1
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1129-1144. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Ang L, Gunaratnam S, Huang Y, Dillon BR, Martin CL, Burant A, Reiss J, Blakely P, Vasbinder A, Zhao L, Mizokami‐Stout K, Tang Y, Feldman EL, Doria A, Spino C, Banerjee M, Hayek SS, Pop‐Busui R. Inflammatory Markers and Measures of Cardiovascular Autonomic Neuropathy in Type 1 Diabetes. J Am Heart Assoc 2025; 14:e036787. [PMID: 39727210 PMCID: PMC12054404 DOI: 10.1161/jaha.124.036787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Cardiovascular autonomic neuropathy (CAN) and inflammation predict more severe outcomes in type 1 diabetes (T1D). However, the link between CAN and inflammation in T1D remains unclear. We examined associations between CAN measures and inflammatory biomarkers in individuals with T1D. METHODS AND RESULTS In a cross-sectional study, we measured cardiovascular autonomic reflex tests and heart rate variability (established CAN measures) and a panel of 39 inflammatory biomarkers, including soluble urokinase plasminogen activator receptor (suPAR), in T1D participants of the TINSAL-T1DN (Targeting Inflammation with Salsalate in Individuals with T1D Neuropathy) trial (n=57, discovery), and the PERL (Preventing Early Renal Loss in Diabetes) trial (n=468, validation). Amongst 39 inflammatory biomarkers measured in TINSAL-T1DN, suPAR levels had the strongest negative correlations with CAN measures: expiration/inspiration (r=-0.48), Valsalva (r=-0.28), 30:15 (r=-0.37), SD of the normal RR interval (r=-0.37), and root mean square of differences of successive RR intervals (r=-0.31) (all P<0.05). Findings were validated in PERL. In unadjusted analyses, median suPAR levels significantly differed between the lowest and highest SD of the normal RR interval tertiles (3.79 versus 3.12 ng/mL, P<0.001) and root mean square of differences of successive RR intervals (3.76 versus 3.17 ng/mL, P<0.001). After adjusting for covariates (age, sex, hemoglobin A1c, and estimated glomerular filtration rate), median suPAR values remained significantly elevated in the lowest tertiles of SD of the normal RR interval (P=0.004) and root mean square of differences of successive RR intervals (P=0.006). CONCLUSIONS Amongst several inflammatory biomarkers, suPAR, an immune-mediated glycoprotein, has a singular association with CAN measures. The potential of targeting suPAR as a disease-modifying approach for CAN in T1D warrants further exploration. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT02936843, NCT02017171.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of MichiganAnn ArborMIUSA
| | | | - Yiyuan Huang
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | | | - Catherine L. Martin
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of MichiganAnn ArborMIUSA
| | - Aaron Burant
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of MichiganAnn ArborMIUSA
| | - Jacob Reiss
- Quality DepartmentUniversity of MichiganAnn ArborMIUSA
| | - Pennelope Blakely
- Department of Internal Medicine, Division of CardiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Alexi Vasbinder
- Biobehavioral Nursing and Health InformaticsUniversity of Washington School of NursingSeattleWAUSA
| | - Lili Zhao
- Corewell Health William Beaumont University HospitalRoyal OakMIUSA
| | - Kara Mizokami‐Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of MichiganAnn ArborMIUSA
- Ann Arbor Veteran Affairs HospitalAnn ArborMIUSA
| | - Yaling Tang
- Department of EpidemiologyJoslin Diabetes CenterBostonMAUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | - Cathie Spino
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | | | - Salim S. Hayek
- Department of Internal Medicine, Division of CardiologyUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Internal Medicine, Division of CardiologyUniversity of MichiganAnn ArborMIUSA
| | - Rodica Pop‐Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and DiabetesUniversity of MichiganAnn ArborMIUSA
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Clinical NutritionOregon Health and Science UniversityPortlandORUSA
| |
Collapse
|
3
|
Salami AT, Orji JC, Akpamu U, Iyiola TO, Olaleye SB. Attenuation of Experimental Cholesterol Gallstone Formation by Manganese Chloride in Mice: Role of NF-κβ Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04467-z. [PMID: 39715976 DOI: 10.1007/s12011-024-04467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Manganese (Mn), a trace element, has been documented to exert an important role in the metabolism of cholesterol. Cholesterol gallstone (CG) pathogenesis is directly linked to biliary cholesterol imbalance which could be due to diabetes complications or mismanagement. NF-κβ pathway, an inflammatory regulator, has been implicated in metabolic disease especially in the context of diabetes and gallstone formation. However, the management of cholesterol gallstones due to diabetes with trace elements is vague. This study investigates the probable role of manganese during CG formation due to diabetes complications. Eighty female Swiss mice were grouped: I (control), II (untreated CG), III and IV (normal mice treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), V and VI (CG treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), and VII and VIII (CG treated 75 mg/7 kg and 350 mg/kg aspirin, respectively). Experimental CG was induced with cholesterol-rich diets after alloxan-induced diabetes. On sacrifice, blood collected was evaluated for complete hematological analysis and biochemistry while the excised liver was assayed for biochemical variables. Results were subjected to one-way ANOVA values were expressed as Mean ± SEM and significant at p ≤ 0.05. Manganese treatment significantly increased packed cell volume, RBC count, and hemoglobin with decreased platelet and leukocyte counts, liver enzymes (AST, ALT, and ALP), BUN, and creatinine levels in CG groups compared with untreated CG. Blood glucose, plasma low-density lipoproteins, and liver malodialdehyde levels were significantly reduced while liver nitric-oxide, sulfhydryl, and glutathione levels increased significantly in manganese-treated groups compared with untreated CG. Manganese significantly increased fecal iron contents in normal mice by the 2nd week. Hepatocytes and gallbladder histology appear normal in manganese-treated groups. Liver NF-Kβ immunoreactivity was downregulated in manganese-treated CG groups. Manganese attenuated experimental hyperglycemia-induced cholesterol gallstone by ameliorating liver oxidative stress and NF-Kβ inflammatory pathway.
Collapse
Affiliation(s)
| | - J C Orji
- University of Ibadan, Ibadan, Nigeria
| | - U Akpamu
- Federal University Oye-Ekiti, Oye, Nigeria
| | | | | |
Collapse
|
4
|
Stoian A, Muntean C, Babă DF, Manea A, Dénes L, Simon-Szabó Z, Kosovski IB, Nemes-Nagy E, Gliga FI, Stoian M. Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy. Int J Mol Sci 2024; 25:10395. [PMID: 39408723 PMCID: PMC11476795 DOI: 10.3390/ijms251910395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Carmen Muntean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Dragoș-Florin Babă
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania;
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Department of Radiology, Mureș County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
5
|
Ferreira NL, Rocha IRC, Chacur M. Unraveling the RAGE-NF-κB pathway: implications for modulating inflammation in diabetic neuropathy through photobiomodulation therapy. Lasers Med Sci 2024; 39:222. [PMID: 39168867 DOI: 10.1007/s10103-024-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a primary complication observed in diabetes that severely affects quality of life. Recent evidence suggests that photobiomodulation (PBM) is a promising therapy against painful conditions and nerve damage. However, the effects of PBM on DPN remains mostly unknown. In the present study, we investigated the efficacy of PBM therapy in modulating proinflammatory cytokine expression in both central and peripheral nervous systems of rats with Streptozotocin (STZ)-induced type 1 diabetes. Male Wistar rats were allocated into control (naïve), diabetic (STZ), and treatment (STZ + PBM) groups. A single intraperitoneal (i.p.) injection of STZ (85 mg/kg) was administered for the induction of diabetes. Animals were subjected to 10 treatment sessions, every other day. The results herein presented indicate that PBM treatment diminishes Receptor for Advanced Glycation End-products (RAGE) and Nuclear Factor Kappa B (NF-ϰB) expression in peripheral nervous system and suppresses TNF-α expression in central nervous system tissues. Furthermore, PBM-therapy in diabetic rats also induces increased levels of the anti-inflammatory protein IL-10 in both peripheral and central nervous system. Collectively, our findings demonstrate compelling evidence that PBM-therapy modulates cytokine dynamics and influences RAGE/NF-ϰB axis in a STZ-induced model of type 1 diabetes.
Collapse
Affiliation(s)
- Nathalia Lopes Ferreira
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, 2415 Prof. Lineu Prestes Ave, São Paulo, SP, 05508-000, Brazil
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Departamento de Biofísica, Laboratório de Neuroendocrinologia do Estresse, Edifício de Ciências Biomédicas, Universidade Federal de São Paulo, 862 Botucatu Street, São Paulo, SP, 04023-062, Brazil
| | - Igor Rafael Correia Rocha
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, 2415 Prof. Lineu Prestes Ave, São Paulo, SP, 05508-000, Brazil
- Department of Psychology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, USA
| | - Marucia Chacur
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, 2415 Prof. Lineu Prestes Ave, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Galal HM, Abdelhafez AT, Sayed MM, Gomaa WMS, Tohamy TA, Gomaa AMS, El-Metwally TH. Impact of L-Arginine on diabetes-induced neuropathy and myopathy: Roles of PAI-1, Irisin, oxidative stress, NF-κβ, autophagy and microRNA-29a. Tissue Cell 2024; 87:102342. [PMID: 38430848 DOI: 10.1016/j.tice.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND T2DM is a chronic disorder with progressive neuromuscular alterations. L-arginine (ARG) is the most common semi-essential amino acid having several metabolic functions. AIM to investigate the impact of L-arginine in combating diabetic-induced neuromyopathy and its possible mechanisms. MATERIALS & METHODS 24 rats were divided into CON, CON+ARG, DC, DC+ARG. Behavioral tests, Body weight (BW), fasting blood glucose (FBG), insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), plasminogen activator inhibitor-1 (PAI-1), and irisin were done. Creatine kinase-MM (CK-MM), interleukin 4 (IL-4), interleukin 6 (IL-6), TAC, MDA, expression of microRNA-29a mRNA & light chain 3 protein were determined in muscle. Histological and NF-κβ immunohistochemical expression in muscle and nerve were assessed. RESULTS ARG supplementation to diabetic rats improved altered behavior, significantly increased BW, insulin, TAC, irisin and Il-4, decreased levels of glucose, microRNA-29a, NF-κβ and LC3 expression, PAI-1, CK-MM and restored the normal histological appearance. CONCLUSIONS ARG supplementation potently alleviated diabetic-induced neuromuscular alterations.
Collapse
Affiliation(s)
- Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Basic Medical Sciences, Badr University, New Nasser City, West of Assiut, Assiut, Egypt.
| | - Manal M Sayed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa M S Gomaa
- Department of Nutrition and Clinical Nutrition, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | | | - Asmaa M S Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Tarek H El-Metwally
- Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Salama RAM, Raafat FA, Hasanin AH, Hendawy N, Saleh LA, Habib EK, Hamza M, Hassan ANE. A neuroprotective effect of pentoxifylline in rats with diabetic neuropathy: Mitigation of inflammatory and vascular alterations. Int Immunopharmacol 2024; 128:111533. [PMID: 38271813 DOI: 10.1016/j.intimp.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Treatment of diabetic neuropathic pain does not change the natural history of neuropathy. Improved glycemic control is the recommended treatment in these cases, given that no specific treatment for the underlying nerve damage is available, so far. In the present study, the potential neuroprotective effect of pentoxifylline in streptozotocin (50 mg/kg) induced diabetic neuropathy in rats was investigated. METHODS Pentoxifylline was administered at doses equivalent to 50, 100 & 200 mg/kg, in drinking water, starting one week after streptozotocin injection and for 7 weeks. Mechanical allodynia, body weight and blood glucose level were assessed weekly. Epidermal thickness of the footpad skin, and neuroinflammation and vascular alterations markers were assessed. RESULTS Tactile allodynia was less in rats that received pentoxifylline at doses of 100 and 200 mg/kg (60 % mechanical threshold increased by 48 % and 60 %, respectively). The decrease in epidermal thickness of footpad skin was almost completely prevented by the same doses. This was associated with a decrease in spinal tumor necrosis factor alpha (TNFα) and nuclear factor kappa B levels and a decrease in microglial ionized calcium binding adaptor molecule 1 immunoreactivity, compared to the control diabetic group. In sciatic nerve, there was decrease in TNF-α and vascular endothelial growth factor levels and intercellular adhesion molecule immunoreactivity. CONCLUSION Pentoxifylline showed a neuroprotective effect in streptozotocin-induced diabetic neuropathy, which was associated with a suppression of both the inflammatory and vascular pathogenic pathways that was not associated with a hypoglycemic effect. Thus, it may represent a potential neuroprotective drug for diabetics.
Collapse
Affiliation(s)
- Raghda A M Salama
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatema Ahmed Raafat
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Faculty of Medicine, Galala University, Suez, Egypt; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - May Hamza
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed Nour Eldin Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
9
|
Baicus C, Purcarea A, von Elm E, Delcea C, Furtunescu FL. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst Rev 2024; 1:CD012967. [PMID: 38205823 PMCID: PMC10782777 DOI: 10.1002/14651858.cd012967.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a frequent complication in people living with type 1 or type 2 diabetes. There is currently no effective treatment for DPN. Although alpha-lipoic acid (ALA, also known as thioctic acid) is widely used, there is no consensus about its benefits and harms. OBJECTIVES To assess the effects of alpha-lipoic acid as a disease-modifying agent in people with diabetic peripheral neuropathy. SEARCH METHODS On 11 September 2022, we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and two clinical trials registers. We also searched the reference lists of the included studies and relevant review articles for additional references not identified by the electronic searches. SELECTION CRITERIA We included randomised clinical trials (RCTs) that compared ALA with placebo in adults (aged 18 years or older) and that applied the study interventions for at least six months. There were no language restrictions. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. The primary outcome was change in neuropathy symptoms expressed as changes in the Total Symptom Score (TSS) at six months after randomisation. Secondary outcomes were change in neuropathy symptoms at six to 12 months and at 12 to 24 months, change in impairment, change in any validated quality of life total score, complications of DPN, and adverse events. We assessed the certainty of the evidence using GRADE. MAIN RESULTS Our analysis incorporated three trials involving 816 participants. Two studies included people with type 1 or type 2 diabetes, while one study included only people with type 2 diabetes. The duration of treatment was between six months and 48 months. We judged all studies at high risk of overall bias due to attrition. ALA compared with placebo probably has little or no effect on neuropathy symptoms measured by TSS (lower score is better) after six months (mean difference (MD) -0.16 points, 95% confidence interval (CI) -0.83 to 0.51; 1 study, 330 participants; moderate-certainty evidence). The CI of this effect estimate did not contain the minimal clinically important difference (MCID) of 0.97 points. ALA compared with placebo may have little or no effect on impairment measured by the Neuropathy Impairment Score-Lower Limbs (NIS-LL; lower score is better) after six months (MD -1.02 points, 95% CI -2.93 to 0.89; 1 study, 245 participants; low-certainty evidence). However, we cannot rule out a significant benefit, because the lower limit of the CI surpassed the MCID of 2 points. There is probably little or no difference between ALA and placebo in terms of adverse events leading to cessation of treatment within six months (risk ratio (RR) 1.48, 95% CI 0.50 to 4.35; 3 studies, 1090 participants; moderate-certainty evidence). No studies reported quality of life or complications associated with DPN. AUTHORS' CONCLUSIONS Our analysis suggests that ALA probably has little or no effect on neuropathy symptoms or adverse events at six months, and may have little or no effect on impairment at six months. All the studies were at high risk of attrition bias. Therefore, future RCTs should ensure complete follow-up and transparent reporting of any participants missing from the analyses.
Collapse
Affiliation(s)
- Cristian Baicus
- Internal Medicine, Colentina University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Purcarea
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University, Brasov, Romania
- Internist.ro Clinic, Brasov, Romania
| | - Erik von Elm
- Cochrane Switzerland, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Caterina Delcea
- Internal Medicine, Colentina University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Florentina L Furtunescu
- Public Health and Management, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
11
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
12
|
Cha SA. Heart rate-corrected QT interval prolongation is associated with decreased heart rate variability in patients with type 2 diabetes. Medicine (Baltimore) 2022; 101:e31511. [PMID: 36397376 PMCID: PMC9666134 DOI: 10.1097/md.0000000000031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the association between the heart rate-corrected QT interval (QTc interval) measured by standard electrocardiography and heart rate variability (HRV) in patients with type 2 diabetes mellitus (T2DM). From March 1, 2009, to December 12, 2009, 411 patients with T2DM who underwent resting 12-lead electrocardiography and cardiovascular autonomic function testing concurrently without the exclusion criteria were consecutively recruited in this cross-sectional study. Time- and frequency-domain HRV variables were assessed for 5 minutes by beat-to-beat HRV recording. The QT interval was corrected for the heart rate using Bazett's formula. QTc interval measurements of >440 ms were considered abnormally prolonged. The mean age and diabetes duration were 56.3 ± 10.6 years and 9.6 ± 7.3 years, respectively. A total of 90 patients had QTc interval prolongation (21.9%). The participants with a prolonged QTc interval were older (59.4 ± 10.1 years vs 55.5 ± 10.6 years, P = .002), were more likely to be a woman (72.2% vs 51.7%, P = .001), had a higher prevalence of hypertension (46.7% vs 33.4%, P = .022), had a higher hemoglobin A1c level (8.8% ± 2.2% vs 8.2% ± 1.8%, P = .045), and had decreased values for the variables measuring HRV, except for the low frequency (LF)/high frequency (HF) ratio (total power [TP], 147.7 [74.1-335.9] ms vs 328.7 [185.7-721.7] ms, P = .002). After adjusting for multiple confounders, QTc interval prolongation was associated with the lowest quartile of the HRV parameters of TP (odds ratio [OR] = 3.99; 95% confidence interval [CI]: 2.29-6.96), HF (OR = 3.20; 95% CI: 1.84-5.58), LF (OR = 3.68; 95% CI: 2.10-6.43), standard deviation of the normal-to-normal interval (OR = 3.31; 95% CI: 1.89-5.77), and root-mean-square of the successive differences (OR = 1.98; 95% CI: 1.13-3.47) in patients with T2DM. Decreased values for the variables measuring HRV, except for the LF/HF ratio, might be associated with QTc interval prolongation in patients with T2DM.
Collapse
Affiliation(s)
- Seon-Ah Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
- *Correspondence: Seon-Ah Cha, Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonkwang University Sanbon Hospital, 321 Sanbon-ro, Gunpo, Gyeonggi-do 15865, Republic of Korea (e-mail: )
| |
Collapse
|
13
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
14
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
15
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R. Neurodegeneration: Microglia: Nf-Kappab Signaling Pathways. Drug Res (Stuttg) 2022; 72:496-499. [PMID: 36055286 DOI: 10.1055/a-1915-4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Microglia is cells of mesodermal/mesenchymal origin that migrate into the central nervous system (CNS) to form resident macrophages inside the special brain microenvironment. Intact with both neuronal and non-neuronal cells, microglia is highly active cells. Continuous process extension and retraction allows microglia to scan the brain parenchyma for threats. They are also able to change their morphology from ramified to amoeboid, which is a sign of cell activity. In response to pleiotropic stimuli such as neurotransmitters, cytokines, and plasma proteins, microglia express a diverse range of receptors. As controllers of synaptic activities and phagocytosis of developing neurons, they serve a critical role in the healthy brain and have significant effects on synaptic plasticity and adult neurogenesis. A frequent cause of hypoparathyroidism is a mutation in the gene glial cells missing-2 (GCM2). Neonatal hypoparathyroidism has an amorphic recessive GCM2 mutation, while autosomal dominant hypoparathyroidism has a dominant-negative GCM2 mutation. Curiously, familial isolated hyperparathyroidism has been associated with activating GCM2 mutation. In addition to seizures, neurocognitive impairment, carpopedal spasm, tingling and numbness are common clinical manifestations of hypoparathyroidism. Biogenic amines are a group of four neurotransmitters that belong to that category and these include serotonin, dopamine, norepinephrine, and epinephrine. Numerous antidepressants prevent the reuptake from occurring the brain-gut axis is hardwired through the CNS, enteric nervous system (ENS), neuroendocrine linkages and highly innervated nerve plexuses.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Vaseem Ahamad Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| | - Rufaida Wasim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (India)
| |
Collapse
|
16
|
Tykhonenko T, Guzyk M, Tykhomyrov A, Korsa V, Yanitska L, Kuchmerovska T. Modulatory effects of vitamin B3 and its derivative on the levels of apoptotic and vascular regulators and cytoskeletal proteins in diabetic rat brain as signs of neuroprotection. Biochim Biophys Acta Gen Subj 2022; 1866:130207. [PMID: 35882257 DOI: 10.1016/j.bbagen.2022.130207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Beneficial effects of nicotinamide (NAm) and its derivates have been earlier shown in animal models of diabetes mellitus (DM), but the mechanisms of their neuroprotective activities are still largely unknown. The aim of the present study was to investigate if NAm and conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) are able to modulate expression levels of apoptosis regulators, angiogenesis-related molecules, and specific cytoskeletal proteins in diabetic rat brain. METHODS After six weeks of streptozotocin induced type 1 DM, rats were daily administered either by NAm (100 mg/kg) or N-GABA (55 mg/kg) intraperitoneally for two weeks. Protein levels were assessed by western blot and immunohistochemistry. RESULTS Both NAm and N-GABA down-regulated NF-κB and Bax levels in diabetic rat brain, suggesting their anti-apoptotic activities. Tested compounds normalized VEGF and nNOS contents improving pro-angiogenic signaling reduced by hyperglycemia. Western blot showed marked up-regulation of astroglial marker GFAP and lowering neurofilament protein levels in DM group, confirmed immunohistochemically, indicating the development of reactive astrogliosis as a major response to diabetes-induced neurodegeneration. NAm had no effects on GFAP and Nf-L levels in the diabetic brain, while N-GABA increased their expression. Inversely, NAm and N-GABA dramatically reduced enhanced levels of GFAP and Nf-L found in the blood serum of diabetic rats, providing for the first time strong evidence for preserving blood-brain barrier integrity by studied compounds. CONCLUSION Thus, NAm and N-GABA may exert neuroprotective effects by decreasing pro-apoptotic regulators levels and improving expression of angiogenic and cytoskeletal proteins impaired by hyperglycemia in rat brain.
Collapse
Affiliation(s)
- Tetiana Tykhonenko
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Mykhailo Guzyk
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Lesya Yanitska
- Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Tamara Kuchmerovska
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine.
| |
Collapse
|
17
|
Association between Dietary Inflammatory Index Scores and Diabetes Sensorimotor Polyneuropathy in Patients with Type 2 Diabetes Mellitus: A Case-Control Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2661649. [PMID: 35497930 PMCID: PMC9050281 DOI: 10.1155/2022/2661649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022]
Abstract
Background Diabetes sensorimotor polyneuropathy (DSPN) is a common complication of diabetes. Diet has been previously related to DSPN. However, no studies have investigated the relationship between the inflammatory potential of the whole diet and DSPN. So, we aimed to examine the association between dietary inflammatory index (DII) and DSPN in Iranian adults. Methods A total of 185 subjects with DSPN and 185 sex- and age-matched controls were selected in this case-control study. A 168-item validated food frequency questionnaire (FFQ) was used to assay dietary intakes. DII was calculated based on the developed formula. The Toronto clinical neuropathy score was applied to define DSPN. Binary logistic regression was used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) of DII in relation to DSPN. Results Mean values of age and BMI for all the participants were reported as 50.79 and 28.60, respectively. Also, the median (IQR) of DII for all the participants was estimated as −0.091 (−0.93, 1.07). Our findings suggest that participants in the highest quartile of the DII had higher odds of DSPN (OR = 1.76; 95% CI: 1.03, 3.36) (p-trend = 0.01) compared to subjects in the lowest quartile of DII scores after adjustment for age and sex. Additionally, a strong association was observed after adjusting for energy intake, physical activity, education, smoking status, economic status, marital status, job, BMI, and WC in model 2 (OR = 2.23, 95% CI = 1.13–4.39) (p-trend = 0.0048). Conclusion Higher DII score was associated with an increased risk of DSPN. Therefore, it is possible that a diet rich in anti-inflammatory nutrients and foods could improve and prevent DSPN.
Collapse
|
18
|
Hassan HM, Mahran YF, Ghanim AMH. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways. J Pharm Pharmacol 2021; 73:1250-1261. [PMID: 33847358 DOI: 10.1093/jpp/rgab058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus and it is considered as a principal cause for end-stage renal failure. Ganoderma lucidum (GL) has been studied for its reno-protective effect against different kidney injury models. The aim of our study is to investigate the mechanisms by which GL can improve kidney injury and consequent renal inflammation and fibrosis. METHODS GL either in a low dose (250 mg/kg, i.p.) or high dose (500 mg/kg, i.p.) was administered to DN rat model, and nephropathy indices were investigated. KEY FINDINGS GL treatment significantly down-regulated kidney injury molecule-1 (KIM-1) gene expression and inhibited TLR-4 (Toll-like receptor-4)/NFκB (nuclear factor kappa B) signalling pathway. As well, GL treatment significantly decreased the pro-inflammatory mediator; IL-1β (interleukin-1 beta) level and fibrosis-associated growth factors; FGF-23 (fibroblast growth factor-23) and TGFβ-1 (transforming growth factor beta-1) levels. In addition, GL remarkably inhibited (Bax) the pro-apoptotic protein and induced (Bcl-2) the anti-apoptotic protein expression in kidneys. Moreover, GL treatment significantly alleviates kidney injury indicated by correcting the deteriorated kidney function and improving oxidative stress status in DN rats. CONCLUSIONS GL significantly improved renal function indices through dose-dependent kidney function restoration, oxidative stress reduction, down-regulation of gene expression of KIM-1 and TLR4/NFκB signalling pathway blockage with subsequent alleviation of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Egypt
| | - Yasmen F Mahran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
19
|
Hagen KM, Ousman SS. Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 2021; 355:577574. [PMID: 33894676 DOI: 10.1016/j.jneuroim.2021.577574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
20
|
Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637584. [PMID: 33603820 PMCID: PMC7872765 DOI: 10.1155/2021/6637584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The greatest common and devastating complication of diabetes is painful neuropathy that can cause hyperalgesia and allodynia. It can disturb psychosocial functioning by increasing levels of anxiety and depression. This work was designed to evaluate the antihyperalgesic, antidepressant, and anxiolytic-like effects of the aqueous and methanol extracts of Nauclea pobeguinii stem-bark in diabetic neuropathy induced by streptozotocin in mice. Diabetic neuropathy was induced in mice by the intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to provoke hyperglycemia. Nauclea pobeguinii aqueous and methanol extracts at the doses of 150 and 300 mg/kg were administered by oral route, and their effects were evaluated on antihyperalgesic activity (Von Frey filaments, hot plate, acetone, and formalin tests), blood glucose levels, body weight, serum, sciatic nerve proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and sciatic nerve growth factor (IGF and NGF) rates, depression (open field test, forced swimming test, tail suspension test), and anxiety (elevated plus maze, light-dark box test, social interaction). Oral administration of Nauclea pobeguinii stem-bark aqueous and methanol extracts (150 and 300 mg/kg) produced antihyperalgesic, antidepressant, and anxiolytic-like effects in STZ-induced diabetic neuropathic mice. Extracts also triggered a decrease in glycaemia and increased body weight in treated animals. They also significantly (p <0.001) reduced tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and significantly (p <0.001) increased nerve growth factor (NGF) and insulin-like growth factor (IGF) in sciatic nerves. The results of this study confirmed that Nauclea pobeguinii aqueous and methanol extracts possess antihyperalgesic, antidepressant, and anxiolytic activities and could be beneficial therapeutic agents.
Collapse
|
21
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
22
|
Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, Gao L, Xu H, Guo J. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem 2020; 476:471-482. [PMID: 32996080 DOI: 10.1007/s11010-020-03923-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/19/2020] [Indexed: 01/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most important complications in diabetes mellitus (DM), which has been reported to be modulated by long non-coding RNAs (lncRNAs). The purpose of the current study is to explore the regulatory mechanism of lncRNA HCG18 on DPN in vitro. The expression of lncRNA HCG18, miR-146a, TRAF6, CD11c, and iNOS was detected by qRT-PCR. Through Enzyme-linked immunosorbent assay, the levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were determined. M1 macrophage polarization was measured by flow cytometry analysis. The interactions between miR-146a and HCG18/TRAF6 were predicted by Starbase/Targetscan software and verified by the dual luciferase reporter assay. Western blot assay was performed to determine the protein expression of TRAF6. LncRNA HCG18 was highly expressed in DPN model and HG-induced macrophages. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were elevated in DPN model. The expression of M1 markers (CD11c and iNOS) was visibly up-regulated in DPN model and was positively correlated with HCG18 expression. LncRNA HCG18 facilitated M1 macrophage polarization. In addition, miR-146a was identified as a target of lncRNA HCG18. Overexpression of miR-146a reversed the promoting effect of HCG18 on M1 macrophage polarization. Simultaneously, TRAF6 was a target gene of miR-146a TRAF6 expression was positively modulated by HCG18 and was negatively modulated by miR-146a. Down-regulation of TRAF6 reversed the promoting effect of HCG18 on M1 macrophage polarization. LncRNA HCG18 promotes M1 macrophage polarization via regulating the miR-146a/TRAF6 axis, facilitating the progression of DPN. This study provides a possible therapeutic strategy for DPN.
Collapse
Affiliation(s)
- Wei Ren
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Guangxia Xi
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Xing Li
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Shanxi Medical University, The Second Hospital of Shanxi Medical University, No. 382, WuYi Road, Taiyuan City, 030001, Shanxi Province, China
| | - Lingxia Zhao
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Xuemei Fan
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Linlin Gao
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Hongmei Xu
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Jianjin Guo
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Shanxi Medical University, The Second Hospital of Shanxi Medical University, No. 382, WuYi Road, Taiyuan City, 030001, Shanxi Province, China.
| |
Collapse
|
23
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
24
|
Ang L, Dillon B, Mizokami-Stout K, Pop-Busui R. Cardiovascular autonomic neuropathy: A silent killer with long reach. Auton Neurosci 2020; 225:102646. [PMID: 32106052 DOI: 10.1016/j.autneu.2020.102646] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular autonomic neuropathy (CAN) is a common and deadly complication of diabetes mellitus, which is frequently overlooked in clinical practice due to its characteristic subtle presentation earlier in disease. Yet, timely detection of CAN may help implementation of tailored interventions to prevent its progression and mitigate the risk of associated complications, including cardiovascular disease (CVD), cardiac arrhythmias, myocardial dysfunction leading to congestive heart failure and all-cause mortality. This review highlights current CAN epidemiology trends, novel mechanisms linking CAN with other diabetes complications and current recommendations for diagnosis and management of the disease in the clinical setting.
Collapse
Affiliation(s)
- Lynn Ang
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Brendan Dillon
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
25
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
26
|
Jiang DQ, Zhao SH, Li MX, Jiang LL, Wang Y, Wang Y. Prostaglandin E1 plus methylcobalamin combination therapy versus prostaglandin E1 monotherapy for patients with diabetic peripheral neuropathy: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018; 97:e13020. [PMID: 30383660 PMCID: PMC6221723 DOI: 10.1097/md.0000000000013020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Prostaglandin E1 (P) or methylcobalamin (M) treatment has been suggested as a therapeutic approach for diabetic peripheral neuropathy (DPN) in many clinical trial reports. However, the combined effects of 2 drugs still remain dubious. OBJECTIVE The aim of this report was to evaluate the efficacy of M plus P (M + P) for the treatment of DPN compared with that of P monotherapy, in order to provide a reference resource for rational drug use. METHODS Randomized controlled trials (RCTs) of M + P for DPN published up to September 2017 were searched. Risk ratio (RR), mean difference (MD), and 95% confidence interval (CI) were calculated and heterogeneity was assessed with the I test. Subgroup and sensitivity analyses were also performed. The outcomes measured were as follows: the clinical efficacy, median motor nerve conduction velocities (MNCV), median sensory nerve conduction velocity (SNCV), peroneal MNCV, peroneal SNCV, and adverse effects. RESULTS Sixteen RCTs with 1136 participants were included. Clinical efficacy of M + P combination therapy was significantly better than P monotherapy (fifteen trials; RR 1.25, 95% CI 1.18-1.32, P < .00001, I = 27%). Compared with P monotherapy, the pooled effects of M + P combination therapy on nerve conduction velocity were (MD 6.29, 95% CI 4.63-7.94, P < .00001, I = 90%) for median MNCV, (MD 5.68, 95% CI 3.53-7.83, P < .00001, I = 94%) for median SNCV, (MD 5.36, 95% CI 3.86-6.87, P < .00001, I = 92%) for peroneal MNCV, (MD 4.62, 95% CI 3.48-5.75, P < .00001, I = 86%) for peroneal SNCV. There were no serious adverse events associated with drug intervention. CONCLUSIONS M + P combination therapy was superior to P monotherapy for improvement of neuropathic symptoms and NCVs in DPN patients. Moreover, no serious adverse events occur in combination therapy.
Collapse
Affiliation(s)
- De-Qi Jiang
- College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin
| | - Shi-Hua Zhao
- College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Li-Lin Jiang
- College of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Yan Wang
- Department of Pharmacy, Guangdong Province Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| |
Collapse
|
27
|
Zhu GC, Tsai KL, Chen YW, Hung CH. Neural Mobilization Attenuates Mechanical Allodynia and Decreases Proinflammatory Cytokine Concentrations in Rats With Painful Diabetic Neuropathy. Phys Ther 2018; 98:214-222. [PMID: 29309710 DOI: 10.1093/ptj/pzx124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 12/21/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is a common complication in patients with diabetes. It is related to ischemic nerve damage and the increase in the levels of proinflammatory mediators, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Neural mobilization may have the potential to alleviate PDN, but it has not yet been tested. Also, the physiological mechanism of neural mobilization is unclear. OBJECTIVE The objective of this study was to investigate treatment effect and physiological mechanism of neural mobilization. DESIGN This was an experimental study using rats with streptozocin (or streptozotocin)-induced type 1 diabetes. METHODS Three groups were used in the study, the control group (vehicle), the diabetes group (PDN group), and the neural mobilization treatment group (PDN-NM group) (n = 6). Rats in the vehicle group were healthy rats. Rats in the PDN and PDN-NM groups were rats with diabetes. Rats in the PDN-NM group received treatment in the right sciatic nerve, whereas rats in the PDN group did not. Mechanical pain sensitivity and the levels of IL-1β and TNF-α in the sciatic nerve branches and trunk, the L4 to L6 dorsal horn ganglion, and the spinal cord dorsal horn were measured. RESULTS Techanical allodynia was alleviated after treatment, but the effect was limited to the treatment side. The concentrations of proinflammatory cytokines were decreased in the nerves that received treatment compared with those on the other side, indicating that neural mobilization may reduce mechanical sensitivity by decreasing the concentrations of local sensitizing agents. LIMITATIONS A limitation of this study was that no direct measurement of nerve blood flow was done. CONCLUSIONS The results of this study showed that neural mobilization effectively alleviated mechanical allodynia in rats with PDN. The side that received treatment had lower concentrations of TNF-α and IL-1β in the sciatic nerve branches and sciatic nerve trunk; this result may have been related to the alleviation of mechanical allodynia.
Collapse
Affiliation(s)
- Guan-Cheng Zhu
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, and Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, No.1 Ta-Hsueh Road, Tainan, Taiwan
| |
Collapse
|
28
|
Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:171-177. [PMID: 29398906 PMCID: PMC5775734 DOI: 10.2147/dddt.s157109] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Recent evidence has shown the involvement of inflammation in the development of diabetic peripheral neuropathy (DPN). MicroRNA-146a (miR-146a) is closely involved in the inflammatory response. However, the role of miR-146a in the inflammatory reaction in DPN has not been clarified. This study was designed to explore the role of miR-146a in the regulation of inflammatory responses in DPN. Methods Rats were randomly divided into three groups (n=6 per group): control group, type 2 diabetes mellitus (T2DM) group and DPN group. T2DM and DPN rats were intraperitoneally injected with streptozotocin. Sciatic nerve conduction velocity (NCV) was determined at the 6th week and the 12th week in each group. The expression of microRNAs was detected by quantitative real-time polymerase chain reaction in three sciatic nerves for each group of rats. Expression of inflammatory cytokines in nerve tissues and plasma was measured by Western blot and Bio-Plex Pro™ assays. Results The NCV and expression levels of miR-146a in the DPN group were significantly decreased (P<0.01) compared to the other two groups. Expression of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the DPN group was significantly increased compared with the control and T2DM groups (P<0.01). Pearson’s correlation analysis showed that the expression level of miR-146a was negatively correlated with the levels of IL-1β, TNF-α and NF-κB. Conclusion miR-146a is involved in the pathogenesis of DPN, and its expression level is closely related to the inflammatory responses that aggravate sciatic nerve injuries.
Collapse
Affiliation(s)
- Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiong Luo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Suryavanshi SV, Kulkarni YA. NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front Pharmacol 2017; 8:798. [PMID: 29163178 PMCID: PMC5681994 DOI: 10.3389/fphar.2017.00798] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a metabolic disorder affecting large percentage of population worldwide. NF-κβ plays key role in pathogenesis of vascular complications of diabetes. Persistent hyperglycemia activates NF-κβ that triggers expression of various cytokines, chemokines and cell adhesion molecules. Over-expression of TNF-α, interleukins, TGF-β, Bcl2 and other pro-inflammatory proteins and pro-apoptotic genes by NF-κβ is key risk factor in vascular dysfunction. NF-κβ over-expression also triggers calcification of endothelial cells leading to endothelial dysfunction and further vascular complications. Inhibition of NF-κβ pro-inflammatory pathway is upcoming novel target for management of vascular complications of diabetes. Various natural and synthetic inhibitors of NF-κβ have been studied in management of diabetic complications. Recent preclinical and clinical studies validate NF-κβ as promising target in the management of vascular complications of diabetes.
Collapse
Affiliation(s)
- Sachin V Suryavanshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
30
|
Nasiry D, khalatbary AR, Ahmadvand H, Talebpour Amiri F, Akbari E. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. Altern Ther Health Med 2017; 17:476. [PMID: 28969623 PMCID: PMC5625610 DOI: 10.1186/s12906-017-1983-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Background Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. Methods The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Results Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Conclusion Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Graphical abstract Protection against neuropathy![]()
Collapse
|
31
|
Kızılay Z, Kahraman Çetin N, Aksel M, Abas Bİ, Aktaş S, Erken HA, Topçu A, Yılmaz A, Yenisey C. Ozone Partially Decreases Axonal and Myelin Damage in an Experimental Sciatic Nerve Injury Model. J INVEST SURG 2017; 32:8-17. [DOI: 10.1080/08941939.2017.1369606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahir Kızılay
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Nesibe Kahraman Çetin
- Adnan Menderes University, Faculty of Medicine, Department of Pathology, Aydin, Turkey
| | - Mehran Aksel
- Adnan Menderes University, Faculty of Medicine, Department of Physiology, Aydin, Turkey
| | - Burçin İrem Abas
- Adnan Menderes University, Faculty of Medicine, Department of Clinical Biochemistry, Aydin, Turkey
| | - Serdar Aktaş
- Adnan Menderes University, Faculty of Medicine, Department of Pharmacology and Toxicology, Aydin, Turkey
| | - Haydar Ali Erken
- Balikesir University, Faculty of Medicine, Department of Physiology, Balikesir, Turkey
| | - Abdullah Topçu
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Ali Yılmaz
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Cigdem Yenisey
- Adnan Menderes University, Faculty of Medicine, Department of Clinical Biochemistry, Aydin, Turkey
| |
Collapse
|
32
|
Ahmed S, Mundhe N, Borgohain M, Chowdhury L, Kwatra M, Bolshette N, Ahmed A, Lahkar M. Diosmin Modulates the NF-kB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy. Inflammation 2017; 39:1783-97. [PMID: 27492452 DOI: 10.1007/s10753-016-0413-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperglycaemia-mediated oxidative stress plays an imperative role in the progression of diabetic nephropathy. NF-kB is an important transcription factor in eukaryotes which regulates a diverse array of cellular process, including inflammation, immunological response, apoptosis, growth and development. Increased expression of NF-kB plays a vital role in the pathogenesis of many inflammatory diseases including diabetic nephropathy. Hence, the present study was designed to explore the nephroprotective nature of diosmin by assessing the various biochemical parameters, markers of oxidative stress and proinflammatory cytokine levels in alloxan-induced diabetic Wistar rats. Type 2 diabetes was induced in Wistar rats by single intraperitoneal injection of alloxan (120 mg/kg body weight). Seventy-two hours after the conformation of diabetes (blood glucose level ≥ 250 mg/dl), the rats were segregated into four groups, each group having six animals. Diabetic rats were treated with diosmin at a dose of 50 mg and 100 mg/kg body weight respectively. After the 28th day of treatment, rats were sacrificed, blood serum, plasma and kidney tissue were collected for various biochemical analysis. Inflammatory cytokine levels were measured through ELISA kit. Diosmin treatment produces significant reduction in the blood glucose and plasma insulin level and increases the body weight when compared with diabetic rats. Elevated level of malondialdehyde (MDA) and decrease levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and nitric oxide (NO) were significantly restored after 28 days of diosmin treatment. Diosmin treatment group also restores the normal architecture of the kidney tissue which was confirmed by histopathological examination. Moreover, oral administration of diosmin shows a significant normalization in the level of NF-kB, proving its pivotal role in maintaining renal function. The above ameliorative effects were more pronounced with diosmin at a dose of 100 mg/kg body weight. The above results permit us to conclude that treatment with diosmin halts hyperglycaemia-mediated oxidative stress and decline in pro-inflammatory cytokines and thus has beneficial anti-diabetic activity.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.
| | - Nitin Mundhe
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Manash Borgohain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Liakat Chowdhury
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Mohit Kwatra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Nityanand Bolshette
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Anwaruddin Ahmed
- Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka, 560074, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.,Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India
| |
Collapse
|
33
|
Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta 2016; 462:77-89. [PMID: 27570063 DOI: 10.1016/j.cca.2016.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
There is increasing evidence showing that chronic inflammation is an important pathogenic mediator of the development of type 2 diabetes (T2D). It is now generally accepted that tissue-resident macrophages play a major role in regulation of tissue inflammation. T2D-associated inflammation is characterized by an increased abundance of macrophages in different tissues along with production of inflammatory cytokines. The complexity of macrophage phenotypes has been reported from different human tissues. Macrophages exhibit a phenotypic range that is intermediate between two extremes, M1 (pro-inflammatory) and M2 (anti-inflammatory). Cytokines and chemokines produced by macrophages generate local and systemic inflammation and this condition leads to pancreatic β-cell dysfunction and insulin resistance in liver, adipose and skeletal muscle tissues. Data from human and animal studies also suggest that macrophages contribute to T2D complications such as nephropathy, neuropathy, retinopathy and cardiovascular diseases through cell-cell interactions and the release of pro-inflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. In this review we focus on the functions of macrophages and the importance of these cells in the pathogenesis of T2D. In addition, the contribution of macrophages to diabetes complications such as nephropathy, neuropathy, retinopathy and cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Sanaz Vakili
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
34
|
The effect of aloe vera on ischemia—Reperfusion injury of sciatic nerve in rats. Biomed Pharmacother 2016; 79:201-7. [DOI: 10.1016/j.biopha.2016.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
|
35
|
Abstract
Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na(+)/K(+)-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs.
Collapse
Affiliation(s)
- Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Metabolism Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Metabolism Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| | - Crystal Holmes
- The Division of Metabolism, Endocrinology and Diabetes, Dominos Farms, Lobby C, Suite 1300 24 Frank Lloyd Wright Drive, PO Box 451, Ann Arbor, MI, 48106-0451, USA.
| | - Katherine Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan Health System, 1500 East Medical Center Dr, SPC 5867, Ann Arbor, MI, 48109, USA.
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 5017 AATBSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
36
|
Kızılay Z, Erken HA, Çetin NK, Aktaş S, Abas Bİ, Yılmaz A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen Res 2016; 11:1660-1665. [PMID: 27904499 PMCID: PMC5116847 DOI: 10.4103/1673-5374.193247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.
Collapse
Affiliation(s)
- Zahir Kızılay
- Department of Neurosurgery, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Haydar Ali Erken
- Department of Physiology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Nesibe Kahraman Çetin
- Department of Pathology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Serdar Aktaş
- Department of Pharmacology and Toxicology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Burçin İrem Abas
- Department of Clinical Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Ali Yılmaz
- Department of Neurosurgery, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
37
|
Tang-Tong-Fang Confers Protection against Experimental Diabetic Peripheral Neuropathy by Reducing Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:574169. [PMID: 26539228 PMCID: PMC4619908 DOI: 10.1155/2015/574169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
Tang-tong-fang (TTF) is a Chinese herbal formula that has been shown to be beneficial in diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying mechanism of protection in nerve ischemia provided by TTF is still unclear. We hypothesized that TTF alleviates DPN via inhibition of ICAM-1 expression. Therefore, we tested the effect of TTF in a previously established DPN model, in which nerve injury was induced by ischemia/reperfusion in streptozotocin-induced diabetic rats. We found that the conduction velocity and amplitude of action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by TTF treatment. In addition, TTF treatment also attenuated the effect of DPN on other parameters including histology and ultrastructural changes, expression of ICAM-1, MPO, and TNF-α in rat sciatic nerves, and plasma sICAM-1 and MPO levels. Together, our data suggest that TTF treatment may alleviate DPN via ICAM-1 inhibition.
Collapse
|
38
|
Zhu B, Yang C, Wu J, Hua F. Autophagic activation may be involved in the mechanism of hesperidin's therapeutic effects on cognitive impairment. J Neurol Sci 2015; 351:202-203. [PMID: 25748295 DOI: 10.1016/j.jns.2015.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, China
| | - Jing Wu
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, China.
| |
Collapse
|
39
|
Abstract
Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na(+)/K(+)-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.
Collapse
Affiliation(s)
- James W. Albers
- Neuromuscular Section, Department of Neurology, University of Michigan Health System, 1C325 University Hospital, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0032, USA
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
40
|
Abstract
Neuropathy is the most common complication of diabetes. As a consequence of longstanding hyperglycemia, a downstream metabolic cascade leads to peripheral nerve injury through an increased flux of the polyol pathway, enhanced advanced glycation end‐products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress, as well as other confounding factors. Although these metabolic aberrations are deemed as the main stream for the pathogenesis of diabetic microvascular complications, organ‐specific histological and biochemical characteristics constitute distinct mechanistic processes of neuropathy different from retinopathy or nephropathy. Extremely long axons originating in the small neuronal body are vulnerable on the most distal side as a result of malnutritional axonal support or environmental insults. Sparse vascular supply with impaired autoregulation is likely to cause hypoxic damage in the nerve. Such dual influences exerted by long‐term hyperglycemia are critical for peripheral nerve damage, resulting in distal‐predominant nerve fiber degeneration. More recently, cellular factors derived from the bone marrow also appear to have a strong impact on the development of peripheral nerve pathology. As evident from such complicated processes, inhibition of single metabolic factors might not be sufficient for the treatment of neuropathy, but a combination of several inhibitors might be a promising approach to overcome this serious disorder. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00070.x, 2010)
Collapse
Affiliation(s)
| | | | - Kazuhiro Sugimoto
- Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
41
|
Jin HY, Piao MH, Park JH, Baek HS, Lee S, Kim W, Park SK, Kim CH, Koh GY, Park TS. Effect of cartilage oligomeric matrix protein angiopoietin-1 on peripheral nerves in db/db diabetic mice. CURRENT THERAPEUTIC RESEARCH 2014; 69:343-55. [PMID: 24692811 DOI: 10.1016/j.curtheres.2008.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Vascular and inflammatory processes have been reported to be factors in the pathogenesis of diabetic neuropathy. Angiopoietin-1 (Ang1) plays essential roles in regulating vascular growth, development, maturation, permeability, and inflammation. OBJECTIVE The aim of this study was to investigate the effect of cartilage oligomeric matrix protein (COMP)-Ang1, which is a soluble, stable, potent Ang1 variant, on peripheral nerves in db/db diabetic mice. METHODS The db/db diabetic mice were randomized into 2 groups based on their weight and glucose level and treated with recombinant adenovirus (Ade), expressing either COMP-Ang1 or the β-galactosidase gene (LacZ) (control), for 8 weeks. Immunohistochemistry was performed using a polyclonal antibody of antiprotein gene product and a secondary antibody. Intraepidermal nerve fiber density (IENFD) was quantified as nerve fiber abundance per unit length of epidermis (IENF/mm). In addition, the total capillary length (TCL) per unit length of epidermis was summed (mm/mm(2)). All slides were coded and the capillary length and the number of nerve fibers were calculated by a blinded observer. RESULTS Ten diabetic db/db mice (mean [SD] weight, 38.7 [1.95] g) were randomized to receive Ade-COMP-Ang1 or Ade-LacZ. IENFD was significantly greater in the Ade-COMP-Ang1 group compared with the Ade-LacZ group (mean [SD] 8.95 [3.30] vs 3.57 [0.73]/mm; P < 0.05). TCL was also significantly greater in the Ade-COMP-Ang1 group (2.79 [0.99] vs 2.04 [0.58] mm/mm(2); P < 0.05). Compared with baseline, fasting blood glucose concentration after 8 weeks of treatment decreased significantly more in the Ade-COMP-Ang1 group than in the Ade-LacZ group (489 [45] to 361 [81] vs 495 [48] to 521 [70] mg/dL; P < 0.05). CONCLUSIONS These results suggest that Ade-COMP-Ang1 might have had proliferative effects on peripheral nerve and cutaneous capillaries in this small animal study. Further investigation of the metabolic effect, target site, and related mediator of COMP-Ang1 is needed.
Collapse
Affiliation(s)
- Heung Yong Jin
- Endocrinology and Metabolism and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Ming Han Piao
- Endocrinology and Metabolism and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Ji Hyun Park
- Endocrinology and Metabolism and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hong Sun Baek
- Endocrinology and Metabolism and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Sik Lee
- Renal Regeneration Laboratory and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Won Kim
- Renal Regeneration Laboratory and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | - Sung Kwang Park
- Renal Regeneration Laboratory and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | | | - Gou Young Koh
- Biomedical Research Center and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Tae Sun Park
- Endocrinology and Metabolism and Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
42
|
Ji W, Huang H, Chao J, Lu W, Guo J. Protective Effect of Agaricus brasiliensis on STZ-Induced Diabetic Neuropathic Pain in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:679259. [PMID: 24527050 PMCID: PMC3913527 DOI: 10.1155/2014/679259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/17/2022]
Abstract
Objective. The present investigation examined the neuroprotective effect of Agaricus brasiliensis (AbS) against STZ-induced diabetic neuropathic pain in laboratory rats. STZ-induced diabetic rats were administered orally with AbS. Body weight, serum glucose, and behavioral parameters were measured before and at the end of the experiment to see the effect of AbS on these parameters. After 6 weeks of treatments, all animals were sacrificed to study various biochemical parameters. Treatment with AbS 80 mg/kg in diabetic animals showed significant increase in body weight, pain threshold, and paw withdrawal threshold and significant decrease in serum glucose, LPO and NO level, Na-K-ATPase level, and TNF- α and IL-1 β level as compared to vehicle treated diabetic animals in dose and time dependent manner. AbS can offer pain relief in PDN. This may be of potential benefit in clinical practice for the management of diabetic neuropathy.
Collapse
Affiliation(s)
- Weifeng Ji
- Department of Orthopedics, Chinese Orthopedics and Traumatology Research Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haiying Huang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Ji Chao
- School of Basic Medicine, Fujian Medical University, Fuzhou 350108, China
| | - Wuchao Lu
- Department of Orthopedics, Chinese Orthopedics and Traumatology Research Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jianyou Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
|
44
|
Pop-Busui R, Lu J, Brooks MM, Albert S, Althouse AD, Escobedo J, Green J, Palumbo P, Perkins BA, Whitehouse F, Jones TLZ. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care 2013; 36:3208-15. [PMID: 23757426 PMCID: PMC3781573 DOI: 10.2337/dc13-0012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial demonstrated similar long-term clinical effectiveness of insulin-sensitizing (IS) versus insulin-providing (IP) treatments for type 2 diabetes on cardiovascular outcomes in a cohort with documented coronary artery disease. We evaluated the effects of randomized glycemic control strategy (IS vs. IP) on the prevalence and incidence of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS DPN (defined as Michigan Neuropathy Screening Instrument [MNSI] clinical examination score>2) was assessed at baseline and yearly for 4 years. DPN prevalence and incidence were compared by intention-to-treat modeling by logistic generalized estimating equation models for prevalence and Kaplan-Meier estimates and Cox regression models for incidence rates. RESULTS Results are reported for 2,159 BARI 2D participants (70% males) with valid baseline and at least one follow-up MNSI score (mean age 62±9 years, mean HbA1c 7.7±1.6%, diabetes duration 10±9 years). There were no differences in the prevalence of DPN between the IS and the IP groups throughout the 4 years of follow-up. In 1,075 BARI 2D participants with no DPN at baseline, the 4-year cumulative incidence rate of DPN was significantly lower in the IS (66%) than in the IP (72%) strategy group (P=0.02), which remained significant after adjusting for the in-trial HbA1c (P=0.04). In subgroup analyses, IS strategy had a greater benefit in men (hazard ratio 0.75 [99% CI 0.58-0.99], P<0.01). CONCLUSIONS Among patients with type 2 diabetes followed for up to 4 years during BARI 2D, a glycemic control therapy with IS significantly reduced the incidence of DPN compared with IP therapy and may add further benefit for men.
Collapse
|
45
|
Li H, Bian Y, Zhang N, Guo J, Wang C, Lau WB, Xiao C. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovasc Diabetol 2013; 12:91. [PMID: 23777472 PMCID: PMC3703263 DOI: 10.1186/1475-2840-12-91] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic patients, through incompletely understood mechanisms, endure exacerbated ischemic heart injury compared to non-diabetic patients. Intermedin (IMD) is a novel calcitonin gene-related peptide (CGRP) superfamily member with established cardiovascular protective effects. However, whether IMD protects against diabetic myocardial ischemia/reperfusion (MI/R) injury is unknown. METHODS Diabetes was induced by streptozotocin in Sprague-Dawley rats. Animals were subjected to MI via left circumflex artery ligation for 30 minutes followed by 2 hours R. IMD was administered formally 10 minutes before R. Outcome measures included left ventricular function, oxidative stress, cellular death, infarct size, and inflammation. RESULTS IMD levels were significantly decreased in diabetic rats compared to control animals. After MI/R, diabetic rats manifested elevated intermedin levels, both in plasma (64.95 ± 4.84 pmol/L, p < 0.05) and myocardial tissue (9.8 ± 0.60 pmol/L, p < 0.01) compared to pre-MI control values (43.62 ± 3.47 pmol/L and 4.4 ± 0.41). IMD administration to diabetic rats subjected to MI/R decreased oxidative stress product generation, apoptosis, infarct size, and inflammatory cytokine release (p < 0.05 or p < 0.01). CONCLUSIONS By reducing oxidative stress, inflammation, and apoptosis, IMD may represent a promising novel therapeutic target mitigating diabetic ischemic heart injury.
Collapse
MESH Headings
- Adrenomedullin/metabolism
- Adrenomedullin/pharmacology
- Animals
- Apoptosis/drug effects
- Cardiotonic Agents/pharmacology
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Inflammation Mediators/metabolism
- Male
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Streptozocin
- Time Factors
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Yunfei Bian
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Nana Zhang
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Jia Guo
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Cheng Wang
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Chuanshi Xiao
- Department of Cardiology, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| |
Collapse
|
46
|
Shi X, Chen Y, Nadeem L, Xu G. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 2013; 10:69. [PMID: 23735240 PMCID: PMC3679954 DOI: 10.1186/1742-2094-10-69] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) is an important inflammatory factor produced by activated macrophages and monocytes and plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). To evaluate the effect of TNF-α signaling suppression and the potential of TNF-α in the treatment of DPN, a recombinant human TNF-α receptor-antibody fusion protein (rhTNFR:Fc) was used. We focused on the pathophysiology of the sciatic nerve and examined the expression of myelin basic protein (MBP) under DPN status with or without TNF-α inhibition. Methods The DPN rat model was generated by intraperitoneal injection of streptozotocin and by feeding with a high-fat, high-sugar diet. The nerve conduction velocity (NCV) in sciatic nerve of rat was monitored over a period of four weeks. The histopathological changes in nerve tissue were examined through traditional tissue histology and ultrastructure transmission electron microscopy (TEM). The expression of MBP was examined through western blot analysis. Results The DPN induced rats showed significant signs of nerve damage including lower NCV, demyelination of nerve fibers, disorganization of lamellar and axonal structures, and decreased expression of MBP in the nerve tissue. The inhibition of TNF-α in the DPN rats resulted in a significant recovery from those symptoms compared to the DPN rats. Conclusions Our study demonstrates that TNF-α plays a key role in the pathogenesis of DPN and its inhibition by rhTNFR:Fc can prove to be a useful therapeutic strategy for the treatment of and/or prevention from DPN symptoms.
Collapse
Affiliation(s)
- Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, PR China
| | | | | | | |
Collapse
|
47
|
Stecker M, Wolfe J, Stevenson M. Neurophysiologic responses of peripheral nerve to repeated episodes of anoxia. Clin Neurophysiol 2012; 124:792-800. [PMID: 23084661 DOI: 10.1016/j.clinph.2012.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Determine the effects of serial episodes of anoxia in an in vitro peripheral nerve preparation. METHODS The nerve action potential (NAP) from rat sciatic nerve was recorded during 5 cycles of anoxia and reperfusion. Multiple NAP parameters were analyzed as well as stimulus response curves. RESULTS The amplitude of the NAP declined to half baseline in 865 s on the first cycle of anoxia and recovered to half baseline during recovery in 470 s. These times increased with successive cycles of anoxia. The current required to produce a half maximal NAP showed a variable initial decrease before increasing with anoxia. The paired-pulse response showed a decline at 2-3 ms interstimulus interval during anoxia but was less dependent of interstimulus interval during recovery. NAP amplitude and velocity decrease over successive cycles of anoxia at a rate greater than in the absence of anoxia. CONCLUSIONS The NAP declines slowly when peripheral nerve is exposed to anoxia but returns at least twice as quickly when re-exposed to oxygen. Short periods of anoxia produce long lasting changes in the nerve suggesting greater resistance to anoxia. With serial episodes of anoxia there is gradual NAP amplitude reduction and increase in duration and latency. SIGNIFICANCE Anoxic-preconditioning appears in isolated peripheral nerve.
Collapse
Affiliation(s)
- Mark Stecker
- Winthrop University Hospital, Mineola, NY 11530, USA.
| | | | | |
Collapse
|
48
|
Elucidation of ameliorative effect of Co-enzyme Q10 in streptozotocin-induced diabetic neuropathic perturbation by modulation of electrophysiological, biochemical and behavioral markers. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Pop-Busui R. What do we know and we do not know about cardiovascular autonomic neuropathy in diabetes. J Cardiovasc Transl Res 2012; 5:463-78. [PMID: 22644723 DOI: 10.1007/s12265-012-9367-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
Cardiovascular autonomic neuropathy (CAN) in diabetes is generally overlooked in practice, although awareness of its serious consequences is emerging. Challenges in understanding the complex, dynamic changes in the modulation of the sympathetic/parasympathetic systems' tone and their interactions with physiologic mechanisms regulating the control of heart rate, blood pressure, and other cardiovascular functions in the presence of acute hyper-or-hypoglycemic stress, other stressors or medication, and challenges with sensitive evaluations have contributed to lower CAN visibility compared with other diabetes complications. Yet, CAN is a significant cause of morbidity and mortality, due to a high-risk of cardiac arrhythmias, silent myocardial ischemia and sudden death. While striving for aggressive risk factor control in diabetes practice seemed intuitive, recent reports of major clinical trials undermine established thinking concerning glycemic control and cardiovascular risk. This review covers current understanding and gaps in that understanding of the clinical implications of CAN and prevention and treatment of CAN.
Collapse
Affiliation(s)
- Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
Suppression of NF-κB and NF-κB regulated oxidative stress and neuroinflammation by BAY 11-7082 (IκB phosphorylation inhibitor) in experimental diabetic neuropathy. Biochimie 2012; 94:1158-65. [DOI: 10.1016/j.biochi.2012.01.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/31/2012] [Indexed: 12/22/2022]
|