1
|
Actions of FTY720 (Fingolimod), a Sphingosine-1-Phosphate Receptor Modulator, on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-Lymphocytes. Molecules 2020; 25:molecules25194525. [PMID: 33023219 PMCID: PMC7582672 DOI: 10.3390/molecules25194525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023] Open
Abstract
FTY720 (fingolimod), a modulator of sphingosine-1-phosphate receptors, is known to produce the immunomodulatory actions and to be beneficial for treating the relapsing multiple sclerosis. However, whether it exerts any effects on membrane ion currents in immune cells remains largely unknown. Herein, the effects of FTY720 on ionic currents in Jurkat T-lymphocytes were investigated. Cell exposure to FTY720 suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner with an IC50 value of 1.51 μM. Increasing the FTY720 concentration not only decreased the IK(DR) amplitude but also accelerated the inactivation time course of the current. By using the minimal reaction scheme, the effect of FTY720 on IK(DR) inactivation was estimated with a dissociation constant of 3.14 μM. FTY720 also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor, and recovery from IK(DR) became slow during the exposure to this compound. Cumulative inactivation for IK(DR) in response to repetitive depolarizations was enhanced in the presence of FTY720. In SEW2871-treated cells, FTY720-induced inhibition of IK(DR) was attenuated. This compound also exerted a stimulatory action on the activity of intermediate-conductance Ca2+-activated K+ channels in Jurkat T-lymphocytes. However, in NSC-34 neuronal cells, FTY720 did not modify the inactivation kinetics of KV3.1-encoded IK(DR), although it suppressed IK(DR) amplitude in these cells. Collectively, the perturbations by FTY720 on different types of K+ channels may contribute to the functional activities of immune cells, if similar findings appear in vivo.
Collapse
|
2
|
Incurred sample reanalysis of fingolimod and fingolimod phosphate in blood: stability evaluation and application to a rat pharmacokinetic study. Bioanalysis 2017; 9:565-577. [PMID: 28300418 DOI: 10.4155/bio-2016-0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Incurred sample reanalysis (ISR) is an in-study validation parameter, which reinforces that the validated bioanalytical methods are reproducible. ISR of whole blood samples is complex when the test compounds can interconvert, ex vivo. Fingolimod and fingolimod phosphate are highly distributed in the blood cellular components and undergo rapid interconversion, both in vivo and ex vivo. An LC-MS/MS method capable of simultaneous quantification of fingolimod and fingolimod phosphate with the controlled sample preparation procedure is essential. RESULTS The ex vivo analyte interconversion in blood was controlled by lysing the blood cells. CONCLUSION Lysis of blood samples not only controlled the interconversion but also rendered homogeneity to the sample, which led to acceptable ISR results from the study.
Collapse
|
3
|
|
4
|
Abstract
Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. In this study we used CN as a target enzyme to investigate the immunosuppressive properties of a series of natural compounds from Garcinia mangostana L., and discovered an active compound, isogarcinol. Enzymatic assays showed that isogarcinol inhibited CN in a dose-dependent manner. At concentrations resulting in relatively low cytotoxicity isogarcinol significantly inhibited proliferation of murine spleen T-lymphocytes induced by concanavalin A (ConA) and the mixed lymphocyte reaction (MLR). In addition, it performed much better in acute toxicity tests and via oral administration in mice than cyclosporin A (CsA), with few adverse reactions and low toxicity in experimental animals. Oral administration of isogarcinol in mice resulted in a dose-dependent decrease in delayed type hypersensitivity (DTH) and prolonged graft survival in allogeneic skin transplantation. These findings suggest that isogarcinol could serve as a new oral immunomodulatory drug for preventing transplant rejection, and for long-term medication in autoimmune diseases.
Collapse
|
5
|
Reyes JL, Espinoza-Jiménez AF, González MI, Verdin L, Terrazas LI. Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis. Cell Immunol 2010; 267:77-87. [PMID: 21185554 DOI: 10.1016/j.cellimm.2010.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/18/2010] [Accepted: 11/29/2010] [Indexed: 12/19/2022]
Abstract
Helminth infections induce strong immunoregulation that can modulate subsequent pathogenic challenges. Taenia crassiceps causes a chronic infection that induces a Th2-biased response and modulates the host cellular immune response, including reduced lymphoproliferation in response to mitogens, impaired antigen presentation and the recruitment of suppressive alternatively activated macrophages (AAMФ). In this study, we aimed to evaluate the ability of T. crassiceps to reduce the severity of experimental autoimmune encephalomyelitis (EAE). Only 50% of T. crassiceps-infected mice displayed EAE symptoms, which were significantly less severe than uninfected mice. This effect was associated with both decreased MOG-specific splenocyte proliferation and IL-17 production and limited leukocyte infiltration into the spinal cord. Infection with T. crassiceps induced an anti-inflammatory cytokine microenvironment, including decreased TNF-α production and high MOG-specific production of IL-4 and IL-10. While the mRNA expression of TNF-α and iNOS was lower in the brain of T. crassiceps-infected mice with EAE, markers for AAMФ were highly expressed. Furthermore, in these mice, there was reduced entry of CD3(+)Foxp3(-) cells into the brain. The T. crassiceps-induced immune regulation decreased EAE severity by dampening T cell activation, proliferation and migration to the CNS.
Collapse
Affiliation(s)
- José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo, México 54090, Mexico
| | | | | | | | | |
Collapse
|
6
|
Chiba K. Sphingosine 1-phosphate receptor type 1 as a novel target for the therapy of autoimmune diseases. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Hartung HP. High-dose, high-frequency recombinant interferon beta-1a in the treatment of multiple sclerosis. Expert Opin Pharmacother 2009; 10:291-309. [PMID: 19236200 DOI: 10.1517/14656560802677882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is at present no cure for multiple sclerosis (MS), and existing therapies are designed primarily to prevent lesion formation, decrease the rate and severity of relapses and delay the resulting disability by reducing levels of inflammation. OBJECTIVE The aim of this review was to assess the treatment of relapsing MS with particular focus on subcutaneous (s.c.) interferon (IFN) beta-1a. METHOD The literature on IFN beta-1a therapy of MS was reviewed based on a PubMed search (English-language publications from 1990) including its pharmacodynamics and pharmacokinetics, clinical efficacy in relapsing MS as shown in placebo-controlled studies and in comparative trials, efficacy in secondary progressive MS, safety and tolerability, and the impact of neutralizing antibodies. CONCLUSION The literature suggests that high-dose, high-frequency s.c. IFN beta-1a offers an effective option for treating patients with relapsing MS, with proven long-term safety and tolerability, and has a favourable benefit-to-risk ratio compared with other forms of IFN beta.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Heinrich-Heine-University, Department of Neurology, Moorenstreet 5, D-40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Berger JR, Houff S. Opportunistic infections and other risks with newer multiple sclerosis therapies. Ann Neurol 2009; 65:367-77. [DOI: 10.1002/ana.21630] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol 2008; 4:47-59. [PMID: 19034671 DOI: 10.1007/s11481-008-9135-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Progressive human immunodeficiency virus (HIV)-1 infection and virus-induced neuroinflammatory responses effectuate monocyte-macrophage transmigration across the blood-brain barrier (BBB). A key factor in mediating these events is monocyte chemotactic protein-1 (MCP-1). Upregulated glial-derived MCP-1 in HIV-1-infected brain tissues generates a gradient for monocyte recruitment into the nervous system. We posit that the inter-relationships between MCP-1, voltage-gated ion channels, cell shape and volume, and cell mobility underlie monocyte transmigration across the BBB. In this regard, MCP-1 serves both as a chemoattractant and an inducer of monocyte-macrophage ion flux affecting cell shape and mobility. To address this hypothesis, MCP-1-treated bone marrow-derived macrophages (BMM) were analyzed for gene and protein expression, electrophysiology, and capacity to migrate across a laboratory constructed BBB. MCP-1 enhanced K+ channel gene (KCNA3) and channel protein expression. Electrophysiological studies revealed that MCP-1 increased outward K+ currents in a dose-dependent manner. In vitro studies demonstrated that MCP-1 increased BMM migration across an artificial BBB, and the MCP-1-induced BMM migration was blocked by tetraethylammonium, a voltage-gated K+ channel blocker. Together these data demonstrated that MCP-1 affects macrophage migratory movement through regulation of voltage-gated K+ channels and, as such, provides a novel therapeutic strategy for neuroAIDS.
Collapse
|
10
|
Bonatti H, Gillis J, Berger N, Mark W, Kofler HJ, Margreiter R, Pfausler B. Remission of multiple sclerosis in a patient with insulin dependent diabetes mellitus following combined kidney-pancreas transplantation. Transpl Int 2008; 21:916-8. [DOI: 10.1111/j.1432-2277.2008.00704.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139-50. [PMID: 18216770 DOI: 10.1038/nrm2329] [Citation(s) in RCA: 2909] [Impact Index Per Article: 171.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has become increasingly difficult to find an area of cell biology in which lipids do not have important, if not key, roles as signalling and regulatory molecules. The rapidly expanding field of bioactive lipids is exemplified by many sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and lyso-sphingomyelin, which have roles in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking. Deciphering the mechanisms of these varied cell functions necessitates an understanding of the complex pathways of sphingolipid metabolism and the mechanisms that regulate lipid generation and lipid action.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
12
|
Abstract
BACKGROUND Current disease-modifying drugs (DMDs) have positively affected the treatment of relapsing-remitting multiple sclerosis (RRMS); however, the requirement for long-term injections imposes a burden on patients and may lead to reduced adherence in some cases. Furthermore, not all patients respond adequately to current DMDs, suggesting that certain patients require different therapeutic approaches. Therefore, alternative MS treatments with less invasive routes of administration and new modes of action are needed to expand the current treatment repertoire, increase patient satisfaction and adherence, and thereby improve efficacy. DISCUSSION This review discusses the current unmet need for an orally administered treatment for RRMS, including potential benefits of this route of administration, and implications for improved treatment outcomes. Oral drugs that are currently in Phase II/III clinical development are discussed.
Collapse
Affiliation(s)
- B A Cohen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
13
|
Maitra R, Hamilton JW. Altered biogenesis of deltaF508-CFTR following treatment with doxorubicin. Cell Physiol Biochem 2007; 20:465-72. [PMID: 17762173 DOI: 10.1159/000107530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2007] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common of these mutations is deletion of a phenylalanine residue at position 508 (Delta F508), which accounts for approximately 70% of all CF alleles. This mutation interferes with the biogenesis and maturation of Delta F508-CFTR to the plasma membrane. However, Delta F508-CFTR can partially function upon proper localization. Thus, pharmacological correction of Delta F508-CFTR maturation holds promise in CF therapy. Our previous studies indicate that a single non-cytotoxic dose of the anthracycline doxorubicin (Dox) significantly increase Delta F508-CFTR-associated chloride secretion in MDCK cells by increasing the expression of this protein at the apical plasma membrane. We report here that Dox alters the biogenesis of Delta F508-CFTR. Treatment with Dox increases the resistance of Delta F508-CFTR to trypsin digestion, possibly by expediting protein folding. Further, treatment with Dox reduces the amount of polyubiquitinated Delta F508-CFTR in cells and prolongs the half-life of this protein. Concomitantly, treatment with Dox decreases the association of Delta F508-CFTR with HSP70 but does not alter the expression of major HSP70 family members. Based on these results, we propose that Dox expedites the folding and maturation of Delta F508-CFTR by acting as a pharmacological chaperone, which consequently promotes the functional expression of this protein in MDCK cells.
Collapse
Affiliation(s)
- Rangan Maitra
- Center for Organic and Medicinal Chemistry, RTI International, Research Triangle Park, NC, USA
| | | |
Collapse
|
14
|
Xin C, Ren S, Eberhardt W, Pfeilschifter J, Huwiler A. FTY720 suppresses interleukin-1beta-induced secretory phospholipase A2 expression in renal mesangial cells by a transcriptional mechanism. Br J Pharmacol 2007; 150:943-50. [PMID: 17325654 PMCID: PMC2013874 DOI: 10.1038/sj.bjp.0707171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.
Collapse
Affiliation(s)
- C Xin
- Institute of Pharmacology, University of Bern Bern, Switzerland
| | - S Ren
- Institute of Pharmacology, University of Bern Bern, Switzerland
| | - W Eberhardt
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - J Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - A Huwiler
- Institute of Pharmacology, University of Bern Bern, Switzerland
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
- Author for correspondence:
| |
Collapse
|
15
|
Payne SG, Oskeritzian CA, Griffiths R, Subramanian P, Barbour SE, Chalfant CE, Milstien S, Spiegel S. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; 109:1077-85. [PMID: 17008548 PMCID: PMC1785128 DOI: 10.1182/blood-2006-03-011437] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023] Open
Abstract
FTY720 is a potent immunomodulator drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. FTY720 is phosphorylated in vivo by sphingosine kinase 2 to FTY720-phosphate, which acts as a potent sphingosine-1-phosphate (S1P) receptor agonist. However, in contrast to S1P, FTY720 has no effect on mast-cell degranulation, yet significantly reduces antigen-induced secretion of PGD2 and cysteinyl-leukotriene. Unexpectedly, this effect of FTY720 was independent of its phosphorylation and S1P receptor functions. The rate-limiting step in the biosynthesis of all eicosanoids is the phospholipase A2 (PLA2)-mediated release of arachidonic acid from glycerol phospholipids. Although FTY720 also reduced arachidonic acid release in response to antigen, it had no effect on translocation of cPLA2 or ERK1/2 activation, suggesting that it does not interfere with FcepsilonRI-mediated events leading to cPLA2 activation. Remarkably, however, FTY720 drastically inhibited recombinant cPLA2alpha activity, whereas FTY720-phosphate, sphingosine, or S1P had no effect. This study has uncovered a unique action of FTY720 as an inhibitor of cPLA2alpha and hence on production of all eicosanoids. Our results have important implications for the potential therapeutic mechanism of action of FTY720 in eicosanoid-driven inflammatory disorders such as asthma and multiple sclerosis.
Collapse
Affiliation(s)
- Shawn G Payne
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, Benoit S, Ireland G, Luxenberg D, Askew GR, Milarski KL, Groves C, Brown T, Carito BA, Percival K, Carreno BM, Collins M, Marusic S. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 2007; 182:124-34. [PMID: 17182110 DOI: 10.1016/j.jneuroim.2006.10.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/02/2006] [Accepted: 10/11/2006] [Indexed: 01/10/2023]
Abstract
Interactions between PD-1 and its two differentially expressed ligands, PD-L1 and PD-L2, attenuate T cell activation and effector function. To determine the role of these molecules in autoimmune disease of the CNS, PD-1-/-, PD-L1-/- and PD-L2-/- mice were generated and immunized to induce experimental autoimmune encephalomyelitis (EAE). PD-1-/- and PD-L1-/- mice developed more severe EAE than wild type and PD-L2-/- mice. Consistent with this, PD-1-/- and PD-L1-/- cells produced elevated levels of the pro-inflammatory cytokines IFN-gamma, TNF, IL-6 and IL-17. These results demonstrate that interactions between PD-1/PD-L1, but not PD-1/PDL-2, are crucial in attenuating T cell responses in EAE.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- B7-1 Antigen/metabolism
- B7-H1 Antigen
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Glycoproteins/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-6/biosynthesis
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocyte Activation
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Peptides/deficiency
- Peptides/metabolism
- Programmed Cell Death 1 Ligand 2 Protein
- Programmed Cell Death 1 Receptor
- Severity of Illness Index
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Laura L Carter
- Inflammation, Wyeth Research, 200 CambridgePark Dr., Cambridge, MA 02140, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chofflon M. Mechanisms of action for treatments in multiple sclerosis: Does a heterogeneous disease demand a multi-targeted therapeutic approach? BioDrugs 2006; 19:299-308. [PMID: 16207071 DOI: 10.2165/00063030-200519050-00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The etiology of multiple sclerosis (MS) is incompletely understood, and evidence suggests there may be more than one underlying cause in this disorder. Furthermore, this complex and heterogeneous autoimmune disease shows a high degree of clinical variability between patients. Therefore, in the absence of a single therapeutic target for MS, it is difficult to apply conventional drug design strategies in the search for new treatments. We review the potential mechanisms of action of several effective therapies for MS that are currently available or in development. The effects of each treatment are described in terms of their actions on key processes in a five-step model of MS pathogenesis. Conventional immunosuppressants targeting intracellular ligands (e.g. mitoxantrone) have broad cytotoxic effects on B cells, T cells, and macrophages. This suppresses the pathogenic immune response in MS with high efficacy but is also associated with high toxicity, limiting the long-term use of these agents. Monoclonal antibodies (e.g. natalizumab and alemtuzumab) are a new generation of immunosuppressants that act on immune-cell surface ligands. These agents have narrower immunosuppressive actions and different safety profiles compared with conventional immunosuppressants. Immunomodulators (interferon-beta and glatiramer acetate), which shift the immune balance toward an anti-inflammatory response, are at the frontline of treatments for MS. Immunomodulators have targeted actions on the immune system, but affect a greater number of immunopathogenic processes than monoclonal antibodies. Given the inherent heterogeneity of MS, such treatments, which act at many levels of the disease, may achieve the best clinical results. Using our understanding of the interplay between mechanism of action and clinical effects in MS therapies may help us to better design and select new treatments for the future.
Collapse
Affiliation(s)
- Michel Chofflon
- Neurology Department, Hôpitaux Universitaires de Genève, Geneva, Switzerland.
| |
Collapse
|
18
|
Lu X, Bittman R. Enantioselective synthesis of the phosphate esters of the immunosuppressive lipid FTY720. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Abstract
Multiple sclerosis (MS) is both a complex and chronic neurological disease of the CNS. This poses unique challenges for drug discovery in terms of delineating specific targets related to disease mechanisms and developing safe and effective molecules for clinical application. Preclinical animal models of MS provide the necessary test bed for evaluating the effects of novel therapeutic strategies. Because the clinical manifestations and pathological consequences of disease vary dramatically from individual to individual, as well as treatment response to existing therapies, this creates a significant research endeavor in terms of translating preclinical methodologies to the clinical domain. Potentially exciting treatments have emerged in the form of natalizumab (Tysabri), an alpha4 integrin antagonist, and more recently FTY720, a sphinogosine-1 phosphate receptor modulator, providing a compelling proof-of-principle from bench to bedside. However, further research is required to discharge safety concerns associated with these therapeutic avenues. Future prospects in the guise of disease-modifying therapies that target the inflammatory and neurodegenerative components of disease have come to the forefront of preclinical research with the sole aim of reducing the underlying irreversible progressive disability of MS. Significant progress with novel therapies will be made by implementing biomarker strategies that extrapolate robustly from animal models to the divergent patient populations of MS. The future therapeutic options for MS will depend on improvements in understanding the precise factors involved in disease onset and progression and subsequently the development of oral therapeutics that translate sustained benefit from the preclinical context into clinical reality.
Collapse
Affiliation(s)
- David J Virley
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Harlow, Essex CM19 5AW, United Kingdom.
| |
Collapse
|