1
|
Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637584. [PMID: 33603820 PMCID: PMC7872765 DOI: 10.1155/2021/6637584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The greatest common and devastating complication of diabetes is painful neuropathy that can cause hyperalgesia and allodynia. It can disturb psychosocial functioning by increasing levels of anxiety and depression. This work was designed to evaluate the antihyperalgesic, antidepressant, and anxiolytic-like effects of the aqueous and methanol extracts of Nauclea pobeguinii stem-bark in diabetic neuropathy induced by streptozotocin in mice. Diabetic neuropathy was induced in mice by the intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to provoke hyperglycemia. Nauclea pobeguinii aqueous and methanol extracts at the doses of 150 and 300 mg/kg were administered by oral route, and their effects were evaluated on antihyperalgesic activity (Von Frey filaments, hot plate, acetone, and formalin tests), blood glucose levels, body weight, serum, sciatic nerve proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and sciatic nerve growth factor (IGF and NGF) rates, depression (open field test, forced swimming test, tail suspension test), and anxiety (elevated plus maze, light-dark box test, social interaction). Oral administration of Nauclea pobeguinii stem-bark aqueous and methanol extracts (150 and 300 mg/kg) produced antihyperalgesic, antidepressant, and anxiolytic-like effects in STZ-induced diabetic neuropathic mice. Extracts also triggered a decrease in glycaemia and increased body weight in treated animals. They also significantly (p <0.001) reduced tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and significantly (p <0.001) increased nerve growth factor (NGF) and insulin-like growth factor (IGF) in sciatic nerves. The results of this study confirmed that Nauclea pobeguinii aqueous and methanol extracts possess antihyperalgesic, antidepressant, and anxiolytic activities and could be beneficial therapeutic agents.
Collapse
|
2
|
Marquez A, Guernsey LS, Frizzi KE, Cundiff M, Constantino I, Muttalib N, Arenas F, Zhou X, Lim SH, Ferdousi M, Ponirakis G, Silverdale M, Kobylecki C, Jones M, Marshall A, Malik RA, Jolivalt CG. Tau associated peripheral and central neurodegeneration: Identification of an early imaging marker for tauopathy. Neurobiol Dis 2021; 151:105273. [PMID: 33482356 DOI: 10.1016/j.nbd.2021.105273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 01/29/2023] Open
Abstract
Pathological hyperphosphorylated tau is a key feature of Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Using transgenic mice overexpressing human non-mutated tau (htau mice), we assessed the contribution of tau to peripheral and central neurodegeneration. Indices of peripheral small and large fiber neuropathy and learning and memory performances were assessed at 3 and 6 months of age. Overexpression of human tau is associated with peripheral neuropathy at 6 months of age. Our study also provides evidence that non-mutated tau hyperphosphorylation plays a critical role in memory deficits. In addition, htau mice had reduced stromal corneal nerve length with preservation of sub-basal corneal nerves, consistent with a somatofugal degeneration. Corneal nerve degeneration occurred prior to any cognitive deficits and peripheral neuropathy. Stromal corneal nerve loss was observed in patients with FTD but not AD. Corneal confocal microscopy may be used to identify early neurodegeneration and differentiate FTD from AD.
Collapse
Affiliation(s)
| | - Lucie S Guernsey
- Department of Pathology, University of California San Diego, USA
| | - Katie E Frizzi
- Department of Pathology, University of California San Diego, USA
| | - Morgan Cundiff
- Department of Pathology, University of California San Diego, USA
| | | | - Nabeel Muttalib
- Department of Pathology, University of California San Diego, USA
| | - Fernanda Arenas
- Department of Pathology, University of California San Diego, USA
| | - Xiajun Zhou
- Department of Pathology, University of California San Diego, USA
| | - Sze Hway Lim
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Monty Silverdale
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK; Manchester Academic Health Sciences Centre, University of Manchester, UK
| | - Christopher Kobylecki
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK; Manchester Academic Health Sciences Centre, University of Manchester, UK
| | - Matthew Jones
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Marshall
- Department of Clinical Neurophysiology, Salford Royal Hospital, National Health Service Foundation Trust, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar and Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | | |
Collapse
|
3
|
Gupta PS, Singh SK, Tripathi AK. Pharmacopuncture of Bauhinia variegata Nanoemulsion Formulation against Diabetic Peripheral Neuropathic Pain. J Pharmacopuncture 2020; 23:30-36. [PMID: 32322433 PMCID: PMC7163386 DOI: 10.3831/kpi.2020.23.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The objective of the study was to prepare Bauhinia variegata loaded nanoemulsion(formulation and determine the efficacy of herbal drug formulation against diabetic peripheral neuropathic pain through acupuncture technique. METHODS Nine different ba tches of nanoemulsion (NE1 NE9) of BVN was prepared by varying the Smix ratio and the concentration of oil. BVN was characterized to determine particle size, shape, zeta potential, polydispersity index, optical transmittance, drug release profile and stora ge stability.The optimized formulation was subjected to plantar test, behavioral tests of neuropathic pain and Von Frey filament stimulation test. Diabetes was induced by intraperitoneal injection of freshly prepared solution of Streptozotocin (60 mg/kg) to the experimental rats. Animals were made diabetic divided into four groups, Group I was untreated normal control group, Group II was diabetic control group, Group III was Bauhinia variegata extract ( treated group (100 mg/kg/day, p.o) and Group IV was BVN treated groups (100 mg/kg/day, p.o) acute and chronically. RESULTS The prepared B. variegata loaded nanoemulsion was nanosized (124 nm), spherical, uniform and stable over the period of 180 days with no change in physiochemical properties. The bl ood glucose and body weight of animals was normalizing after four weeks of treatment that was significant with BVN in comparison to diabetic control group. The chronic administration of BVN significantly (P<0.001) decreased hind paw withdrawal latency an d attenuated mechanical allodynia as compared with diabetic rats. CONCLUSION Thus, BVN may be an effective drug formulation against diabetic peripheral neuropathic pain.
Collapse
Affiliation(s)
- Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, India
| | - Sunil K Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, Naini, India
| | - Abhishek K Tripathi
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, India
| |
Collapse
|
4
|
Early Phase of Type 1 Diabetes Decreases the Responsiveness of C-Fiber Nociceptors in the Temporomandibular Joint of Rats. Neuroscience 2019; 416:229-238. [DOI: 10.1016/j.neuroscience.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
|
5
|
Mbiantcha M, Khalid R, Dawe A, Mehreen A, Atsamo DA, Ateufack G, Hamza D, Nana WY, Bomba FTD, Naeem RU, Izhar A. Antihypernociceptive and neuroprotective effects of Combretin A and Combretin B on streptozotocin-induced diabetic neuropathy in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:697-713. [DOI: 10.1007/s00210-019-01626-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/29/2019] [Indexed: 11/29/2022]
|
6
|
Liu CH, Lan CT, Chen LY, Liao WC, Ko MH, Tseng TJ. Phosphorylation of extracellular signal-regulated kinase 1/2 in subepidermal nerve fibers mediates hyperalgesia following diabetic peripheral neuropathy. Neurotoxicology 2018; 71:60-74. [PMID: 30583000 DOI: 10.1016/j.neuro.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Abstract
Peripheral neuropathy, a chronic complication of diabetes mellitus (DM), is often accompanied by the onset of severe pain symptoms that affect quality of life. However, the underlying mechanisms remain elusive. In the present study, we used Sprague-Dawley rats to establish a rodent model of the human type 1 DM by a single intraperitoneal (i.p.) injection with streptozotocin (STZ) (60 mg/kg). Hypersensitivity, including hyperalgesia and allodynia, developed in the STZ-induced diabetic rats. Cutaneous innervation exhibited STZ-induced reductions of protein gene product 9.5-, peripherin-, and neurofilament 200-immunoreactivity (IR) subepidermal nerve fibers (SENFs). Moreover, the decreases of substance P (SP)- and calcitonin gene-related peptide (CGRP)-IR SENFs were distinct gathered from the results of extracellular signal-regulated kinase 1 and 2 (ERK1/2)- and phosphorylated ERK1/2 (pERK1/2)-IR SENFs in STZ-induced diabetic rats. Double immunofluorescence studies demonstrated that STZ-induced pERK1/2-IR was largely increased in SENFs where only a small portion was colocalized with SP- or CGRP-IR. By an intraplantar (i. pl.) injection with a MEK inhibitor, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), hyperalgesia was attenuated in a dose-responsive manner. Botulinum toxin serotype A had dose-dependent analgesic effects on STZ-induced hyperalgesia and allodynia, which exhibited equivalent results as the efficacy of transient receptor potential vanilloid (TRPV) channel antagonists. Morphological evidence further confirmed that STZ-induced SP-, CGRP- and pERK1/2-IR were reduced in SENFs after pharmacological interventions. From the results obtained in this study, it is suggested that increases of pERK1/2 in SENFs may participate in the modulation of TRPV channel-mediated neurogenic inflammation that triggers hyperalgesia in STZ-induced diabetic rats. Therefore, ERK1/2 provides a potential therapeutic target and efficient pharmacological strategies to address hyperglycemia-induced neurotoxicity.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Li-You Chen
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
7
|
Tanshinone IIA Attenuates Diabetic Peripheral Neuropathic Pain in Experimental Rats via Inhibiting Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2789847. [PMID: 29713362 PMCID: PMC5866893 DOI: 10.1155/2018/2789847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a common and intractable complication of diabetes. Conventional therapies are always not ideal; development of novel drugs is still needed to achieve better pain relief. Recent evidences have demonstrated that inflammation is involved in the onset and maintenance of DPNP. The anti-inflammatory property of Tanshinone IIA (TIIA) makes it a promising candidate to block or alter the pain perception. This study was conducted to investigate whether TIIA could attenuate DPNP in streptozotocin- (STZ-) induced rats model and its potential mechanisms. TIIA was administered to STZ-induced diabetic rats at the dose of 40 mg/kg once a day for 3 weeks. The effects of TIIA on thermal hyperalgesia and mechanical allodynia were investigated using behavioral tests. The mRNA level and expression of interleukin- (IL-) 1β, interleukin- (IL-) 6, tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 10 in the fourth to sixth segments of the dorsal root ganglion (L4–6 DRG) were detected by quantitative real-time PCR (qPCR) and Western blot. TIIA treatment significantly attenuated mechanical allodynia and thermal hyperalgesia in diabetic rats. In addition, the expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α was inhibited, and the level of the anti-inflammatory cytokine IL-10 was increased by TIIA. This study demonstrated that TIIA has significant antiallodynic and antihyperalgesic effects in a rat model of STZ-induced DPNP, and the effect may be associated with its anti-inflammation property.
Collapse
|
8
|
Pulsed magnetic field treatment as antineuropathic pain therapy. Rev Neurosci 2017; 28:751-758. [DOI: 10.1515/revneuro-2017-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
Abstract
AbstractNo satisfactory effective therapy is still available to treat trauma- or disease-induced neuropathic pain, and current available treatment options have several side effects. Pulsed magnetic field (PMF) treatments are receiving growing interest as a therapeutic approach for several neuronal diseases. Although the exact mechanism of action of PMF treatments is unknown, reported findings represent a promising alternative therapeutic choice for the management of neuropathic pain. PMF treatments can supply new strategies for the therapy of life-threatening neuropathic pain due to its antihyperglycemic, anti-inflammatory, antihyperalgesic, antiallodynic, and neuroimmunomodulatory actions. In this review, I summarized the several recent findings about antineuropathic actions of PMF treatment in experimental animals with neuropathic pain induced by disease and/or damage.
Collapse
|
9
|
Calcutt NA, Smith DR, Frizzi K, Sabbir MG, Chowdhury SKR, Mixcoatl-Zecuatl T, Saleh A, Muttalib N, Van der Ploeg R, Ochoa J, Gopaul A, Tessler L, Wess J, Jolivalt CG, Fernyhough P. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest 2017; 127:608-622. [PMID: 28094765 DOI: 10.1172/jci88321] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/22/2016] [Indexed: 01/29/2023] Open
Abstract
Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.
Collapse
|
10
|
Dureshahwar K, Mubashir M, Une HD. Quantification of Quercetin Obtained from Allium cepa Lam. Leaves and its Effects on Streptozotocin-induced Diabetic Neuropathy. Pharmacognosy Res 2017; 9:287-293. [PMID: 28827972 PMCID: PMC5541487 DOI: 10.4103/pr.pr_147_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Objective: Antioxidant potential has protective effects in diabetic neuropathy (DN); hence, the present study was designed with an objective to quantify quercetin from shade-dried leaves of Allium cepa Lam. and to study its effects on streptozotocin (STZ)-induced chronic DN. Materials and Methods: The shade-dried leaves of A. cepa Lam. were extracted with methanol and then fractionated using ethyl acetate (ACEA). The quantification of quercetin in ACEA was evaluated by high-performance thin layer chromatography (HPTLC). The STZ (40 mg/kg) was administered to Sprague-Dawley rats (180–250 g) maintained at normal housing conditions. The STZ was administered once a day for 3 consecutive days. The elevation in blood glucose was monitored for 3 weeks periodically using flavin adenine dinucleotide-glucose dehydrogenase method by Contour TS glucometer. Rats showing blood glucose above 250 mg/dl were selected for the study. Animals were divided into eight groups. ACEA (25, 50, and 100 mg/kg), quercetin (40 mg/kg), metformin (120 mg/kg), and gabapentin (100 mg/kg) were given orally once a day for 2 weeks. The blood glucose level was again measured at the end of treatment to assess DN. Thermal hyperalgesia, cold allodynia, motor incoordination, and neurotoxicity were studied initially and at the end of 2-week treatment. Biochemical parameters were also evaluated after 2-week drug treatment. Results: The quercetin present in ACEA was 4.82% by HPTLC. All the ACEA treatment reduces blood glucose level at the end of the 2-week study and shows a significant neuroprotective effect in STZ-induced DN in the above experimental models. Conclusion: The quercetin present in ACEA proved protective effect in STZ-induced DN. SUMMARY High-performance thin layer chromatography reveals the presence of 4.82% quercetin in Allium cepa ethyl acetate. (ACEA). Its investigation against various diabetic neuropathy biomarkers has proved that ACEA has significant blood glucose reducing action shown neuroprotective action in thermal hyperalgesia, motor incoordination, and biochemical parameters.
Abbreviations Used: HPTLC: High-performance thin layer chromatography, TLC: Thin layer chromatography, UV: Ultraviolet, ACEA: Allium cepa ethyl acetate, STZ: Streptozotocin, LDL: Low-density lipids, HDL: High-density lipids.
Collapse
Affiliation(s)
- Khan Dureshahwar
- Department of Pharmacology, Y B Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| | - Mohammed Mubashir
- Department of Pharmacology, SDMVM's Dr. Vedprakash Patil Pharmacy College, Aurangabad, Maharashtra, India
| | - Hemant Devidas Une
- Department of Pharmacology, Y B Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| |
Collapse
|
11
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
12
|
Abstract
Diabetic polyneuropathy (DPN) is a common but intractable degenerative disorder of peripheral neurons. DPN first results in retraction and loss of sensory terminals in target organs such as the skin, whereas the perikarya (cell bodies) of neurons are relatively preserved. This is important because it implies that regrowth of distal terminals, rather than neuron replacement or rescue, may be useful clinically. Although a number of neuronal molecular abnormalities have been examined in experimental DPN, several are prominent: loss of structural proteins, neuropeptides, and neurotrophic receptors; upregulation of "stress" and "repair" proteins; elevated nitric oxide synthesis; increased AGE-RAGE signaling, NF-κB and PKC; altered neuron survival pathways; changes of pain-related ion channel investment. There is also a role for abnormalities of direct signaling of neurons by insulin, an important trophic factor for neurons that express its receptors. While evidence implicating each of these pathways has emerged, how they link together and result in neuronal degeneration remains unclear. However, several offer interesting new avenues for more definitive therapy of this condition.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Modeling long-term diabetes and related complications in rats. J Pharmacol Toxicol Methods 2016; 78:1-12. [DOI: 10.1016/j.vascn.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
|
14
|
Castany S, Carcolé M, Leánez S, Pol O. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice. PLoS One 2016; 11:e0146427. [PMID: 26730587 PMCID: PMC4701188 DOI: 10.1371/journal.pone.0146427] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Mert T, Gisi G, Celik A, Baran F, Uremis MM, Gunay I. Frequency-dependent effects of sequenced pulsed magnetic field on experimental diabetic neuropathy. Int J Radiat Biol 2015; 91:833-42. [DOI: 10.3109/09553002.2015.1068460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2015; 7:17-26. [PMID: 26813032 PMCID: PMC4718109 DOI: 10.1111/jdi.12379] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 12/13/2022] Open
Abstract
In contrast to physiological pain, pathological pain is not dependent on the presence of tissue‐damaging stimuli. One type of pathological pain – neuropathic pain – is often a consequence of nerve injury or of diseases such as diabetes. Neuropathic pain can be agonizing, can persist over long periods and is often resistant to known painkillers. A growing body of evidence shows that many pathological processes within the central nervous system are mediated by complex interactions between neurons and glial cells. In the case of painful peripheral neuropathy, spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve damage, purinergic P2X4 receptors (non‐selective cation channels activated by extracellular adenosine triphosphate) are upregulated in spinal microglia in a manner that depends on the transcription factors interferon regulatory factor 8 and 5, both of which are expressed in microglia after peripheral nerve injury. P2X4 receptor expression on the cell surface of microglia is also regulated at the post‐translational level by signaling from CC chemokine receptor chemotactic cytokine receptor 2. Furthermore, spinal microglia in response to extracellular stimuli results in signal transduction through intracellular signaling cascades, such as mitogen‐activated protein kinases, p38 and extracellular signal‐regulated protein kinase. Importantly, inhibiting the function or expression of these microglial molecules suppresses the aberrant excitability of dorsal horn neurons and neuropathic pain. These findings show that spinal microglia are a central player in mechanisms for neuropathic pain, and might be a potential target for treating the chronic pain state.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation Graduate School of Pharmaceutical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
17
|
FATANI AMALJAMIL, AL-REJAIE SALIMSALIH, ABUOHASHISH HATEMMUSTAFA, AL-ASSAF ABDULLAH, PARMAR MIHIRYOGESHKUMAR, OLA MOHAMMADSHAMSUL, AHMED MOHAMMEDMAHBOOBUDDIN. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats. Exp Ther Med 2015; 9:1670-1678. [PMID: 26136876 PMCID: PMC4471764 DOI: 10.3892/etm.2015.2305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 12/16/2022] Open
Abstract
The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF and NGF was also ameliorated by Gs treatment. Histological analysis indicated that Gs corrected the sciatic tissue in the diabetic rats. Therefore, the results demonstrated that the neuroprotective effect of Gs may be associated with the inhibitory effect on the excessive activation of inflammatory molecules and oxidative stress mediators.
Collapse
Affiliation(s)
- AMAL JAMIL FATANI
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11544, Saudi Arabia
| | - SALIM SALIH AL-REJAIE
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11544, Saudi Arabia
| | - HATEM MUSTAFA ABUOHASHISH
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11544, Saudi Arabia
- Department of Biomedical Dental Sciences, College of Dentistry, University of Dammam, Dammam, Eastern Province 31441, Saudi Arabia
| | - ABDULLAH AL-ASSAF
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11544, Saudi Arabia
| | - MIHIR YOGESHKUMAR PARMAR
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11544, Saudi Arabia
| | - MOHAMMAD SHAMSUL OLA
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11544, Saudi Arabia
| | - MOHAMMED MAHBOOBUDDIN AHMED
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11544, Saudi Arabia
| |
Collapse
|
18
|
Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 2015; 456:615-20. [DOI: 10.1016/j.bbrc.2014.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
|
19
|
Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem 2014; 70:997-1006. [PMID: 25407136 DOI: 10.1007/s13105-014-0369-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
Abstract
Hyperalgesia and allodynia are among the common manifestations of painful diabetic neuropathy. Naringenin (NA) has some biological activities, including anti-inflammatory, analgesic, and antidiabetic effects. We investigated the effects of NA administration at different doses, 20, 50, and 100 mg/kg, on streptozotocin (STZ)-induced hyperalgesia and allodynia in rats. The animals received saline or NA (20, 50, and 100 mg/kg, p.o.; once daily) for 8 weeks. Hyperalgesia was assessed by tail flick (TF) and formalin tests. Von Frey filaments were used for tactile allodynia evaluation. At the end, all rats were weighed and underwent plasma glucose and superoxide dismutase measurement. Diabetes caused significant hyperalgesia and allodynia during the above tests. NA 50 and 100 mg/kg reversed chemical and thermal hyperalgesia in diabetic rats. There were no significant differences in pain responses between NA (50 and 100 mg/kg)-treated diabetic rats and pregabalin-treated diabetic animals. Administration of NA 20 mg/kg did not alter pain-related behaviors in control and diabetic groups compared to the respective control ones. NA 50 and 100 mg/kg restored hyperglycemia as well as the decreased levels of (superoxide dismutase) SOD activity in diabetic rats. The body weight of treated diabetic rats increased significantly compared to untreated diabetics. Prolonged oral administration of NA (50 and 100 mg/kg) ameliorated some aspects of diabetic neuropathy by causing hypoglycemia and increasing the levels of antioxidant enzyme SOD. Therefore, NA makes a good candidate for treatment of diabetic neuropathy in clinical studies.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, 6517833391, Iran,
| | | |
Collapse
|
20
|
Hasanein P, Mohammad Zaheri L. Effects of rosmarinic acid on an experimental model of painful diabetic neuropathy in rats. PHARMACEUTICAL BIOLOGY 2014; 52:1398-402. [PMID: 25026351 DOI: 10.3109/13880209.2014.894090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Diabetic neuropathic (DN) pain is one of the diabetes complications. Rosmarinic acid (RA), a natural phenol antioxidant, shows some biological activities, including anti-inflammatory, analgesic, and anti-diabetic effects. OBJECTIVES We investigated the efficacy of RA administration (10 and 30 mg/kg) on streptozotocin (STZ)-induced neuropathy in rats. MATERIAL AND METHODS The animals received saline or RA (10 and 30 mg/kg, p.o.; once daily) for 8 weeks. DN was evaluated by the tail flick (TF) method, formalin test, and tactile allodynia. At the end, all rats were weighed and underwent plasma glucose measurement. RESULTS There was an increase in licking time during both formalin test phases in diabetic animals (138.5 ± 10.7 and 448.7 ± 2.6 s) that was decreased by RA10 mg/kg (103.5 ± 7.5 and 284.4 ± 19 s) and RA 30 mg/kg (81.8 ± 11 and 192.7 ± 14 s). RA 30 mg/kg caused anti-nociception during the early phase in treated controls (52.1 ± 6 s) than untreated controls (99.4 ± 5.9 s). The TF latency in diabetics (2.9 ± 0.1 s) was increased in RA10 and 30 mg/kg treated diabetics (5.3 ± 0.4 and 6 ± 0.86 s). The paw withdrawal threshold (PWT) of the diabetics (3.6 ± 0.7 g) was increased after RA 10 and 30 mg/kg (13.8 ± 0.3 and 14 ± 0.4 g) treatment. RA did not induce a significant change in body weight and plasma glucose of rats. CONCLUSION RA showed efficacy in amelioration of some aspects of DN. Therefore, RA makes a good candidate for DN treatment in clinical studies.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University , Hamedan , Iran
| | | |
Collapse
|
21
|
Moon E, Lee SO, Kang TH, Kim HJ, Choi SZ, Son MW, Kim SY. Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic db/db Mice. Biomol Ther (Seoul) 2014; 22:445-52. [PMID: 25414776 PMCID: PMC4201231 DOI: 10.4062/biomolther.2014.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study.
Collapse
Affiliation(s)
- Eunjung Moon
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Sung Ok Lee
- Graduate School of East-West Medical Science, Kyung Hee University Global Campus, Yongin 446-701
| | - Tong Ho Kang
- College of Life Sciences, Kyung Hee University Global Campus, Yongin 446-701
| | | | | | | | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799 ; Gachon Medical Research Institute, Gil Medical Center, Incheon 406-799, Republic of Korea
| |
Collapse
|
22
|
The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem Int 2014; 75:112-9. [DOI: 10.1016/j.neuint.2014.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 12/24/2022]
|
23
|
Ariza L, Pagès G, García-Lareu B, Cobianchi S, Otaegui PJ, Ruberte J, Chillón M, Navarro X, Bosch A. Experimental diabetes in neonatal mice induces early peripheral sensorimotor neuropathy. Neuroscience 2014; 274:250-9. [PMID: 24846610 DOI: 10.1016/j.neuroscience.2014.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Animal models of diabetes do not reach the severity of human diabetic neuropathy but relatively mild neurophysiological deficits and minor morphometric changes. The lack of degenerative neuropathy in diabetic rodent models seems to be a consequence of the shorter length of the axons or the shorter animal life span. Diabetes-induced demyelination needs many weeks or even months before it can be evident by morphometrical analysis. In mice myelination of the peripheral nervous system starts at the prenatal period and it is complete several days after birth. Here we induced experimental diabetes to neonatal mice and we evaluated its effect on the peripheral nerve 4 and 8 weeks after diabetes induction. Neurophysiological values showed a decline in sensory nerve conduction velocity at both time-points. Morphometrical analysis of the tibial nerve demonstrated a decrease in the number of myelinated fibers, fiber size and myelin thickness at both time-points studied. Moreover, aldose reductase and poly(ADP-ribose) polymerase activities were increased even if the amount of the enzyme was not affected. Thus, type 1 diabetes in newborn mice induces early peripheral neuropathy and may be a good model to assay pharmacological or gene therapy strategies to treat diabetic neuropathy.
Collapse
Affiliation(s)
- L Ariza
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - G Pagès
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - B García-Lareu
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - S Cobianchi
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| | - P J Otaegui
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - J Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Animal Health and Anatomy, Veterinary School, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - M Chillón
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - X Navarro
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| | - A Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
24
|
Xu X, Chen H, Ling BY, Xu L, Cao H, Zhang YQ. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes. Neurosci Bull 2014; 30:53-66. [PMID: 24194231 PMCID: PMC5562573 DOI: 10.1007/s12264-013-1387-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/03/2013] [Indexed: 12/28/2022] Open
Abstract
Painful peripheral neuropathy is a common complication of diabetes mellitus. The symptom of pain can become a major factor that decreases the quality of life of patients with diabetes, while effective treatment is lacking. In the present study, we aimed to investigate the changes of pain threshold in the early stage of diabetes in db/db mice, an animal model of type 2 diabetes mellitus, and the underlying molecular mechanisms. We found that (1) db/db mice (with a leptin receptor-null mutation and characterized by obesity and hyperglycemia) showed hypersensitivity to mechanical and thermal stimuli at the early stage of diabetes; (2) phosphorylated extracellular signal-regulated kinase (pERK), but not total ERK in the spinal cord and dorsal root ganglia in db/db mice significantly increased compared with wild-type mice. The increased pERK immunoreactivity occurred in both NeuN-expressing neurons and GFAP-expressing astrocytes, but not in Iba-1-expressing microglia; (3) both single and consecutive (for 5 days) intrathecal injections of U0126 (2 nmol per day), a selective MEK (an ERK kinase) inhibitor beginning at 8 weeks of age, attenuated the bilateral mechanical allodynia in the von-Frey test and heat hyperalgesia in Hargreave's test; and (4) db/db mice also displayed increased nocifensive behavior during the formalin test, and this was blocked by intrathecal injection of U0126. Also, the expression of pERK1 and pERK2 was upregulated following the formalin injection. Our results suggested that the activation of ERK in spinal neurons and astrocytes is correlated with pain hypersensitivity of the type 2 diabetes animal model. Inhibiting the ERK pathway may provide a new therapy for pain control in type 2 diabetes.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Hui Chen
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Bing-Yu Ling
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Lan Xu
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Hong Cao
- Institute of Neurobiology, Institutes of Brain Science, and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science, and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| |
Collapse
|
25
|
Al-Enazi MM. Protective Effects of Combined Therapy of Rutin with Silymarin on Experimentally-Induced Diabetic Neuropathy in Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.59098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Banafshe HR, Hamidi GA, Noureddini M, Mirhashemi SM, Mokhtari R, Shoferpour M. Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol 2013; 723:202-6. [PMID: 24315931 DOI: 10.1016/j.ejphar.2013.11.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 11/26/2022]
Abstract
Neuropathic pain is one of the most common complications of diabetes mellitus. As efficacy and tolerability of current therapy for neuropathic pain are not ideal, we need to develop the novel drug for better treatment. Curcumin as a natural flavonoid from Curcuma longa has considerable effects on nervous system such as, antidepressant, antinociceptive and neuroprotective effects. The present study was designed to investigate the effect of curcumin on diabetic peripheral neuropathic pain and possible involvement of opioid system. A single dose of 60mg/kg streptozotocin was injected intraperitoneally to induce diabetes in rats. STZ-induced diabetic rats were treated with curcumin (50mg/kg/day) acute and chronically. Thermal hyperalgesia and mechanical allodynia were measured on the days 0, 7, 14 and 21 after diabetes induction as behavioral scores of neuropathic pain. Chronic, but not acute, treatment with curcumin prevents the weight loss and attenuates mechanical allodynia in STZ-induced diabetic rats. Pretreatment with naloxone (1mg/kg) significantly reduced anti-allodynic effect of chronic curcumin in von Frey filament test. Our results suggest that curcumin can be considered as a new therapeutic potential for the treatment of diabetic neuropathic pain and the activation of opioid system may be involved in the antinociceptive effect of curcumin.
Collapse
Affiliation(s)
- Hamid R Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan 87159-88141, Iran; Department of Addiction studies, School of Medicine, Kashan University of Medical Sciences, Kashan 87159-88141, Iran.
| | - Gholam A Hamidi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan 87159-88141, Iran
| | - Mahdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan 87159-88141, Iran
| | - Seyyed Mehdi Mirhashemi
- Research Center for Biochemistry and Nutrition in Metabolic Disorder, School of Medicine, Kashan University of Medical Sciences, Kashan 87159-88141, Iran
| | - Rasool Mokhtari
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan 87159-88141, Iran; Physiology Research Center, Kashan University of Medical Sciences, Kashan 87159-88141, Iran
| | - Mehdi Shoferpour
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan 87159-88141, Iran
| |
Collapse
|
27
|
Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013; 262:35-45. [PMID: 23870534 DOI: 10.1016/j.jneuroim.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
Abstract
A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.
Collapse
Affiliation(s)
- Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
28
|
Suehiro K, Funao T, Fujimoto Y, Yamada T, Mori T, Nishikawa K. Relationship between noradrenaline release in the locus coeruleus and antiallodynic efficacy of analgesics in rats with painful diabetic neuropathy. Life Sci 2013; 92:1138-44. [DOI: 10.1016/j.lfs.2013.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
29
|
Lei T, Jing D, Xie K, Jiang M, Li F, Cai J, Wu X, Tang C, Xu Q, Liu J, Guo W, Shen G, Luo E. Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats. PLoS One 2013; 8:e61414. [PMID: 23637830 PMCID: PMC3630223 DOI: 10.1371/journal.pone.0061414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague-Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN.
Collapse
Affiliation(s)
- Tao Lei
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nones CFM, Reis RC, Jesus CHA, Veronez DADL, Cunha JM, Chichorro JG. Orofacial sensory changes after streptozotocin-induced diabetes in rats. Brain Res 2013; 1501:56-67. [PMID: 23313875 DOI: 10.1016/j.brainres.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/06/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathy is a common complication of diabetes and is often accompanied by episodes of pain. There is evidence that diabetic neuropathy may affect the trigeminal nerve, altering the transmission of orofacial sensory information. Structural changes in the trigeminal ganglia may be involved in the development of these sensory alterations. Herein, we evaluate the development of orofacial sensory changes after streptozotocin-induced diabetes in rats, and their sensitivity to pregabalin and morphine treatments. Furthermore, stereological analysis of the trigeminal ganglia was performed. Diabetic rats showed similar responses to 1% formalin applied into the upper lip compared to normoglycemic rats on weeks 1, 2 and 4 after streptozotocin. Additionally, there was no difference in the facial mechanical threshold of normoglycemic and diabetic rats, on weeks 1 up to 5 after streptozotocin, while the paw mechanical threshold of diabetic rats was significantly reduced. In contrast, diabetic rats developed long-lasting orofacial heat and cold hyperalgesia. Moreover, stereological analyses revealed significant neuronal loss in the trigeminal ganglia of diabetic compared to normoglycemic rats. Pregabalin treatment (30mg/kg, p.o.) of diabetic rats resulted in marked and prolonged (up to 6h) reduction of heat and cold orofacial hyperalgesia. Likewise, morphine treatment (2.5mg/kg, s.c.) abolished orofacial heat and cold hyperalgesia, but its effect was significant only up to 1h after the administration. In conclusion, the results of the present study demonstrated that streptozotocin-treated rats developed long-lasting orofacial heat and cold hyperalgesia, which is more amenable to reduction by pregabalin than morphine.
Collapse
|
31
|
Li G, Veenstra AA, Talahalli RR, Wang X, Gubitosi-Klug RA, Sheibani N, Kern TS. Marrow-derived cells regulate the development of early diabetic retinopathy and tactile allodynia in mice. Diabetes 2012; 61:3294-303. [PMID: 22923475 PMCID: PMC3501859 DOI: 10.2337/db11-1249] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothesis that marrow-derived cells, and specifically proinflammatory proteins in those cells, play a critical role in the development of diabetes-induced retinopathy and tactile allodynia was investigated. Abnormalities characteristic of the early stages of retinopathy and allodynia were measured in chimeric mice lacking inducible nitric oxide synthase (iNOS) or poly(ADP-ribosyl) polymerase (PARP1) in only their marrow-derived cells. Diabetes-induced capillary degeneration, proinflammatory changes, and superoxide production in the retina and allodynia were inhibited in diabetic animals in which iNOS or PARP1 was deleted from bone marrow cells only. Of the various marrow cells, neutrophils (and monocytes) play a major role in retinopathy development, because retinal capillary degeneration likewise was significantly inhibited in diabetic mice lacking the receptor for granulocyte colony-stimulating factor in their marrow-derived cells. Immunodepletion of neutrophils or monocytes inhibited the endothelial death otherwise observed when coculturing leukocytes from wild-type diabetic animals with retinal endothelium. iNOS and PARP1 are known to play a role in inflammatory processes, and we conclude that proinflammatory processes within marrow-derived cells play a central role in the development of diabetes complications in the retina and nerve.
Collapse
Affiliation(s)
- Guangyuan Li
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | | | | | - Xiaoqi Wang
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
| | | | | | - Timothy S. Kern
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio
- Corresponding author: Timothy S. Kern,
| |
Collapse
|
32
|
Homs J, Ariza L, Pagès G, Verdú E, Casals L, Udina E, Chillón M, Bosch A, Navarro X. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice. J Peripher Nerv Syst 2012; 16:213-27. [PMID: 22003936 DOI: 10.1111/j.1529-8027.2011.00345.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice.
Collapse
Affiliation(s)
- Judit Homs
- Department of Biochemistry and Molecular Biology and Centre de Biotecnologia i Teràpia Gènica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol 2011; 164:159-69. [PMID: 21410686 PMCID: PMC3171868 DOI: 10.1111/j.1476-5381.2011.01334.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/28/2011] [Accepted: 02/21/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was designed to clarify mechanisms responsible for the anti-allodynic effects of duloxetine in diabetes. EXPERIMENTAL APPROACH The streptozotocin-induced diabetic rat model was used to compare the efficacy of duloxetine, 5-HT, the 5-HT(2A) receptor agonist [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI)] and two antagonists (ketanserin and pruvanserin) on tactile allodynia. KEY RESULTS Systemic or intrathecal injection of duloxetine alleviated tactile allodynia in diabetic rats. The effect of systemic duloxetine was reduced by intrathecal administration of ketanserin or pruvanserin, indicating participation of spinal 5-HT(2A) receptors in the mechanism of action of duloxetine. In contrast to spinal delivery, systemic and local peripheral injections of ketanserin or pruvanserin alleviated tactile allodynia in diabetic rats. This effect was reversed immediately after systemic or local DOI injection. CONCLUSIONS AND IMPLICATIONS These results support the involvement of spinal 5-HT(2A) receptors in the ability of duloxetine to ameliorate painful diabetic neuropathy. Our data also suggest that the role of 5-HT(2A) receptors depends on the level of the neuraxis at which activation takes place, with peripheral activation contributing to tactile allodynia in diabetic rats, whereas spinal activation of this receptor alleviates tactile allodynia. The development of selective peripheral 5-HT(2A) receptor antagonists may offer a novel approach for the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- T Mixcoatl-Zecuatl
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0612, USA
| | | |
Collapse
|
34
|
Suzuki N, Hasegawa-Moriyama M, Takahashi Y, Kamikubo Y, Sakurai T, Inada E. Lidocaine attenuates the development of diabetic-induced tactile allodynia by inhibiting microglial activation. Anesth Analg 2011; 113:941-6. [PMID: 21788310 DOI: 10.1213/ane.0b013e31822827a2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lidocaine is used clinically for tactile allodynia associated with diabetes-induced neuropathy. Although the analgesic effect of lidocaine through suppression of microglial activation has been implicated in the development of injury-induced neuropathic pain, its mechanism of action in diabetes-induced tactile allodynia has not yet been completely elucidated. METHODS To evaluate the effects of lidocaine on microglial response in diabetic neuropathy, streptozotocin (STZ)-injected mice received a continuous infusion of lidocaine (vehicle, 2, or 10%) from day 14 to day 21 after STZ injection. On day 21, microglial accumulation and p38 mitogen-activated protein kinase activation in the dorsal horn were evaluated. In vitro, the effects of lidocaine on cell viability, chemotactic response to monocyte chemotactic protein-1, and induction of proinflammatory mediators were examined in interferon (IFN)-γ-stimulated primary microglial cells. RESULTS Continuous systemic administration of lidocaine in the early progression of tactile allodynia produced long-lasting analgesic effects in STZ-treated mice. Lidocaine significantly reduced accumulation and p38 phosphorylation of microglial cells in the dorsal horn. In vitro, lidocaine down-regulated IFN-γ-induced gene induction of inducible oxide synthase and interleukin-1β. Pretreatment with lidocaine significantly reduced chemotactic response to monocyte chemotactic protein-1 of IFN-γ-activated microglial cells. CONCLUSION Lidocaine alleviates STZ-induced tactile allodynia, possibly by modulating the p38 pathway in spinal microglial cells. Inhibiting microglial activation by lidocaine treatment early in the course of diabetes-induced neuropathy represents a potential therapeutic strategy for tactile allodynia.
Collapse
Affiliation(s)
- Naoko Suzuki
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Watcho P, Stavniichuk R, Tane P, Shevalye H, Maksimchyk Y, Pacher P, Obrosova IG. Evaluation of PMI-5011, an ethanolic extract of Artemisia dracunculus L., on peripheral neuropathy in streptozotocin-diabetic mice. Int J Mol Med 2011; 27:299-307. [PMID: 21225225 PMCID: PMC3044440 DOI: 10.3892/ijmm.2011.597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/13/2010] [Indexed: 11/05/2022] Open
Abstract
We previously reported that PMI-5011, an ethanolic extract of Artemisia dracunculus L., alleviates peripheral neuropathy in high fat diet-fed mice, a model of prediabetes and obesity developing oxidative stress and pro-inflammatory changes in the peripheral nervous system. This study evaluated PMI-5011 on established functional, structural, and biochemical changes associated with Type I diabetic peripheral neuropathy. C57Bl6/J mice with streptozotocin-induced diabetes of a 12-week duration, developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia, and intra-epidermal nerve fiber loss. PMI-5011 (500 mg/kg/day for 7 weeks) alleviated diabetes-induced nerve conduction slowing, small sensory nerve fiber dysfunction, and increased intra-epidermal nerve fiber density. PMI-5011 blunted sciatic nerve and spinal cord 12/15-lipoxygenase activation and oxidative-nitrosative stress, without ameliorating hyperglycemia or reducing sciatic nerve sorbitol pathway intermediate accumulation. In conclusion, PMI-5011, a safe and non-toxic botanical extract, may find use in the treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Pierre Watcho
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel) 2010; 2:2890-913. [PMID: 22069581 PMCID: PMC3153188 DOI: 10.3390/toxins2122890] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023] Open
Abstract
The action of botulinum neurotoxins (BoNTs) at the neuromuscular junction has been extensively investigated and knowledge gained in this field laid the foundation for the use of BoNTs in human pathologies characterized by excessive muscle contractions. Although much more is known about the action of BoNTs on the peripheral system, growing evidence has demonstrated several effects also at the central level. Pain conditions, with special regard to neuropathic and intractable pain, are some of the pathological states that have been recently treated with BoNTs with beneficial effects. The knowledge of the action and potentiality of BoNTs utilization against pain, with emphasis for its possible use in modulation and alleviation of chronic pain, still represents an outstanding challenge for experimental research. This review highlights recent findings on the effects of BoNTs in animal pain models.
Collapse
Affiliation(s)
- Flaminia Pavone
- CNR, Institute of Neuroscience-Roma, via del Fosso di Fiorano 64, I-00143 Roma, Italy.
| | | |
Collapse
|
37
|
Casey GP, Paul D, Gould HJ. Insulin Is Essential for the Recovery from Allodynia Induced by Complete Freund's Adjuvant. PAIN MEDICINE 2010; 11:1401-10. [DOI: 10.1111/j.1526-4637.2010.00936.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Talbot S, Chahmi E, Dias JP, Couture R. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy. J Neuroinflammation 2010; 7:36. [PMID: 20587056 PMCID: PMC2913947 DOI: 10.1186/1742-2094-7-36] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 06/29/2010] [Indexed: 12/30/2022] Open
Abstract
Background The pro-nociceptive kinin B1 receptor (B1R) is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ)-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p.), and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p.) were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR) of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I)-HPP-desArg10-Hoe 140) were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK) and antagonists (SSR240612 and R-715) were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1) and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, C,P, 6128, Succursale Downtown, Montréal, Québec, H3C 3J7, Canada
| | | | | | | |
Collapse
|
39
|
Serafín A, Molín J, Márquez M, Blasco E, Vidal E, Foradada L, Añor S, Rabanal RM, Fondevila D, Bosch F, Pumarola M. Diabetic neuropathy: electrophysiological and morphological study of peripheral nerve degeneration and regeneration in transgenic mice that express IFNbeta in beta cells. Muscle Nerve 2010; 41:630-41. [PMID: 19918773 DOI: 10.1002/mus.21564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diabetic neuropathy is one of the most frequent complications in diabetes but there are no treatments beyond glucose control, due in part to the lack of an appropriate animal model to assess an effective therapy. This study was undertaken to characterize the degenerative and regenerative responses of peripheral nerves after induced sciatic nerve damage in transgenic rat insulin I promoter / human interferon beta (RIP/IFNbeta) mice made diabetic with a low dose of streptozotocin (STZ) as an animal model of diabetic complications. In vivo, histological and immunohistological studies of cutaneous and sciatic nerves were performed after left sciatic crush. Functional tests, cutaneous innervation, and sciatic nerve evaluation showed pronounced neurological reduction in all groups 2 weeks after crush. All animals showed a gradual recovery but this was markedly slower in diabetic animals in comparison with normoglycemic animals. The delay in regeneration in diabetic RIP/IFNbeta mice resulted in an increase in active Schwann cells and regenerating neurites 8 weeks after surgery. These findings indicate that diabetic-RIP/IFNbeta animals mimic human diabetic neuropathy. Moreover, when these animals are submitted to nerve crush they have substantial deficits in nerve regrowth, similar to that observed in diabetic patients. When wildtype animals were treated with the same dose of STZ, no differences were observed with respect to nontreated animals, indicating that low doses of STZ and the transgene are not implicated in development of the degenerative and regenerative events observed in our study. All these findings indicate that RIP/IFNbeta transgenic mice are a good model for diabetic neuropathy.
Collapse
Affiliation(s)
- Anna Serafín
- Centre de Biotecnologia Animal i Terapia Gènica (CBATEG), Universitat Autònoma de Barcelona, Edifici H, Campus UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mohammadi-Farani A, Sahebgharani M, Sepehrizadeh Z, Jaberi E, Ghazi-Khansari M. Diabetic thermal hyperalgesia: role of TRPV1 and CB1 receptors of periaqueductal gray. Brain Res 2010; 1328:49-56. [PMID: 20211611 DOI: 10.1016/j.brainres.2010.02.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/10/2010] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
Abstract
Hyperalgesia is one of the debilitating complications of diabetes. This condition might be caused by defects in central or peripheral processing of pain signals. In the present study we aim to see if diabetic hyperalgesia is related to changes in Transient Receptor Potential Vanilloid 1 (TRPV1) or Cannabinoid CB1 receptors of periaqueductal gray (PAG). Activation of glutamatergic projecting neurons in midbrain ventrolateral periaqueductal gray (VL-PAG) induces antinociception. Agonists of TRPV1 in VL-PAG increase firing of these glutamatergic neurons. CB1 receptor agonists also cause antinociception by decreasing Gamma Aminobutyric Acid (GABA) release in PAG and disinhibiting these glutamatergic neurons. In the present study antinociceptive effect of intra VL-PAG microinjections of CB1 and TRPV1 agonists [WIN55,212-2 (WIN) and capsaicin respectively] were compared in diabetic vs. non-diabetic rats, meanwhile mRNA expression of these receptors in PAG of diabetic and non-diabetic rats were evaluated by real time polymerase chain reaction (real time PCR) assay. Our results showed an attenuation of capsaicin antinociceptive effect (P<0.05) and TRPV1 receptor expression (P=0.023) but an increase in WIN antinociceptive effect (P<0.05) and CB1 receptor expression (P<0.001) in PAG of diabetic vs. non-diabetic rats. It is concluded that down-regulation of TRPV1 receptors in PAG is responsible for reduced antinociceptive effect of TRPV1 agonist. This finding may be an underlying cause of diabetic hyperalgesia. Up-regulation of CB1 receptors might be a compensatory mechanism but the precise elucidation of the effects of CB1 changes on disinhibition needs further studies.
Collapse
MESH Headings
- Analgesia/methods
- Analgesics/pharmacology
- Animals
- Benzoxazines/pharmacology
- Capsaicin/pharmacology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/physiopathology
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Glutamic Acid/metabolism
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Male
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/drug effects
- Neurons/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Periaqueductal Gray/metabolism
- Periaqueductal Gray/physiopathology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- TRPV Cation Channels/agonists
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
41
|
Bach-Rojecky L, Salković-Petrisić M, Lacković Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol 2010; 633:10-4. [PMID: 20123097 DOI: 10.1016/j.ejphar.2010.01.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
We investigated antinociceptive activity of botulinum toxin type A (BTX-A) in a model of diabetic neuropathic pain in rats. Male Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (80mg/kg). Sensitivity to mechanical and thermal stimuli was measured with the paw-pressure and hot-plate test, respectively. The formalin test was used to measure sensitivity to chemical stimuli. Diabetic animals with pain thresholds lower for at least 25% compared to the non-diabetic group were considered neuropathic and were injected with BTX-A either subcutaneously (3, 5 and 7U/kg) or intrathecally (1U/kg). Mechanical and thermal sensitivity was measured at several time-points. After peripheral application, BTX-A (5 and 7U/kg) reduced mechanical and thermal hypersensitivity not only on ipsilateral, but on contralateral side, too. The antinociceptive effect started 5days following BTX-A injection and lasted at least 15days. Formalin-induced hypersensitivity in diabetic animals was abolished as well. When applied intrathecally, BTX-A (1U/kg) reduced diabetic hyperalgesia within 24h supporting the assumption of retrograde axonal transport of BTX-A from the peripheral site of injection to central nervous system. The results presented here demonstrate the long-lasting pain reduction after single BTX-A injection in the animals with diabetic neuropathy. The bilateral pain reduction after unilateral toxin application and the effectiveness of lower dose with the faster onset after the intrathecal injection suggest the involvement of the central nervous system in the antinociceptive action of BTX-A in painful diabetic neuropathy.
Collapse
Affiliation(s)
- Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, Zagreb, Croatia.
| | | | | |
Collapse
|
42
|
Du Y, Tang J, Li G, Li G, Berti-Mattera L, Lee CA, Bartkowski D, Gale D, Monahan J, Niesman MR, Alton G, Kern TS. Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Invest Ophthalmol Vis Sci 2010; 51:2158-64. [PMID: 20071676 DOI: 10.1167/iovs.09-3674] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. p38 mitogen-activated protein kinase (MAPK) is known to play a regulatory role in inflammatory processes in disease. Inflammation has been linked also to the development of diabetic retinopathy in rodents. This study was conducted to evaluate the effect of a p38 MAPK inhibitor on the development of early stages of diabetic retinopathy in rats. Methods. Streptozotocin-diabetic rats were assigned to two groups-treated with the p38 MAPK inhibitor PHA666859 (Pfizer, New York, NY) and untreated-and compared with age-matched nondiabetic control animals. Results. At 2 months of diabetes, insulin-deficient diabetic control rats exhibited significant increases in retinal superoxide, nitric oxide (NO), cyclooxygenase (COX)-2, and leukostasis within retinal microvessels. All these abnormalities were significantly inhibited by the p38 MAPK inhibitor (25 mg/kgBW/d). At 10 months of diabetes, significant increases in the number of degenerate (acellular) capillaries and pericyte ghosts were measured in control diabetic rats versus those in nondiabetic control animals, and pharmacologic inhibition of p38 MAPK significantly inhibited all these abnormalities (all P < 0.05). This therapy also had beneficial effects outside the eye in diabetes, as evidenced by the inhibition of a diabetes-induced hypersensitivity of peripheral nerves to light touch (tactile allodynia). Conclusions. p38 MAPK plays an important role in diabetes-induced inflammation in the retina, and inhibition of p38 MAPK offers a novel therapeutic approach to inhibiting the development of early stages of diabetic retinopathy and other complications of diabetes.
Collapse
Affiliation(s)
- Yunpeng Du
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jolivalt CG, Mizisin LM, Nelson A, Cunha JM, Ramos KM, Bonke D, Calcutt NA. B vitamins alleviate indices of neuropathic pain in diabetic rats. Eur J Pharmacol 2009; 612:41-7. [DOI: 10.1016/j.ejphar.2009.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/01/2009] [Accepted: 04/09/2009] [Indexed: 02/09/2023]
|
44
|
Qin C, Ghorbani MLM, Wu M, Farber JP, Ma J, Foreman RD. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats. Auton Neurosci 2009; 145:27-34. [PMID: 19027368 PMCID: PMC2658770 DOI: 10.1016/j.autneu.2008.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/10/2008] [Indexed: 01/11/2023]
Abstract
The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats as control. Four to eleven weeks after injections, extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated rats. Esophageal distensions (ED, 0.2, 0.4 ml, 20 s) were produced by water inflation of a latex balloon in the thoracic esophagus. Noxious ED (0.4 ml, 20 s) altered activity of 44% (55/126) and 38% (50/132) of spinal neurons in diabetic and control rats, respectively. The short-lasting excitatory responses to ED were encountered more frequently in diabetic rats (27/42 vs 15/41, P<0.05). Spinal neurons with low threshold for excitatory responses to ED were more frequently encountered in diabetic rats (33/42 vs 23/41, P<0.05). However, mean excitatory responses and duration of responses to noxious ED were significantly reduced for high-threshold neurons in diabetic rats (7.4+/-1.1 vs 13.9+/-3.3 imp/s; 19.0+/-2.3 vs 31.2+/-5.5 s; P<0.05). In addition, more large size somatic receptive fields were found for spinal neurons with esophageal input in diabetic rats than in control rats (28/42 vs 19/45, P<0.05). These results suggested that diabetes influenced response characteristics of thoracic spinal neurons receiving mechanical esophageal input, which might indicate an altered spinal visceroceptive processing underlying diabetic esophageal neuropathy.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Johnson MS, Ryals JM, Wright DE. Early loss of peptidergic intraepidermal nerve fibers in an STZ-induced mouse model of insensate diabetic neuropathy. Pain 2008; 140:35-47. [PMID: 18762382 PMCID: PMC2602970 DOI: 10.1016/j.pain.2008.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/06/2008] [Accepted: 07/07/2008] [Indexed: 01/18/2023]
Abstract
Peptidergic and nonpeptidergic nociceptive neurons represent parallel yet distinct pathways of pain transmission, but the functional consequences of such specificity are not fully understood. Here, we quantified the progression of peptidergic and nonpeptidergic axon loss within the epidermis in the setting of a dying-back neuropathy induced by diabetes. STZ-induced diabetic MrgD mice heterozygous for green fluorescent protein (GFP) in nonpeptidergic DRG neurons were evaluated for sensitivity to mechanical and noxious thermal and chemogenic stimuli 4 or 8 weeks post-STZ. Using GFP expression in conjunction with PGP9.5 staining, nonpeptidergic (PGP+/GFP+) and peptidergic (PGP+/GFP-) intraepidermal nerve fibers (IENFs) were quantified at each time point. At 4 weeks post-STZ, nonpeptidergic epidermal innervation remained unchanged while peptidergic innervation was reduced by 40.6% in diabetic mice. By 8 weeks post-STZ, both nonpeptidergic innervation and peptidergic innervation were reduced in diabetic mice by 34.1% and 43.8%, respectively, resulting in a 36.5% reduction in total epidermal IENFs. Behavioral deficits in mechanical, thermal, and chemogenic sensitivity were present 4 weeks post-STZ, concomitant with the reduction in peptidergic IENFs, but did not worsen over the next 4 weeks as nonpeptidergic fibers were lost, suggesting that the early reduction in peptidergic fibers may be an important driving force in the loss of cutaneous sensitivity. Furthermore, behavioral responses were correlated at the 4 week time point with peptidergic, but not nonpeptidergic, innervation. These results reveal that peptidergic and nonpeptidergic nociceptive neurons are differentially damaged by diabetes, and behavioral symptoms are more closely related to the losses in peptidergic epidermal fibers.
Collapse
Affiliation(s)
- Megan S Johnson
- Department of Anatomy and Cell Biology, KLSIC, Building 64, Room 2036, Mail Stop 3051, 2146 W. 39th Street, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
46
|
Brussee V, Guo G, Dong Y, Cheng C, Martinez JA, Smith D, Glazner GW, Fernyhough P, Zochodne DW. Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 2008; 57:1664-73. [PMID: 18332094 DOI: 10.2337/db07-1737] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Peripheral neuropathy associated with type 2 diabetes (DPN) is not widely modeled. We describe unique features of DPN in type 2 diabetic Zucker diabetic fatty (ZDF) rats. RESEARCH DESIGN AND METHODS We evaluated the structural, electrophysiological, behavioral, and molecular features of DPN in ZDF rats and littermates over 4 months of hyperglycemia. The status of insulin signaling transduction molecules that might be interrupted in type 2 diabetes and selected survival-, stress-, and pain-related molecules was emphasized in dorsal root ganglia (DRG) sensory neurons. RESULTS ZDF rats developed slowing of motor sciatic-tibial and sensory sciatic digital conduction velocity and selective mechanical allodynia with preserved thermal algesia. Diabetic sural axons, preserved in number, developed atrophy, but there was loss of large-calibre dermal and small-calibre epidermal axons. In diabetic rats, insulin signal transduction pathways in lumbar DRGs were preserved or had trends toward upregulation: mRNA levels of insulin receptor beta-subunit (IRbeta), insulin receptor substrate (IRS)-1, and IRS-2. The numbers of neurons expressing IRbeta protein were also preserved. There were trends toward early rises of mRNA levels of heat shock protein 27 (HSP27), the alpha2delta1 calcium channel subunit, and phosphatidylinositol 3-kinase in diabetes. Others were unchanged, including nuclear factor-kappaB (NF-kappaB; p50/p105) and receptor for advanced glycosylation endproducts (RAGE) as was the proportion of neurons expressing HSP27, NF-kappaB, and RAGE protein. CONCLUSIONS ZDF type 2 diabetic rats develop a distal degenerative sensory neuropathy accompanied by a selective long-term pain syndrome. Neuronal insulin signal transduction molecules are preserved.
Collapse
Affiliation(s)
- Valentine Brussee
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 2008; 56:378-86. [PMID: 18186080 DOI: 10.1002/glia.20623] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Painful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. However, it remains unknown whether spinal microglia are activated under diabetic conditions and whether they contribute to diabetes-induced tactile allodynia. In the present study, using streptozotocin (STZ)-induced diabetic rats that displayed tactile allodynia, we found several morphological changes of activated microglia in the dorsal horn. These included increases in Iba1 and OX-42 labeling (markers of microglia), hypertrophic morphology, the thickness and the retraction of processes, and in the number of activated microglia cells. Furthermore, in the dorsal horn of STZ diabetic rats, extracellular signal-regulated protein kinase (ERK) and an upstream kinase, Src-family kinase (SFK), both of which are implicated in microglial functions, were activated exclusively in microglia. Moreover, inhibition of ERK phosphorylation in the dorsal horn by intrathecal administration of U0126, an inhibitor of ERK activation, produced a striking alleviation of existing, long-term tactile allodynia of diabetic rats. We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
48
|
Sullivan KA, Lentz SI, Roberts JL, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets 2008; 9:3-13. [PMID: 18220709 DOI: 10.2174/138945008783431763] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy (DN) is a serious and debilitating complication of both type 1 and type 2 diabetes. Despite intense research efforts into multiple aspects of this complication, including both vascular and neuronal metabolic derangements, the only treatment remains maintenance of euglycemia. Basic research into the mechanisms responsible for DN relies on using the most appropriate animal model. The advent of genetic manipulation has moved mouse models of human disease to the forefront. The ability to insert or delete genes affected in human patients offers unique insight into disease processes; however, mice are still not humans and difficulties remain in interpreting data derived from these animals. A number of studies have investigated and described DN in mice but it is difficult to compare these studies with each other or with human DN due to experimental differences including background strain, type of diabetes, method of induction and duration of diabetes, animal age and gender. This review describes currently used DN animal models. We followed a standardized diabetes induction protocol and designed and implemented a set of phenotyping parameters to classify the development and severity of DN. By applying standard protocols, we hope to facilitate the comparison and characterization of DN across different background strains in the hope of discovering the most human like model in which to test potential therapies.
Collapse
Affiliation(s)
- Kelli A Sullivan
- University of Michigan, Departments of Neurology and Internal Medicine, USA
| | | | | | | |
Collapse
|
49
|
Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM. Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst 2007; 12:250-61. [PMID: 18042135 DOI: 10.1111/j.1529-8027.2007.00144.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much of our understanding of the effects of diabetes on the peripheral nervous system is derived from models induced by streptozotocin in which hyperglycemia is rapidly caused by pancreatic beta-cell destruction. Here, we have quantified sensory impairments over time in leptin receptor (lepr)-null mutant -/- mice, a type 2 model of diabetes in which the absence of leptin receptor signaling leads to obesity and chronic hyperglycemia by 4 weeks of age. To assess these mice as a model for peripheral neuropathy, we quantified the responsiveness of lepr -/- mice to mechanical, thermal, and chemogenic stimuli, as well as epidermal and dermal innervation of the hind paw. Compared with wild-type +/+ and heterozygous +/- mice, lepr -/- mice displayed reduced sensitivity to mechanical stimuli by 6 weeks of age, and however, responses to noxious heat were normal. Lepr -/- mice also devoted less activity to their injected paw during the second phase following formalin administration. However, epidermal and dermal innervation of lepr -/- mice was not different from that of lepr +/+ and +/- mice even after 10 weeks of hyperglycemia, suggesting that cutaneous innervation is resistant to chronic hyperglycemia in these mice. These results suggest that certain rodent nocifensive behaviors may be linked to the abundance of cutaneous innervation, while others are not. Finally, these results reveal that the lepr -/- mice may not be useful to study neuropathy associated with distal axonal degeneration but may be better suited for studies of hyperglycemia-induced sensory neuron dysfunction without distal nerve loss.
Collapse
Affiliation(s)
- Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | | | | | | | | |
Collapse
|
50
|
Johnson MS, Ryals JM, Wright DE. Diabetes-induced chemogenic hypoalgesia is paralleled by attenuated stimulus-induced fos expression in the spinal cord of diabetic mice. THE JOURNAL OF PAIN 2007; 8:637-49. [PMID: 17532267 PMCID: PMC1994928 DOI: 10.1016/j.jpain.2007.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 02/22/2007] [Accepted: 04/06/2007] [Indexed: 11/23/2022]
Abstract
UNLABELLED Chronic hyperglycemia in diabetes induces abnormal nerve pathologies, resulting in diabetic neuropathy (DN). Sensory symptoms of DN can manifest as positive (painful), negative (insensate), or both. Streptozotocin (STZ)-induced diabetic C57Bl/6 mice have reduced cutaneous innervation and display reduced behavioral responses to noxious stimuli, reflecting the insensate aspect of the human syndrome. Current studies were undertaken to determine whether the diabetes-induced deficits in pain responses are reflected by changes in spinal activation in this model of DN. Nocifensive responses of nondiabetic and diabetic mice to formalin injection were measured 1, 3, 5, and 7 weeks after STZ, and at each time point formalin-induced spinal Fos expression was quantified. Responses of diabetic mice were significantly reduced during the second phase of the formalin test beginning 3 weeks after STZ and during Phase 1 beginning 5 weeks after STZ. Consistent with the behavioral responses, the number of Fos-positive cells in the dorsal horn of diabetic animals was significantly reduced beginning 3 weeks after STZ and continuing 5 and 7 weeks after STZ. The deficits at 5 weeks after STZ were restored by 2-week treatments with insulin or neurotrophins. These results demonstrate that the reduced sensation occurring from progressive peripheral axon loss results in functional deficits in spinal cord activation. PERSPECTIVE The reduced expression of the immediate early gene Fos as an indicator of pain transmission supports the diabetes-induced loss of sensation in this Type 1 model of diabetes. This murine model may be better suited to understanding the insensate symptoms of diabetic patients in the absence of chronic pain.
Collapse
Affiliation(s)
- Megan S Johnson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|