1
|
Nguyen KN, Tran VK, Nguyen NL, Can TBN, Dang TKG, Nguyen TH, Do TTM, Phuong LT, Tran TH, Ta TV, Tu NH, Vu CD. Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome in Vietnamese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1877. [PMID: 39597062 PMCID: PMC11596723 DOI: 10.3390/medicina60111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH; OMIM 238970) is one of the rare urea cycle disorders. Ornithine carrier 1 deficiency causes HHH syndrome, characterized by failure of mitochondrial ornithine uptake, hyperammonemia, and accumulation of ornithine and lysine in the cytoplasm. The initial presentation and time of diagnosis in HHH highly varies. Genetic analysis is critical for diagnosis. Materials and Methods: This study encompassed retrospective and prospective analyses of four unrelated Vietnamese children diagnosed with HHH syndrome. Results: The age of diagnosis ranged from 10 days to 46 months. All four cases demonstrated hyperornithinemia and prolonged prothrombin time. Three out of four cases presented with hyperammonemia, elevated transaminases, and uraciluria. No homocitrulline was detected in the urine. Only one case depicted oroticaciduria. Genetic analyses revealed three pathogenic variants in the SLC25A15 gene, with the c.535C>T (p.Arg179*) variant common in Vietnamese patients. The c.562_564del (p.Phe188del) and c.408del (p.Met137Cysfs*10) variants were detected in one case. The latter variant has yet to be reported in the literature on HHH patients. After intervention with a protein-restricted diet, ammonia-reducing therapy, and L-carnitine supplementation, hyperammonemia was not observed, and liver enzyme levels returned to normal. Conclusions: Our results highlighted the clinical and biochemical heterogeneity of HHH syndrome and posed that HHH syndrome should be considered when individuals have hyperammonemia, elevated transaminase, and decreased prothrombin time.
Collapse
Affiliation(s)
- Khanh Ngoc Nguyen
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
- Department of Paediatrics, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam
| | - Van Khanh Tran
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (V.K.T.); (N.L.N.); (L.T.P.)
| | - Ngoc Lan Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (V.K.T.); (N.L.N.); (L.T.P.)
| | - Thi Bich Ngoc Can
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
| | - Thi Kim Giang Dang
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
| | - Thu Ha Nguyen
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
| | - Thi Thanh Mai Do
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
| | - Le Thi Phuong
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (V.K.T.); (N.L.N.); (L.T.P.)
| | - Thinh Huy Tran
- Biochemistry Department, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (T.H.T.); (T.V.T.)
| | - Thanh Van Ta
- Biochemistry Department, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (T.H.T.); (T.V.T.)
| | - Nguyen Huu Tu
- Hanoi Medical Univerity Hospital, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam;
| | - Chi Dung Vu
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam; (K.N.N.); (T.B.N.C.); (T.K.G.D.); (T.H.N.); (T.T.M.D.)
- Department of Paediatrics, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam
| |
Collapse
|
2
|
Rizkallah D, Daher RT, Haddad L, Karam PE. Hyperornithinemia-hyperammonemia-homocitrullinuria: a rare neurometabolic disorder in two siblings. Metab Brain Dis 2024; 39:909-913. [PMID: 38833093 DOI: 10.1007/s11011-024-01366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is an extremely rare disorder of urea cycle, with few patients reported worldwide. Despite hyperammonemia control, the long-term outcome remains poor with progressive neurological deterioration. We report the clinical, biochemical, and molecular features of two Lebanese siblings diagnosed with this disorder and followed for 8 and 15 years, respectively. Variable clinical manifestations and neurological outcome were observed. The patient with earlier onset of symptoms had a severe neurological deterioration while the other developed a milder form of the disease at an older age. Diagnosis was challenging in the absence of the complete biochemical triad and the non-specific clinical presentations. Whole exome sequencing revealed a homozygous variant, p.Phe188del, in the SLC25A15 gene, a French- Canadian founder mutation previously unreported in Arab patients. Hyperammonemia was controlled in both patients but hyperonithinemia persisted. Frequent hyperalaninemia spikes and lactic acidosis occured concomitantly with the onset of seizures in one of the siblings. Variable neurological deterioration and outcome were observed within the same family. This is the first report from the Arab population of the long-term outcome of this devastating neurometabolic disorder.
Collapse
Affiliation(s)
- Diane Rizkallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rose T Daher
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laith Haddad
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
3
|
Dweikat I, Khalaf-Nazzal R. Clinical heterogeneity of hyperornithinemia-hyperammonemia-homocitrullinuria syndrome in thirteen palestinian patients and report of a novel variant in the SLC25A15 gene. Front Genet 2022; 13:1004598. [PMID: 36506307 PMCID: PMC9730883 DOI: 10.3389/fgene.2022.1004598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, is a rare autosomal recessive disorder characterized by impaired ornithine transport across the inner mitochondrial membrane. HHH is caused by biallelic disease-causing variants in the SLC25A15 gene. The clinical presentation of HHH is highly variable ranging from severe neonatal encephalopathy and hepatic failure to a milder form with corresponding learning difficulties. Methods: In this study, data from thirteen patients with HHH syndrome, diagnosed between the age of 1 week-29 years at two tertiary care centers in Palestine, is presented. The clinical, biochemical, and molecular data are reviewed. Results: Analysis of the SLC25A15 gene sequence revealed a novel homozygous frameshift deletion in exon 5, NM_014252.4:c.552-555delTTTC; p (Phe185SerfsTer8) in nine patients. The remaining four patients had a recurrent homozygous frameshift variant; NM_014252.4:c.446delG, (p.Ser149ThrfsTer45). The major acute clinical presentation found was encephalopathy and liver dysfunction. Nervous system involvement was common, progressive, and presented with signs of upper motor neuron disease as well as variable degrees of cognitive impairment. One patient had an initial presentation in adulthood with acute encephalopathy that responded well to treatment. There was no clear genotype-phenotype correlation. Conclusion: Our results confirm the marked clinical heterogeneity of HHH including severe neonatal presentation, hepatic failure, and progressive pyramidal tract dysfunction in all age groups. The disease progression was variable, even in patients with the same genetic variant, and in patients with severe neonatal-onset hepatic encephalopathy. We report a novel pathogenic variant in the SLC25A15 gene, further expanding the molecular spectrum of the disease.
Collapse
Affiliation(s)
- Imad Dweikat
- Metabolic Department, Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine,*Correspondence: Imad Dweikat,
| | - Reham Khalaf-Nazzal
- Department of Physiology and Medical Genetics, Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| |
Collapse
|
4
|
Billingham MJ, Rizk R. Role of early management of hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome in pregnancy. BMJ Case Rep 2021; 14:14/7/e241424. [PMID: 34210698 PMCID: PMC8252674 DOI: 10.1136/bcr-2020-241424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyperornithinaemia-hyperammonaemia-homocitrullinuria (HHH) syndrome is a rare inherited metabolic disorder of the urea cycle. Few reports exist to guide practices during pregnancy and fetal delivery. Yet, with affected patients often surviving into reproductive age, appropriate management of the peripartum phase is essential to ensure positive maternal and fetal outcomes. Reassuringly, the vast majority of offspring of parturients with HHH syndrome have normal developmental outcomes; yet as seen here, fetal growth restriction does appear more frequently. Furthermore, in addition to the absent fetal corpus callosum observed in this case, other fetal cerebral abnormalities, including speech delay and intellectual impairment, have been recognised. Unregulated dietary intake is one proposed factor for the observed disruption in fetal growth and early cerebral development. These stipulations not only reinforce the importance of extensive planning and teamwork, but also demonstrate the importance of timely intervention by a metabolic dietician and dietary compliance in the early organogenesis stage of pregnancy.
Collapse
Affiliation(s)
| | - Rania Rizk
- Department of Obstetrics and Gynaecology, Birmingham Heartlands Hospital, Birmingham, UK
| |
Collapse
|
5
|
iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry 2020; 25:2873-2888. [PMID: 31019265 PMCID: PMC6813882 DOI: 10.1038/s41380-019-0423-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder. Thus, studying pathogenetic mechanisms underlying SCZ requires studying the development of brain cells. Cortical interneurons (cINs) are consistently observed to be abnormal in SCZ postmortem brains. These abnormalities may explain altered gamma oscillation and cognitive function in patients with SCZ. Of note, currently used antipsychotic drugs ameliorate psychosis, but they are not very effective in reversing cognitive deficits. Characterizing mechanisms of SCZ pathogenesis, especially related to cognitive deficits, may lead to improved treatments. We generated homogeneous populations of developing cINs from 15 healthy control (HC) iPSC lines and 15 SCZ iPSC lines. SCZ cINs, but not SCZ glutamatergic neurons, show dysregulated Oxidative Phosphorylation (OxPhos) related gene expression, accompanied by compromised mitochondrial function. The OxPhos deficit in cINs could be reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) but not by other chemicals previously identified as increasing mitochondrial function. The restoration of mitochondrial function by ALA/ALC was accompanied by a reversal of arborization deficits in SCZ cINs. OxPhos abnormality, even in the absence of any circuit environment with other neuronal subtypes, appears to be an intrinsic deficit in SCZ cINs.
Collapse
|
6
|
Nikmaneshi MR, Firoozabadi B, Munn LL. A mechanobiological mathematical model of liver metabolism. Biotechnol Bioeng 2020; 117:2861-2874. [PMID: 32501531 DOI: 10.1002/bit.27451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/01/2023]
Abstract
The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect liver metabolism. We show that perfusate rheology and blood hematocrit can affect urea and albumin production by changing hepatocyte mechanosensitive metabolism. The model can also simulate enzymatic diseases of the liver such as hyperammonemia I, hyperammonemia II, hyperarginemia, citrollinemia, and argininosuccinicaciduria, which disrupt the urea metabolism and ammonia detoxification. The model is also able to predict how aggregate cultures of hepatocytes differ from single cell cultures. We conclude that in vitro perfusable devices for the study of liver metabolism or personalized medicine should be designed with similar morphology and fluid dynamics as patient liver tissue. This robust model can be adapted to any type of hepatocyte culture to determine how hepatocyte viability, functionality, and metabolism are influenced by liver pathologies and environmental conditions.
Collapse
Affiliation(s)
- Mohammad R Nikmaneshi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Silfverberg T, Sahlander F, Enlund M, Oscarson M, Hårdstedt M. Late onset hyperornithinemia-hyperammonemia-homocitrullinuria syndrome - how web searching by the family solved unexplained unconsciousness: a case report. J Med Case Rep 2018; 12:274. [PMID: 30243302 PMCID: PMC6151189 DOI: 10.1186/s13256-018-1794-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Background Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, a rare inherited urea cycle disorder, can remain undiagnosed for decades and suddenly turn into an acute life-threatening state. Adult presentation of hyperornithinemia-hyperammonemia-homocitrullinuria syndrome has rarely been described, but is potentially underdiagnosed in the emergency room. In the case of acute hyperammonemia, prompt diagnosis is essential to minimize the risk of brain damage and death. Case presentation We present the diagnostics, clinical course, and treatment of a 48-year-old Caucasian man presenting with unexplained unconsciousness in the emergency room. A web search by a family member led to the suspicion of urea cycle disorder. Subsequent analysis of plasma ammonia and amino acids in plasma and urine demonstrated a pattern typical for hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. The diagnosis was confirmed by genetic analysis which revealed two heterozygous mutations in the SLC25A15 gene. The cause of the hyperammonemia crisis was acute upper gastrointestinal hemorrhage, leading to protein overload and subsequent cerebral edema. Continuous renal replacement therapy, scavenger treatment, and tightly controlled nutrition were useful in preventing hyperammonemia and recurrence of cerebral edema. Conclusions The case emphasizes the importance of taking rare metabolic genetic disorders into consideration in patients with prolonged unexplained unconsciousness.
Collapse
Affiliation(s)
- Thomas Silfverberg
- Department of Clinical Science and Education at Södersjukhuset, Karolinska Institutet, Stockholm, Sweden. .,Department of Internal Medicine, Falun Hospital, Falun, Sweden.
| | - Fredrik Sahlander
- Department of Internal Medicine, Falun Hospital, Falun, Sweden.,Center for Clinical Research Dalarna-Uppsala University, Falun, Sweden
| | - Magnus Enlund
- Department of Intensive Care, Falun Hospital, Falun, Sweden
| | - Mikael Oscarson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Hårdstedt
- Center for Clinical Research Dalarna-Uppsala University, Falun, Sweden.,Department of Cardiology, Falun Hospital, Falun, Sweden
| |
Collapse
|
8
|
Ono H, Tamada T, Shigematsu Y. Lactate/pyruvate in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Pediatr Int 2018; 60:762-764. [PMID: 30058227 DOI: 10.1111/ped.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/06/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroaki Ono
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Tomoko Tamada
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Yosuke Shigematsu
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui, Japan
| |
Collapse
|
9
|
Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40:757-769. [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism of the nitrogen detoxification pathway and encompass six principal enzymatic deficiencies. The aging of UCD patients leads to a better knowledge of the long-term natural history of the condition and to the reporting of previously unnoticed manifestations. Despite historical evidence of liver involvement in UCDs, little attention has been paid to this organ until recently. Hence, we reviewed the available scientific evidence on acute and chronic liver dysfunction and liver carcinogenesis in UCDs and discuss their pathophysiology. Overall, liver involvement, such as acute liver failure or steatotic-like disease, which may evolve toward cirrhosis, has been reported in all six main UCDs. Excessive glycogen storage is also a prominent histologic feature, and hypoglycemia has been reported in citrin deficiency. Hepatocarcinomas seem frequent in some UCDs, such as in citrin deficiency, and can sometimes occur in non-cirrhotic patients. UCDs may differ in liver involvement according to the enzymatic deficiency. Ornithine transcarbamylase deficiency may be associated more with acute liver failure and argininosuccinic aciduria with chronic liver failure and cirrhosis. Direct toxicity of metabolites, downstream metabolic deficiencies, impaired tricarboxylic acid cycle, oxidative stress, mitochondrial dysfunction, energy deficit, and putative toxicity of therapies combine in various ways to cause the different liver diseases reported.
Collapse
Affiliation(s)
- Adrien Bigot
- CHRU de Tours, service médecine interne, Tours, France.
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France.
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia.
- Service de Médecine Interne, Hôpital Bretonneau, 2, boulevard Tonnelle, 37044, Tours, France.
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Benjamin Thoreau
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| | - Hélène Blasco
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- CHRU de Tours, service de biochimie-biologie moléculaire, Tours, France
- UMR INSERM U930, 37000, Tours, France
| | - François Maillot
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| |
Collapse
|
10
|
Zanatta Â, Rodrigues MDN, Amaral AU, Souza DG, Quincozes-Santos A, Wajner M. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome. Neurochem Res 2016; 41:2190-8. [PMID: 27161368 DOI: 10.1007/s11064-016-1933-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.
Collapse
Affiliation(s)
- Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marília Danyelle Nunes Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Débora Guerini Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Zanatta Â, Viegas CM, Hickmann FH, de Oliveira Monteiro W, Sitta A, de Moura Coelho D, Vargas CR, Leipnitz G, Wajner M. Ornithine In Vivo Administration Disrupts Redox Homeostasis and Decreases Synaptic Na(+), K (+)-ATPase Activity in Cerebellum of Adolescent Rats: Implications for the Pathogenesis of Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome. Cell Mol Neurobiol 2015; 35:797-806. [PMID: 25772141 PMCID: PMC11486193 DOI: 10.1007/s10571-015-0173-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/07/2015] [Indexed: 12/16/2022]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an inborn error of metabolism caused by a defect in the transport of ornithine (Orn) into mitochondrial matrix leading to accumulation of Orn, homocitrulline (Hcit), and ammonia. Affected patients present a variable clinical symptomatology, frequently associated with cerebellar symptoms whose pathogenesis is poorly known. Although in vitro studies reported induction of oxidative stress by the metabolites accumulating in HHH syndrome, so far no report evaluated the in vivo effects of these compounds on redox homeostasis in cerebellum. Therefore, the present work was carried out to investigate the in vivo effects of intracerebellar administration of Orn and Hcit on antioxidant defenses (reduced glutathione concentrations and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase), lipid oxidation (malondialdehyde concentrations), as well as on the activity of synaptic Na(+), K(+)-ATPase, an enzyme highly vulnerable to free radical attack, in the cerebellum of adolescent rats. Orn significantly increased malondialdehyde levels and the activities of all antioxidant enzymes, and reduced Na(+), K(+)-ATPase activity. In contrast, glutathione concentrations were not changed by Orn treatment. Furthermore, intracerebellar administration of Hcit was not able to alter any of these parameters. The present data show for the first time that Orn provokes in vivo lipid oxidative damage, activation of the enzymatic antioxidant defense system, and reduction of the activity of a crucial enzyme involved in neurotransmission. It is presumed that these pathomechanisms may contribute at least partly to explain the neuropathology of cerebellum abnormalities and the ataxia observed in patients with HHH syndrome.
Collapse
Affiliation(s)
- Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Fernanda Hermes Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Wagner de Oliveira Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | | | - Carmen Regla Vargas
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| |
Collapse
|
12
|
Martinelli D, Diodato D, Ponzi E, Monné M, Boenzi S, Bertini E, Fiermonte G, Dionisi-Vici C. The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis 2015; 10:29. [PMID: 25874378 PMCID: PMC4358699 DOI: 10.1186/s13023-015-0242-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Background Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive disorder of the urea cycle. HHH has a panethnic distribution, with a major prevalence in Canada, Italy and Japan. Acute clinical signs include intermittent episodes of vomiting, confusion or coma and hepatitis-like attacks. Alternatively, patients show a chronic course with aversion for protein rich foods, developmental delay/intellectual disability, myoclonic seizures, ataxia and pyramidal dysfunction. HHH syndrome is caused by impaired ornithine transport across the inner mitochondrial membrane due to mutations in SLC25A15 gene, which encodes for the mitochondrial ornithine carrier ORC1. The diagnosis relies on clinical signs and the peculiar metabolic triad of hyperammonemia, hyperornithinemia, and urinary excretion of homocitrulline. HHH syndrome enters in the differential diagnosis with other inherited or acquired conditions presenting with hyperammonemia. Methods A systematic review of publications reporting patients with HHH syndrome was performed. Results We retrospectively evaluated the clinical, biochemical and genetic profile of 111 HHH syndrome patients, 109 reported in 61 published articles, and two unpublished cases. Lethargy and coma are frequent at disease onset, whereas pyramidal dysfunction and cognitive/behavioural abnormalities represent the most common clinical features in late-onset cases or during the disease course. Two common mutations, F188del and R179* account respectively for about 30% and 15% of patients with the HHH syndrome. Interestingly, the majority of mutations are located in residues that have side chains protruding into the internal pore of ORC1, suggesting their possible interference with substrate translocation. Acute and chronic management consists in the control of hyperammonemia with protein-restricted diet supplemented with citrulline/arginine and ammonia scavengers. Prognosis of HHH syndrome is variable, ranging from a severe course with disabling manifestations to milder variants compatible with an almost normal life. Conclusions This paper provides detailed information on the clinical, metabolic and genetic profiles of all HHH syndrome patients published to date. The clinical phenotype is extremely variable and its severity does not correlate with the genotype or with recorded ammonium/ornithine plasma levels. Early intervention allows almost normal life span but the prognosis is variable, suggesting the need for a better understanding of the still unsolved pathophysiology of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0242-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Ersoy Tunalı N, Marobbio CMT, Tiryakioğlu NO, Punzi G, Saygılı SK, Onal H, Palmieri F. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 2014; 112:25-9. [PMID: 24721342 PMCID: PMC4015418 DOI: 10.1016/j.ymgme.2014.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023]
Abstract
The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely.
Collapse
Affiliation(s)
- Nagehan Ersoy Tunalı
- Department of Molecular Biology and Genetics, Haliç University, Istanbul, Turkey.
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - N Ozan Tiryakioğlu
- Department of Molecular Biology and Genetics, Haliç University, Istanbul, Turkey
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Seha K Saygılı
- Istanbul Medical Faculty, Department of Pediatrics, Istanbul University, Istanbul, Turkey
| | - Hasan Onal
- Department of Pediatric Metabolism and Nutrition, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| |
Collapse
|
14
|
Zanatta A, Viegas CM, Tonin AM, Busanello ENB, Grings M, Moura AP, Leipnitz G, Wajner M. Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: a possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci 2013; 93:161-8. [PMID: 23806752 DOI: 10.1016/j.lfs.2013.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
Abstract
AIMS Cerebellar ataxia is commonly observed in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disorder biochemically characterized by ornithine (Orn), homocitrulline (Hcit) and ammonia accumulation. Since the pathophysiology of cerebellum damage in this disorder is still unknown, we investigated the effects of Hcit and Orn on important parameters of redox and energy homeostasis in cerebellum of young rats. MATERIAL AND METHODS We determined thiobarbituric acid-reactive substance (TBA-RS) levels, carbonyl content, nitrate and nitrite production, hydrogen peroxide production, GSH concentrations, sulfhydryl content, as well as activities of respiratory chain complexes I-IV, creatine kinase, Na(+),K(+)-ATPase, aconitase and α-ketoglutarate dehydrogenase. KEY FINDINGS Orn and Hcit significantly increased TBA-RS levels (lipid oxidation), that was totally prevented by melatonin and reduced glutathione (GSH). We also found that nitrate and nitrite production was not altered by any of the metabolites, in contrast to hydrogen peroxide production which was significantly enhanced by Hcit. Furthermore, GSH concentrations were significantly reduced by Orn and Hcit and sulfhydryl content by Orn, implying an impairment of antioxidant defenses. As regards energy metabolism, Orn and Hcit provoked a significant reduction of aconitase activity, without altering the other parameters. Furthermore, Orn-elicited reduction of aconitase activity was totally prevented by GSH, indicating that the critical groups of this enzyme were susceptible to oxidation caused by this amino acid. SIGNIFICANCE Taken together, our data indicate that redox homeostasis is disturbed by the major metabolites accumulating in HHH syndrome and that this mechanism may be implicated in the ataxia and cerebellar abnormalities observed in this disorder.
Collapse
Affiliation(s)
- Angela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoon HR. Determination of plasma dibasic amino acids following trimethylsilyl–trifluoroacyl derivatization using gas chromatography–mass spectrometry. Arch Pharm Res 2013; 36:366-73. [DOI: 10.1007/s12272-013-0038-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
16
|
Viegas CM, Tonin AM, Zanatta A, Seminotti B, Busanello ENB, Fernandes CG, Moura AP, Leipnitz G, Wajner M. Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome in vivo. Metab Brain Dis 2012; 27:521-30. [PMID: 22798168 DOI: 10.1007/s11011-012-9327-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Ornithine, ammonia and homocitrulline are the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, a genetic disorder characterized by neurological regression whose pathogenesis is still not understood. The present work investigated the in vivo effects of intracerebroventricular administration of ornithine and homocitrulline in the presence or absence of hyperammonemia induced by intraperitoneal urease treatment on a large spectrum of oxidative stress parameters in cerebral cortex from young rats in order to better understand the role of these metabolites on brain damage. Ornithine increased thiobarbituric acid-reactive substances (TBA-RS) levels and carbonyl formation and decreased total antioxidant status (TAS) levels. We also observed that the combination of hyperammonemia with ornithine resulted in significant decreases of sulfhydryl levels, reduced glutathione (GSH) concentrations and the activities of catalase (CAT) and glutathione peroxidase (GPx), highlighting a synergistic effect of ornithine and ammonia. Furthermore, homocitrulline caused increases of TBA-RS values and carbonyl formation, as well as decreases of GSH concentrations and GPx activity. Hcit with hyperammonemia (urease treatment) decreased TAS and CAT activity. We also showed that urease treatment per se was able to enhance TBA-RS levels. Finally, nitric oxide production was not altered by Orn and Hcit alone or in combination with hyperammonemia. Our data indicate that the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome provoke lipid and protein oxidative damage and a reduction of the antioxidant defenses in the brain. Therefore, it is presumed that oxidative stress may represent a relevant pathomechanism involved in the brain damage found in patients affected by this disease.
Collapse
Affiliation(s)
- Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tezcan K, Louie KT, Qu Y, Velasquez J, Zaldivar F, Rioseco-Camacho N, Camacho JA. Adult-onset presentation of a hyperornithinemia-hyperammonemia-homocitrullinuria patient without prior history of neurological complications. JIMD Rep 2011; 3:97-102. [PMID: 23430880 DOI: 10.1007/8904_2011_71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022] Open
Abstract
The Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome is a disorder of the urea cycle and ornithine degradation pathway caused by mutations in the mitochondrial ornithine transporter, ORNT1 (SLC25A15). In general, the majority of patients with HHH syndrome come to medical attention during infancy or early school years with symptoms such as learning disabilities, changes in cognitive development, spasticity, or liver dysfunction. In this report, we describe a 35-year-old male of Indian descent who was diagnosed with HHH syndrome after he presented to the emergency room with gastroenteritis, disorientation, and slurred speech. Molecular analysis revealed that this patient was heterozygous for two ORNT1 mutations, p.[Gly220Arg(+)Arg275X] (c.[658G>A(+)823C>T]) that had been previously reported in homozygous probands who presented during the first year of life. Cellular studies revealed that the ORNT1 p.Gly220Arg mutation was nonfunctional but targeted to the mitochondria. Given that this patient was a successful college graduate on a vegetarian diet without a prior history of learning or neurological impairment, additional factors such as gene redundancy, environmental, and epigenetic factors may have contributed to the delay in onset of presentation and lack of any previous symptoms. To the best of our knowledge, this is the first reported case of an adult-onset HHH syndrome presentation without a prior history of neurological or cognitive deficiency.
Collapse
Affiliation(s)
- Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Viegas CM, Busanello ENB, Tonin AM, de Moura AP, Grings M, Ritter L, Schuck PF, Ferreira GDC, Sitta A, Vargas CR, Wajner M. Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Brain Res 2011; 1369:235-44. [DOI: 10.1016/j.brainres.2010.10.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 11/28/2022]
|
19
|
Sokoro AAH, Lepage J, Antonishyn N, McDonald R, Rockman-Greenberg C, Irvine J, Lehotay DC. Diagnosis and high incidence of hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome in northern Saskatchewan. J Inherit Metab Dis 2010; 33 Suppl 3:S275-81. [PMID: 20574716 DOI: 10.1007/s10545-010-9148-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Mutations in the SLC25A15 gene, encoding the human inner mitochondrial membrane ornithine transporter, are thought to be responsible for hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome, a rare autosomal recessive condition. HHH syndrome has been detected in several small, isolated communities in northern Saskatchewan (SK). To determine the incidence of HHH syndrome in these communities, a PCR method was set up to detect F188Δ, the common French-Canadian mutation. Neonatal blood spots collected from all newborns from the high risk area were genotyped for the F188Δ mutation for seven consecutive years. Using DNA analysis, we estimated that the heterozygote frequency for the mutant allele for HHH syndrome to be about 1 in 19 individuals, predicting one affected child with HHH syndrome for approximately every 1,500 individuals (1 in 1,550 live births; 1 child every 12 years) in this isolated population. The frequency for the mutant allele for HHH syndrome in this isolated community is probably the highest in the world for this rare disorder. We determined that ornithine levels, by tandem mass spectrometry, were not abnormal in newborns with F188Δ mutation, carriers and normals. Ornithine rises to abnormally high levels at some time after birth well past the time that the newborn screening blood spot is collected. The timing or the reasons for the delayed rise of ornithine in affected children with HHH syndrome have not been determined. Newborn screening for HHH Syndrome in this high risk population is only possible by detection of the mutant allele using DNA analysis.
Collapse
Affiliation(s)
- AbdulRazaq A H Sokoro
- Department of Pathology, Diagnostic Services of Manitoba & University of Manitoba, Health Sciences Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Evidence that the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome induce oxidative stress in brain of young rats. Int J Dev Neurosci 2009; 27:635-41. [DOI: 10.1016/j.ijdevneu.2009.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 08/06/2009] [Indexed: 11/17/2022] Open
|
21
|
Viegas CM, Zanatta A, Knebel LA, Schuck PF, Tonin AM, Ferreira GDC, Amaral AU, Dutra Filho CS, Wannmacher CMD, Wajner M. Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res 2009; 1291:102-12. [PMID: 19616520 DOI: 10.1016/j.brainres.2009.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
Abstract
Tissue accumulation of ornithine (Orn), homocitrulline (Hcit), ammonia and orotic acid (Oro) is the biochemical hallmark of patients affected by hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, a disorder clinically characterized by neurological symptoms, whose pathophysiology is practically unknown. In the present study, we investigated the in vitro effect of Orn, Hcit and Oro on important parameters of energy metabolism in brain of 30-day-old Wistar rats since mitochondrial abnormalities have been observed in the affected patients. We first verified that Orn and Hcit significantly inhibited the citric acid cycle (inhibition of CO(2) synthesis from [1-(14)C] acetate, as well as aconitase and alpha-ketoglutarate dehydrogenase activities), the aerobic glycolytic pathway (reduced CO(2) production from [U-(14)C] glucose) and moderately the electron transfer flow (inhibitory effect on complex I-III). Hcit, but not Orn, was also able to significantly inhibit the mitochondrial creatine kinase activity. Furthermore, this inhibition was prevented by GSH, suggesting a possible role of reactive species oxidizing critical thiol groups of the enzyme. In contrast, the other enzyme activities of the citric acid cycle and of the electron transfer chain, as well as synaptic Na(+),K(+)-ATPase were not altered by either Orn or Hcit at concentrations as high as 5.0 mM. Similarly, Oro did not interfere with any of the tested parameters. Taken together, these data strongly indicate that Orn and Hcit compromise brain energy metabolism homeostasis and Hcit also interferes with cellular ATP transfer and buffering. It is therefore suggested that Orn and especially Hcit may be involved in the neurological damage found in patients affected by HHH syndrome.
Collapse
Affiliation(s)
- Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien YH, Loguercio C, de Baulny HO, Nassogne MC, Schiff M, Deodato F, Parenti G, Rutledge SL, Vilaseca MA, Melone MAB, Scarano G, Aldamiz-Echevarría L, Besley G, Walter J, Martinez-Hernandez E, Hernandez JM, Pierri CL, Palmieri F, Santorelli FM. Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 2009; 30:741-8. [PMID: 19242930 DOI: 10.1002/humu.20930] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder of the urea cycle. With the exception of the French-Canadian founder effect, no common mutation has been detected in other populations. In this study, we collected 16 additional HHH cases and expanded the spectrum of SLC25A15/ORC1 mutations. Eleven novel mutations were identified including six new missense and one microrearrangement. We also measured the transport properties of the recombinant purified proteins in reconstituted liposomes for four new and two previously reported missense mutations and proved that the transport activities of these mutant forms of ORC1 were reduced as compared with the wild-type protein; residual activity ranged between 4% and 19%. Furthermore, we designed three-dimensional (3D)-modeling of mutant ORC1 proteins. While modeling the changes in silico allowed us to obtain new information on the pathomechanisms underlying HHH syndrome, we found no clear-cut genotype-phenotype correlations. Although patient metabolic alterations responded well to low-protein therapy, predictions concerning the long-term evolution of HHH syndrome remain uncertain. The preference for a hepatic rather than a neurological presentation at onset also continues, largely, to elude us. Neither modifications in oxidative metabolism-related energy, such as those expected in different mtDNA haplogroups, nor sequence variants in SLC25A2/ORC2 seem to be crucial. Other factors, including protein stability and function, and ORC1-ORC2 structural interactions should be further investigated.
Collapse
Affiliation(s)
- Alessandra Tessa
- Molecular Medicine and Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico Children's Hospital Bambino Gesù, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Patients experiencing acute elevations of ammonia present to the ICU with encephalopathy, which may progress quickly to cerebral herniation. Patient survival requires immediate treatment of intracerebral hypertension and the reduction of ammonia levels. When hyperammonemia is not thought to be the result of liver failure, treatment for an occult disorder of metabolism must begin prior to the confirmation of an etiology. This article reviews ammonia metabolism, the effects of ammonia on the brain, the causes of hyperammonemia, and the diagnosis of inborn errors of metabolism in adult patients.
Collapse
Affiliation(s)
- Alison S Clay
- Department of Surgery and Medicine, Duke University Medical Center, Box 2945, Durham, NC 27710, USA.
| | | |
Collapse
|
24
|
Abstract
The urinary excretion of orotic acid, an intermediate in the pyrimidine biosynthetic pathway, is markedly increased in many inborn errors of the urea cycle and in a number of other disorders involving arginine metabolism. Carbamoyl phosphate, which accumulates within hepatic mitochondria in patients with ornithine transcarbamoylase deficiency, can diffuse to the cytosol and enter the pyrimidine pathway, resulting in greatly increased orotic acid production and excretion. This orotic aciduria also occurs in inborn errors of the mitochondrial ornithine/citrulline transporter, arginase, argininosuccinate synthetase, and argininosuccinate lyase. Increased orotic acid excretion is also found in a number of hypoargininemic states, such as lysinuric protein intolerance. However, orotic aciduria should not be used uncritically as an index of arginine deficiency because it is found in patients with arginase deficiency who exhibit hyperargininemia. Increased orotic acid excretion can also arise as a result of impairments of pyrimidine synthesis, whether brought about by a genetic defect (e.g., in UMP synthase) or by drugs that inhibit the terminal part of the pathway (e.g., allopurinol or 6-azauridine). When used appropriately, measurement of urinary orotic acid is a valuable tool for the study of many derangements of arginine metabolism, including arginine depletion, and to assess the efficacy of therapies used to replete this amino acid.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | |
Collapse
|
25
|
Al-Dirbashi OY, Al-Hassnan ZN, Rashed MS. Determination of homocitrulline in urine of patients with HHH syndrome by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2006; 386:2013-7. [PMID: 17053917 DOI: 10.1007/s00216-006-0831-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/03/2006] [Accepted: 09/05/2006] [Indexed: 11/29/2022]
Abstract
A liquid chromatography tandem mass spectrometric method is described for the analysis of homocitrulline in human urine, a key metabolite in the differential diagnosis of hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome. Urine samples were prepared by mere five-fold dilution with a mixture of internal standards (2H2-citrulline and 2H3-creatinine) used for the simultaneous quantification of creatinine. Analytes were separated on a cyano column and eluted isocratically within seven min. Detection was achieved by monitoring transitions of 190 > 84 and 190 > 127 for homocitrulline, 178 > 115 for 2H2-citrulline, 114 > 44 for creatinine and 117 > 47 for 2H3-creatinine. Calibration curves were linear up to 100 micromol/L. Intraday (n = 7) and interday (n = 6) variations were less than 10%. In urine samples from three siblings confirmed to have HHH syndrome, homocitrulline levels were at 13.3 (74), 21.1 (50) and 108.2 (103) mmol/mol creatinine (micromol/L). Control values were 0-9 mmol/mol creatinine (n = 120). The current method solves specificity issues in homocitrulline determination often encountered with some ninhydrin-based systems (coelution with methionine) and some o-phthalaldehyde-based ones (coelution with taurine), and presents an attractive alternative with a relatively high throughput.
Collapse
Affiliation(s)
- Osama Y Al-Dirbashi
- National Laboratory for Newborn Screening, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | | |
Collapse
|
26
|
Camacho JA, Mardach R, Rioseco-Camacho N, Ruiz-Pesini E, Derbeneva O, Andrade D, Zaldivar F, Qu Y, Cederbaum SD. Clinical and functional characterization of a human ORNT1 mutation (T32R) in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res 2006; 60:423-9. [PMID: 16940241 DOI: 10.1203/01.pdr.0000238301.25938.f5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied two related families (HHH013 and HHH015) with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, a disorder of the urea cycle and ornithine degradation pathway, who have the same novel ornithine transporter (ORNT1) genotype (T32R) but a variable phenotype. Both HHH015 patients are doing well in school and are clinically stable; conversely, the three affected HHH013 siblings had academic difficulties and one suffered recurrent episodes of hyperammonemia and ultimately died. Overexpression studies revealed that the product of the ORNT1-T32R allele has residual function. Ornithine transport studies in HHH015 fibroblasts, however, showed basal activity similar to fibroblasts carrying nonfunctional ORNT1 alleles. We also examined two potential modifying factors, the ORNT2 gene and the mitochondrial DNA lineage (haplogroup). Haplogroups, associated with specific diseases, are hypothesized to influence mitochondrial function. Results demonstrated that both HHH015 patients are heterozygous for an ORNT2 gain of function polymorphism and belong to haplogroup A whereas the HHH013 siblings carry the wild-type ORNT2 and are haplogroup H. These observations suggest that the ORNT1 genotype cannot predict the phenotype of HHH patients. The reason for the phenotypic variability is unknown, but factors such as redundant transporters and mitochondrial lineage may contribute to the neuropathophysiology of HHH patients.
Collapse
Affiliation(s)
- José A Camacho
- Department of Pediatrics, Division of Human Genetics, University of California, Irvine, CA 92697-3940, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wohlrab H. The human mitochondrial transport/carrier protein family. Nonsynonymous single nucleotide polymorphisms (nsSNPs) and mutations that lead to human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1263-70. [PMID: 16843431 DOI: 10.1016/j.bbabio.2006.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
There are 67 proteins in the human mitochondrial transport protein family. They have been identified from among the proteins of the RefSeq database on the basis of sequence similarity to proteins that have been functionally identified as mitochondrial transport proteins. They have also been identified by matching their predicted structure to the high resolution structure of the bovine ADP/ATP T1 transporter subunit/carboxyatractyloside complex. 74 nonsynonymous single nucleotide polymorphisms (nsSNP) have been identified in their gene sequences. These nsSNPs are present in genes of 30 of the proteins. No nsSNP has been found in 24 of the protein genes and no search has as yet been carried out on the rest (13) of them. The largest number of nsSNPs are in the ADP/ATP T3 transporter, the uncoupling protein 3 L, and the phosphate transporter genes with 7, 6, and 6, respectively. nsSNPs are located in groups along the protein sequence suggesting that certain protein domains are too critical for transport function to tolerate mutations. This interpretation has been validated with mutation and function studies of the phosphate transporter. Human diseases have been identified with replacement mutations in seven of these proteins. Their genes are not abnormally susceptible to mutations since they have the smallest number of nsSNPs. Disease causing mutations have also been observed as: substitution, silent (may affect stability of messages), frameshift (protein truncation or elongation), splicing (exon skipping), residue deletion. Disease causing mutations have only been identified in few transporter genes because others do not yield dramatic symptoms or are essential and thus lethal. Mutations in other transporter genes may also only have a major impact through their combination with other genes and their nsSNPs.
Collapse
Affiliation(s)
- Hartmut Wohlrab
- Boston Biomedical Research Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 64 Grove Street, Watertown, MA 02472, USA.
| |
Collapse
|
28
|
Mühling J, Engel J, Halabi M, Müller M, Fuchs M, Krüll M, Harbach H, Langefeld TW, Wolff M, Matejec R, Welters ID, Menges T, Hempelmann G. Nitric oxide and polyamine pathway-dependent modulation of neutrophil free amino- and α-keto acid profiles or host defense capability. Amino Acids 2006; 31:11-26. [PMID: 16547646 DOI: 10.1007/s00726-006-0273-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 11/23/2005] [Indexed: 12/19/2022]
Abstract
We have examined the effects of N(omega)-nitro-L-arginine-methylester-hydrochloride [L-NAME; inhibitor of nitric oxide synthase], S-nitroso-N-acetyl-penicillamine [SNAP; nitric oxide donor], alpha-difluoro-methyl-ornithine [DFMO; inhibitor of ornithine decarboxylase] arginine or ornithine as well as the combination of arginine or ornithine with L-NAME, SNAP or DFMO on intracellular free amino- and alpha-keto acid profiles and the immune function markers superoxide anion and hydrogen peroxide generation as well as released myeloperoxidase activity in neutrophils (PMN). Although the underlying mechanisms still remain unclear, we believe from our results that nitric oxide as well as polyamine-dependent pathways are involved in the signal transmission of free radical molecule, beneficial nutritional therapy or maleficient pharmacological stress-induced alterations in PMN nutrient composition. Relevant changes in intragranulocyte free amino- and alpha-keto acid homeostasis and metabolism, especially, may be one of the determinants in PMN nutrition that positively or negatively influences and modulate neutrophil host defence capability and immunocompetence.
Collapse
Affiliation(s)
- J Mühling
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, University Hospital Giessen and Marburg, Giessen, Federal Republic of Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fecarotta S, Parenti G, Vajro P, Zuppaldi A, Della Casa R, Carbone MT, Correra A, Torre G, Riva S, Dionisi-Vici C, Santorelli FM, Andria G. HHH syndrome (hyperornithinaemia, hyperammonaemia, homocitrullinuria), with fulminant hepatitis-like presentation. J Inherit Metab Dis 2006; 29:186-9. [PMID: 16601889 DOI: 10.1007/s10545-006-0120-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/07/2005] [Indexed: 01/10/2023]
Abstract
We report a 3-year-old Italian patient with the hyperornithinaemia, hyperammonaemia, homocitrullinuria (HHH) syndrome who presented with neurological deterioration after an intercurrent infection. Hyperammonaemia, coagulopathy and moderate hypertransaminasaemia were detected on hospital admission. Severe hepatocellular necrosis with hypertransaminasaemia (aspartate aminotransferase 20,000 UI/L, alanine aminotransferase 18,400 UI/L) and coagulopathy (PT < 5%) rapidly developed within few days, prompting evaluation for liver transplantation. A protein-restricted diet and arginine supplementation were immediately started, with a rapid improvement of the patient's neurological conditions and normalization of liver function tests and blood ammonia. The diagnosis of HHH syndrome was based on the presence of the typical metabolic abnormalities. Molecular analysis of the SLC25A15 gene showed that the patient was heterozygous for two novel mutations (G113C and M273K). The diagnosis of HHH syndrome should be considered in patients with fulminant hepatitis-like presentations. Early identification and treatment of these patients can be life-saving and can avoid liver transplantation.
Collapse
Affiliation(s)
- S Fecarotta
- Department of Pediatrics, Federico II University, Via S Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|