactive antioxidant used in Ayurvedic medicine to treat a variety of ailments. OBJECTIVE This study examines the potential of Shilajit to counteract the negative effects of the chemotherapeutic drug cyclophosphamide (CPA) on testicular germ cell dynamics. MATERIAL AND METHODS Male Parkes mice received single intraperitoneal CPA injection (200 mg/kg BW) on day one, followed by daily supplementation of Shilajit (100 and 200 mg/kg BW) for one spermatogenic cycle. RESULTS CPA adversely affected testicular germ cell dynamics by inhibiting the conversion of spermatogonia-to-spermatids, altering testicular histoarchitecture, impairing Sertoli cell function and testicular steroidogenesis, and disturbing the testicular oxido-apoptotic balance. Shilajit supplementation restores testicular germ cell dynamics in CPA-exposed mice, as evidenced by improved histoarchitecture of the testis. Shilajit improves testicular daily production and sperm quality by promoting the conversion of spermatogonia (2C) into spermatids (1C), stimulating germ cell proliferation (PCNA), improving Sertoli cell function (N-Cadherin and β-Catenin), and maintaining the Bax/Bcl2 ratio. Additionally, Shilajit enhances testosterone biosynthesis by activating enzymes like 3β-HSD, and 17β-HSD. Shilajit also reduces testicular oxidative stress by increasing antioxidant enzyme activity (SOD) and decreasing lipid peroxidation (LPO). These effects are mediated by upregulation of the antioxidant protein Nrf-2 and downregulation of Keap-1. CONCLUSION The findings underscore the potent androgenic and antioxidant characteristics of Shilajit, as well as its ability to enhance fertility in cases of testicular damage caused by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Arti Rajpoot
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kiran Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Alkylating agents-induced gonadotoxicity in prepubertal males: Insights on the clinical and preclinical front. Clin Transl Sci 2024; 17:e13866. [PMID: 38965809 PMCID: PMC11224131 DOI: 10.1111/cts.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Rising cure rates in pediatric cancer patients warrants an increased attention toward the long-term consequences of the diagnosis and treatment in survivors. Chemotherapeutic agents can be gonadotoxic, rendering them at risk for infertility post-survival. While semen cryopreservation is an option that can be provided for most (post)pubertal boys before treatment, this is unfortunately not an option prepubertal in age, simply due to the lack of spermatogenesis. Over the last couple of years, studies have thus focused on better understanding the testis niche in response to various chemotherapeutic agents that are commonly administered and their direct and indirect impact on the germ cell populations. These are generally compounds that have a high risk of infertility and have been classified into risk categories in curated fertility guidelines. However, with it comes the lack of evidence and the challenge of using informative models and conditions most reflective of the physiological scenario, in short, the appropriate study designs for clinically relevant outcomes. Besides, the exact mechanism(s) of action for many of these "risk" compounds as well as other agents is unclear. Understanding their behavior and effect on the testis niche will pave the way for incorporating new strategies to ultimately combat infertility. Of the various drug classes, alkylating agents pose the highest risk of gonadotoxicity as per previously established studies as well as risk stratification guidelines. Therefore, this review will summarize the findings in the field of male fertility concerning gonadotoxicity of akylating agents as a result of chemotherapy exposure.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | | |
Collapse
|
4
|
AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem Toxicol 2024; 184:114436. [PMID: 38211767 DOI: 10.1016/j.fct.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Cyclophosphamide (CP) is broadly used to kill various tumor cells; however, its repeated uses have been reported to cause reproductive dysfunction and infertility. Natural flavonoid, rutin (RUT), possesses strong antioxidant and antiapoptotic activity that is attributed to ameliorate the reproductive dysfunction induced by CP. Many previous studies proved that the formulation of flavonoids in nanoemulsion has a promising perspective in mitigating the side effects of chemotherapy. Therefore, the main objective of this study was to investigate the ameliorative effects of RUT and RUT-loaded chitosan nanoparticles (RUT-CH NPs) against CP-induced reproductive dysfunction in male rats. For this aim, thirty-six male albino rats were randomly allocated into six groups as follows: control, RUT, RUT-CH NPs, CP, CP + RUT, and CP + RUT-CH NPs. In the CP groups, a single intraperitoneal injection of CP (150 mg/kg bwt) was administered on the first day of the experiment. RUT and RUT-CH NPs were orally administered either alone or with CP injection at a dose of 10 mg/kg bwt per day for 60 days. The results revealed that CP administration caused significant testicular oxidative stress damage through increasing the nitric oxide and malondialdehyde levels as well as decreasing the total antioxidant capacity and reduced glutathione contents. It also impaired spermatogenesis and steroidogenesis via altering the transcription levels of CYP11A1, HSD-3b, StAR, Bax, bcl-2, and Nrf-2 genes. Otherwise, the oral intake of either RUT or RUT-CH NPs with CP injection effectively attenuated these alterations and significantly improved the microscopic appearance of testicular tissue. In conclusion, this study highlights the potential of RUT either free or NPs in mitigating CP-induced testicular dysfunction via its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dina A AbdElrazek
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - H I Abass
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Huang L, Liu Z, Wang J, Fu J, Jia Y, Ji L, Wang T. Bioactivity and health effects of garlic essential oil: A review. Food Sci Nutr 2023; 11:2450-2470. [PMID: 37324866 PMCID: PMC10261769 DOI: 10.1002/fsn3.3253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Garlic (Allium sativum L.), the underground bulb of the Allium plant in the family Liliaceae, is a common and popular spice that has historically been used to prevent and treat many different diseases such as pain, deafness, diarrhea, tumors, and other healthy problems. Garlic essential oil contains a variety of organosulfur compounds, such as the most representative diallyl disulfides (DADS) and diallyl trisulfides (DATS), which have attracted great interest in medicine, food, and agriculture because of their rich biological activities. This paper reviews the research progress on the composition and bioactivities of garlic essential oil mixtures and the bioactivity of some typical monomeric sulfides in garlic essential oil. The active mechanisms of representative sulfides in garlic essential oil were analyzed, and the applications of garlic essential oil in functional food, food additives, and clinical treatment were discussed. Combined with the current research status, the limitations and development direction of garlic essential oil in the study of molecular mechanism were discussed, which is of great significance to the development of garlic essential oil as a natural and safe alternative medicine for treatment.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Zhenxin Liu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jing Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jiaolong Fu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Yonglu Jia
- Department of Stomotology, Suzhou Kowloon HospitalShanghai Jiaotong University School of MedicineSuzhouChina
| | - Lilian Ji
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Taoyun Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| |
Collapse
|
6
|
Ghareghomi S, Moosavi-Movahedi F, Saso L, Habibi-Rezaei M, Khatibi A, Hong J, Moosavi-Movahedi AA. Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants (Basel) 2023; 12:antiox12030735. [PMID: 36978983 PMCID: PMC10044870 DOI: 10.3390/antiox12030735] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Faezeh Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran;
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| |
Collapse
|
7
|
Khamis T, Hegazy AA, El-Fatah SSA, Abdelfattah ER, Abdelfattah MMM, Fericean LM, Arisha AH. Hesperidin Mitigates Cyclophosphamide-Induced Testicular Dysfunction via Altering the Hypothalamic Pituitary Gonadal Axis and Testicular Steroidogenesis, Inflammation, and Apoptosis in Male Rats. Pharmaceuticals (Basel) 2023; 16:301. [PMID: 37259444 PMCID: PMC9966503 DOI: 10.3390/ph16020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclophosphamide (CP) is a cytotoxic, cell cycle, non-specific, and antiproliferative drug. This study aimed to address the toxic effects of CP on male fertility and the possible ameliorative role of hesperidin (HSP). Thirty-two adult albino rats were randomly divided into four groups, namely, the negative control, HSP, CP-treated, and CP+HSP-treated groups. The CP-treated rats showed a significant reduction in the levels of serum LH, FSH, testosterone, prolactin, testicular glutathione peroxidase (GPx), and total antioxidant capacity (TAC) with an elevation in levels of malondialdehyde (MDA), and p53, and iNOS immune expression, compared to the control group. A significant downregulation in hypothalamic KISS-1, KISS-1r, and GnRH, hypophyseal GnRHr, and testicular mRNA expression of steroidogenesis enzymes, PGC-1α, PPAR-1, IL10, and GLP-1, as well as a significant upregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP-treated group in comparison to that in the control group. The administration of HSP in CP-treated rats significantly improved the levels of serum LH, FSH, testosterone, prolactin, testicular GPx, and TAC, with a reduction in levels of MDA, and p53, and iNOS immune expression compared to the CP-treated group. A significant upregulation in hypophyseal GnRHr, and testicular mRNA expression of CYP19A1 enzymes, PPAR-1, IL10, and GLP-1, as well as a significant downregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP+HSP-treated group in comparison to that in the CP-treated group. In conclusion, HSP could be a potential auxiliary agent for protection from the development of male infertility.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelmonem Awad Hegazy
- Anatomy and Embryology, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ramadan Abdelfattah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Evaluation of Expression of Cytochrome P450 Aromatase and Inflammatory, Oxidative, and Apoptotic Markers in Testicular Tissue of Obese Rats (Pre)Treated with Garlic Powder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4858274. [PMID: 36644444 PMCID: PMC9833927 DOI: 10.1155/2023/4858274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Today, adolescent obesity is recognized as an epidemic and a cause of reproductive disorders. Decreased testosterone levels occur due to functional defects in the hypothalamus-pituitary axis, excessive activity of cytochrome P450 aromatase enzyme, and testicular dysfunction in these people. Oxidative damage, inflammation, and apoptosis are also the main mechanisms of testicular damage during obesity. The use of herbal products such as garlic can improve this disorder due to its anti-inflammatory and antioxidant properties. Therefore, the aim of this study is to investigate the effect of pretreatment and treatment of garlic powder on the expression of cytochrome P450 aromatase enzyme and the expression of genes involved in testosterone synthesis, inflammation, oxidative damage, apoptosis in testicular tissue, and metabolic function of liver tissue in young male obese rats. Eighty male Wistar rats were divided into the controlled and treated groups. Serum levels of lipid, glucose, and insulin as metabolic factors were measured along with the testicular antioxidant and inflammation markers. The expression of Bcl2, Bax, and caspase-3 along with NF-κB, SREBP-1c, CPT-1beta, Nrf-2, CD36, FAS, CYP19A1, P450scc, StAR, 17βHSD, PPARα, and aromatase (CYP19, P450arom) was also measured. Testicular histological evaluation and spermatogenic process was also performed. The results showed that oxidative, inflammatory, and metabolic factors significantly increased in obese rats. The testicular expression of aromatase, NF-κB, Bax, and caspase 3 increased and Nrf2 expression decreased in obese rats, while (pre) treatment with garlic powder significantly decreased the expression of these genes in obese rats. These results were also confirmed by the findings of the histological evaluation and sperm analysis. It can be concluded that garlic powder could improve reproductive dysfunction in obese rats.
Collapse
|
9
|
Impact of Co-Administration of N-Acetylcysteine and Vitamin E on Cyclophosphamide-Induced Ovarian Toxicity in Female Rats. J Toxicol 2022; 2022:9073405. [PMID: 36051383 PMCID: PMC9427260 DOI: 10.1155/2022/9073405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclophosphamide is used to treat various types of cancer. However, it can reduce ovarian function and fertility rate. The current study was done to compare the effects of N-acetylcysteine and vitamin E on cyclophosphamide-induced ovarian damage. Thirty-five rats were randomly divided into 5 groups: control (C), cyclophosphamide (CP, 200 mg/kg single dose intraperitoneally), T1 (cyclophosphamide + vitamin E at 200 mg/kg), T2 (cyclophosphamide + 200 mg/kg N-acetylcysteine), and T3 (cyclophosphamide + N-acetylcysteine and vitamin E at 200 mg/kg). The main measurements included total antioxidant capacity (TAC), glutathione peroxidase (GPx), malondialdehyde (MDA), interleukin 8 (IL-8), tumor necrosis factor-α (TNFα), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estrogen (ES). Except for the C and T3 groups, the other groups lost weight. A significantly lower concentration of MDA was observed in the T3 group. However, TAC was substantially increased compared to the other groups. The level of GPx in the S group was significantly reduced compared to all groups. Proinflammatory markers (IL-8 and TNFα) reached their lowest serum level in the T3 group, with a statistically significant difference compared to that of the S group. In addition, there were no significant differences in the means of primary, secondary, and graph and atretic follicles between the T3 and C group. On the other hand, a decrease in FSH and LH was observed while an increase in ES was seen in the T3 group compared to the S group. This study revealed that N-acetylcysteine and vitamin E coadministration could significantly decrease the side effects of cyclophosphamide, especially in ovarian tissue.
Collapse
|
10
|
Wang Y, Zou Z, Jaisi A, Olatunji OJ. Unravelling the Protective Effects of Emodin Against Cyclophosphamide Induced Gonadotoxicity in Male Wistar Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4403-4411. [PMID: 34703213 PMCID: PMC8541740 DOI: 10.2147/dddt.s333383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Background Over the past few decades, cyclophosphamide (CP) has been extensively used as a broad-spectrum alkylating agent for the treatment of various cancers and solid tumors. However, the therapeutic actions on CP are not limited to only cancer cells, as it simultaneously exerts significant toxicities on healthy cells through the instigation of oxidative stress and oxidative damages. CP induced testicular toxicity is associated with impaired spermatogenesis, reduced sperm functionality, reproductive hormone and testicular weight. This study was aimed at unravelling the protective effects of emodin (EMD) on testicular toxicity following CP treatment. Methods Twenty-four male Wistar rats were allotted into 4 groups as normal control group (NCG), CP control group (CPCG), EMD25+CP (25 mg/kg in 5% tween 80) and EMD50+CP groups (50 mg/kg in 5% tween 80). EMD was orally administered for 35 consecutive days, while four doses of CP (100 mg/kg/week) were administered intraperitoneally from the second to fifth week of treatment. Thereafter, the animals were sacrificed and histopathological examination of the testes as well as serum/testicular biochemical assays were conducted. Results The results revealed that CP significantly impeded sperm function parameters including sperm count, viability and motility as well as decreased reproductive hormones (testosterone, LH and FSH) levels. In addition, CP enhanced testicular oxidative stress and proinflammatory markers (MDA, IL-6 and TNF-α), while simultaneously decreasing testicular antioxidant enzymes (GSH, GPx, SOD and CAT). Evidence of marked histopathological alterations was also observed in the H&E stained testicular tissues of CP treated rats. EMD significantly prevented these CP induced negative effects. Conclusion This study provides a basis for the potential use of EMD in counteracting chemotherapy induced testicular toxicity. The results further suggest that EMD testicular protective effects in CP-treated rats may be mediated through its modulatory role on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yinhua Wang
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhaoling Zou
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
11
|
Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed Pharmacother 2021; 142:112040. [PMID: 34416630 DOI: 10.1016/j.biopha.2021.112040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.
Collapse
|
12
|
Rezaei S, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Mirzaei M, Talebpour Amiri F. Protective effects of sinapic acid against cyclophosphamide-induced testicular toxicity via inhibiting oxidative stress, caspase-3 and NF-kB activity in BALB/c mice. Andrologia 2021; 53:e14196. [PMID: 34333791 DOI: 10.1111/and.14196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Cyclophosphamide (CP), as a chemotherapeutic agent, with the generation of oxidative stress leads to testicular toxicity. Sinapic acid (SA), as a phenylpropanoid compound has therapeutic activities. This research was planned to evaluate the improving effects of SA versus testicular injury induced by CP. Forty-eight mice were distributed into six groups: untreated, SA (5 and 10 mg/kg), CP (200 mg/kg) and CP + SA (5 and 10 mg/kg). SA was administrated for 7 successive days and CP was administered intraperitoneally on the 3rd day of study. On the 10th day of research, testicular toxicity was evaluated by sperm parameters test, tissue (oxidative stress parameters) and serum (testosterone) biochemical, histopathological, and immunohistochemical (Caspase-3 and NF-kB) assays. The findings illustrated that CP induces atypical appearance in tissue structure, disorder of sperm parameters dysfunction, decrease of testosterone, oxidative stress (an increase of MDA and decrease of GSH), apoptosis and inflammation in testicular tissue. SA administration protected testis from oxidative stress and improves testosterone level and structure. Moreover, immunohistochemical findings also showed that SA can inhibit Caspase-3 and NF-kB activity. Data have confirmed that SA could protect testis structure and its functions against CP-induced injury through antioxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Shiva Rezaei
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzaei
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Shukry M, Alotaibi SS, Albogami SM, Fathallah N, Farrag F, Dawood MAO, Gewaily MS. Garlic Alleviates the Injurious Impact of Cyclosporine-A in Male Rats through Modulation of Fibrogenic and Steroidogenic Genes. Animals (Basel) 2020; 11:E64. [PMID: 33396300 PMCID: PMC7824053 DOI: 10.3390/ani11010064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022] Open
Abstract
This work aimed to study the hepato-testicular protective effect of garlic in rats treated with cyclosporine A (CsA). Forty male Westar albino rats were randomly distributed in five groups (8 rats each): control, olive oil, garlic, CsA, and CsA co-treated with garlic. CsA induced an upsurge in the alanine transaminase, aspartate transaminase, and alkaline phosphatase levels and decreased albumin and total protein levels, expression of superoxide dismutase (SOD) gene, serum testosterone, triiodothyronine, and thyroxine levels compared to the control group. Additionally, there was an increase in the cholesterol, triglyceride, and low-density lipoprotein levels and a substantial reduction in the high-density lipoprotein levels compared to the control groups. Histopathological investigation of the liver showed abnormalities like hepatic cell degeneration, congestion of blood vessels, and highly active Kupffer cells in the CsA group. Histopathological examination of testes showed damaged seminiferous tubules, stoppage of the maturation of spermatogonia, and the presence of cells with irregular dense nuclei in the lumina of some tubules. For the groups treated with garlic, mitigation of the damage caused by CsA in the liver and testes, liver function tests, lipid profiles, and hormones was seen along with improved gene expression of SOD and steroidogenesis genes, and decreased gene expression of collagen I-α1 and transforming growth factor-1β. Conclusively, garlic had a positive impact on CsA-induced hepatic and sperm toxicity. It is recommended that garlic should be supplemented in transplant treatments using CsA to alleviate the cyclosporin-induced oxidative injuries and other harmful effects.
Collapse
Affiliation(s)
- Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.S.A.); (S.M.A.)
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.S.A.); (S.M.A.)
| | - Nora Fathallah
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.F.); (M.S.G.)
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.F.); (M.S.G.)
| |
Collapse
|
14
|
Famurewa AC, Edeogu CO, Offor FI, Besong EE, Akunna GG, Maduagwuna EK. Downregulation of redox imbalance and iNOS/NF-ĸB/caspase-3 signalling with zinc supplementation prevents urotoxicity of cyclophosphamide-induced hemorrhagic cystitis in rats. Life Sci 2020; 266:118913. [PMID: 33333050 DOI: 10.1016/j.lfs.2020.118913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
AIM Cyclophosphamide (CYP) chemotherapy induces bladder toxicity and hemorrhagic cystitis in cancer patients constituting a current clinical concern. Oxidative inflammatory cascades have been implicated as the mechanism contributing to CYP bladder urotoxicity. We thus assayed to explore whether zinc (Zn) supplementation could mitigate CYP-induced urotoxicity and evaluate the possible underlying mechanism in rats. MAIN METHOD Rats were orally administered Zn (100 mg/kg b.w./day) for 10 days against urotoxicity induced by single injection of CYP (150 mg/kg b.w., ip) on day 7. KEY FINDINGS CYP significantly depressed bladder activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) levels, whereas malondialdehyde level was increased prominently. In addition, CYP induced marked increases in the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO) confirmed by histological alterations. CYP prominently increased bladder inducible nitric oxide synthase (iNOS) activity, nuclear factor-kappa B (NF-ĸB) and expression of caspase-3 protein. Zinc supplementation considerably abrogated the bladder urotoxicity by restoring redox balance, proinflammatory and apoptotic cascades and alleviated histopathological changes. SIGNIFICANCE This is the first to reveal zinc potential to prevent CYP-induced urotoxic hemorrhagic cystitis via restoring redox balance and enhancing anti-inflammatory and antiapoptotic mechanisms in rat bladder.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - C O Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Florence I Offor
- Department of Medical Laboratory Sciences, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Elizabeth E Besong
- Department of Physiology, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Gabriel G Akunna
- Department of Anatomy, College of Medicine and Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | | |
Collapse
|
15
|
Influence of Dietary Garlic ( Allium sativum) and/or Ascorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass ( Lates calcarifer). Animals (Basel) 2020; 10:ani10122396. [PMID: 33333762 PMCID: PMC7765223 DOI: 10.3390/ani10122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Ascorbic acid and garlic have been used in several studies as enhancers or promoters of growth performance and health conditions in mammalian species. However, few studies have been performed in fish. In this regard, this study aimed to evaluate the effects of garlic and/or ascorbic acid on growth performance, feed utilization, chemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. The results demonstrated that dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet). Abstract The current study investigated effects of garlic (Allium sativum) and/or ascorbic acid on growth performance, feed utilization, biochemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. A total of 600 fish (43.14 ± 0.23 g body weight) were divided into four groups. Fish in the first group were fed basal diet and served as a control group. Fish in groups 2, 3 and 4 were fed a basal diet mixed with garlic (40 g/kg diet), ascorbic acid (1.5 g/kg diet), or garlic (20 g/kg diet)/ascorbic acid (0.75 g/kg diet) mixture, respectively, for 12 weeks. A significant (p < 0.05) increase was observed in growth performance, feed utilization, and chemical body composition in fish fed garlic alone in comparison with the control and other treated groups. All hematological indices, biochemical parameters, and survival rate were not changed significantly (p > 0.05) in all groups throughout the experimental period when compared with the control. Total cholesterol and feed conversion ratio were significantly (p < 0.05) decreased in fish fed garlic alone in comparison to the control and other treated groups. Conclusively, dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving most of the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet).
Collapse
|
16
|
Famurewa AC, Ekeleme-Egedigwe CA, Onwe CS, Egedigwe UO, Okoro CO, Egedigwe UJ, Asogwa NT. Ginger juice prevents cisplatin-induced oxidative stress, endocrine imbalance and NO/iNOS/NF-κB signalling via modulating testicular redox-inflammatory mechanism in rats. Andrologia 2020; 52:e13786. [PMID: 32777091 DOI: 10.1111/and.13786] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
The off-target testicular toxicity of the anticancer drug, cisplatin, is a current clinical concern and worrisome to male cancer patients. Growing evidence has implicated oxidative stress and inflammation in cisplatin toxicity. We have explored whether fresh ginger juice could mitigate testicular toxicity induced by anticancer drug cisplatin in rats. Rats were subjected to oral administration of fresh ginger juice (5 ml/kg body weight/day) for 5 days against testicular damage induced by single ip injection of cisplatin (CIS) (10 mg/kg body weight) on day 2 only. Testicular activities of antioxidant enzymes, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), inflammatory cytokines, inducible nitric oxide synthase (iNOS) and nuclear factor-ĸB (NF-ĸB) and serum hormone levels were estimated. CIS-induced prominent decreases in antioxidant enzyme activities, GSH and serum hormone levels, whereas levels of MDA, cytokines, NO, iNOS and NF-ĸB increased remarkably (p < .05) compared to control. Interestingly, the CIS-induced testicular alterations were considerably mitigated by the fresh ginger juice via abrogation of oxidative stress and anti-inflammatory mechanism. The study suggests, for the first time, antioxidant and anti-inflammatory effects of ginger juice against CIS testicular damage. Fresh ginger juice may have beneficial health impact on testicular side effect of CIS chemotherapy.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Chima A Ekeleme-Egedigwe
- Department of Chemistry/Biochemistry and Molecular Biology, Faculty of Science, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Chikodili S Onwe
- Department of Applied Biology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Uchenna O Egedigwe
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Chukwuemeka O Okoro
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Akakaliki, Nigeria
| | - Ugochukwu J Egedigwe
- Department of Haematology, University of Abuja Teaching Hospital, Abuja, Nigeria
| | | |
Collapse
|
17
|
Chemoprotective effects of inositol hexaphosphate against cyclophosphamide-induced testicular damage in rats. Sci Rep 2020; 10:12599. [PMID: 32724173 PMCID: PMC7387554 DOI: 10.1038/s41598-020-68608-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022] Open
Abstract
Cyclophosphamide (CP) is commonly used as an anticancer agent but has been associated with high toxicity in several animal organs, including the testes. Inositol hexaphosphate (IP6) is a polyphosphorylated carbohydrate that is present in foods with high fibre contents and has a wide range of essential physiological and pathological activities. Thus, we estimated the defensive effects of IP6 against CP-related testicular toxicity in rats. Sperm counts, motilities, viabilities and abnormalities and levels of testosterone, luteinising hormone and follicle-stimulating hormone were evaluated. Testicle specimens were also processed for histological and biochemical analyses, including determinations of malondialdehyde, nitric oxide, total antioxidant capacity, alkaline phosphatase, acid phosphatase, gamma glutamyl transferase, ß-glucuronidase, c-reactive protein, monocyte chemoattractant protein and leukotriene-4 and in comet assays. CP treatments were associated with deleterious histopathological, biochemical and genetic changes in rat testicles, and these were ameliorated by IP6 supplements in drinking water.
Collapse
|
18
|
Wen J, Ma L, Xu Y, Wu J, Yu Y, Peng J, Tang D, Zou B, Li L. Effects of probiotic litchi juice on immunomodulatory function and gut microbiota in mice. Food Res Int 2020; 137:109433. [PMID: 33233115 DOI: 10.1016/j.foodres.2020.109433] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Development new functional foods containing probiotics had gained much attention during the past two decades. In this study, probiotic litchi juice was developed, and its effects on immunomodulatory function and gut microbiota were evaluated. Firstly, the litchi juice was fermented with Lactobacillus casei, which increased total phenolic, total flavone, and exopolysaccharide contents of the litchi juice. Hence, the immunomodulatory influence of fermented litchi juice (FL) was investigated in cyclophosphamide-induced mice. The results showed that FL enhanced immune organs indexes (spleen, thymus) and antioxidant capacity, improved the secretions of cytokines (IL-2, IL-6) and immunoglobulins (IgA, IgG, SIgA), and protected the intestinal tract. Finally, the effect of FL on gut microbiota was analyzed by high-throughput sequencing analysis. The changes in the relative abundance of dominant microbe were investigated at phylum and genus levels, respectively. After treatment with FL, the relative abundance of Firmicutes phylum was dramatically increased, as well as the genera of Faecalibaculum, Lactobacillus, and Akkermansia. These findings indicated that probiotic litchi juice could alleviate immune dysfunction and modify gut microbiota structure of mice, which provide a potential functional food to improve the host health.
Collapse
Affiliation(s)
- Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lan Ma
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jian Peng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Daobang Tang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|