1
|
Brill L, Lavon I, Vaknin-Dembinsky A. Foxp3+ regulatory T cells expression in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019; 30:114-118. [PMID: 30771576 DOI: 10.1016/j.msard.2019.01.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alterations in the frequency or function of regulatory T cells (Tregs), which play a critical role in the maintenance of peripheral immune tolerance, are known to be involved in the pathogenesis of several autoimmune diseases. Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune inflammatory diseases of the central nervous system (CNS), of which the etiology and mechanisms underlying its development are not completely understood. Although there is increasing evidence for the involvement of effector T cells in NMOSD, no data are available regarding the role of Tregs in its pathogenesis. AIM The aim of this study was to investigate the mRNA expression level of regulatory T cell genes in NMOSD. METHODS We used gene expression array and RT-PCR analysis to study Treg cell genes in NMOSD RESULTS: A distinctive Treg gene signature in the peripheral blood of NMOSD patients is described, as well as significantly decreased FoxP3 mRNA expression in the peripheral blood mononuclear cells (PBMCs) of the patients vs that in the healthy controls (HCs) (NMOSD,1.8RQ vs HC, 6.8RQ, p = 0.01). CONCLUSIONS The present study shows downregulation at the mRNA expression level of a Treg key transcription factor FoxP3, in NMOSD. Exploration of Tregs function and interconnections in the peripheral immune system should advance our understanding of NMOSD pathogenesis.
Collapse
Affiliation(s)
- Livnat Brill
- Department of Neurology and the Multiple Sclerosis Center, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Ein Karem, P.O.B. 12000, Jerusalem 91120, Israel
| | - Iris Lavon
- Department of Neurology and the Multiple Sclerosis Center, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Ein Karem, P.O.B. 12000, Jerusalem 91120, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah- Medical Center, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and the Multiple Sclerosis Center, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Ein Karem, P.O.B. 12000, Jerusalem 91120, Israel.
| |
Collapse
|
2
|
Brill L, Lavon I, Vaknin-Dembinsky A. Reduced expression of the IL7Ra signaling pathway in Neuromyelitis optica. J Neuroimmunol 2018; 324:81-89. [PMID: 30248528 DOI: 10.1016/j.jneuroim.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. To characterize the immunological pathways involved in NMO, whole blood RNA expression array was performed using Nanostring nCounter technology. Two major clusters of genes were found associated with NMO: T cell-associated genes and the TNF/NF-kB signaling pathway. Analysis of the genes within the first cluster confirmed significantly reduced expression of IL7Ra (CD127) in the peripheral blood of NMO patients vs that in healthy controls. IL7Ra upstream transcription factors and its downstream survival signaling pathway were also markedly reduced. In line with the essential role of IL7Ra in T cell maturation and survival, a significantly lower number of naïve T cells, and reduced T cell survival signaling mediated by increased BID (BH3-interacting domain death agonist) expression and increased apoptosis was observed. Cumulatively, these findings indicate that the IL7Ra signaling pathway may play a role in the autoimmune process in NMO.
Collapse
Affiliation(s)
- Livnat Brill
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel
| | - Iris Lavon
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel.
| |
Collapse
|
3
|
Pilli D, Zou A, Tea F, Dale RC, Brilot F. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Front Immunol 2017. [PMID: 28638382 PMCID: PMC5461350 DOI: 10.3389/fimmu.2017.00652] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS) autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.
Collapse
Affiliation(s)
- Deepti Pilli
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Alicia Zou
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
5
|
Vaknin-Dembinsky A, Brill L, Kassis I, Petrou P, Ovadia H, Ben-Hur T, Abramsky O, Karussis D. T-cell responses to distinct AQP4 peptides in patients with neuromyelitis optica (NMO). Mult Scler Relat Disord 2015; 6:28-36. [PMID: 27063619 DOI: 10.1016/j.msard.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/06/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although antibodies to aquaporin-4(AQP4) are strongly associated with Neuromyelitis optica (NMO), the sole transfer of these antibodies is not sufficient to induce an NMO-like disease in experimental animals and T-cells and complement are also needed. Initial data indicating the presence of T-cell responses to AQP4 in patients with NMO, have beeen recently reported. OBJECTIVE To evaluate the T-cell responses to specific AQP4 peptides/epitopes in patients with NMO and multiple sclerosis (MS). METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 14 patients fulfilling the criteria for definite NMO and the proliferation responses to one of 15 distinct pentadecapeptides of AQP4, spanning the whole protein (except of its transmembrane parts) were tested by a standard [H3]-thymidine uptake assay and compared with those of 9 healthy controls and 7 MS patients. A cytometric bead array assay (CBA) and flow cytometry were used to evaluate cytokine (IFNγ, IL17, IL2, IL4, IL5, IL10 and TNFα) and chemokine (CXCL8, CCL5, CXCL10, CXCL9, CCL2) secretion by PHA-stimulated PBMCs and AQP4-specific T-cell lines. RESULTS Four main immunodominant epitopes of the AQP4 protein (p137-151, p222-236, p217-231 and the p269-283) were identified in the NMO group. The first two epitopes (assigned as peptides 3 and 9) showed the highest sensitivity (~60% positivity), whereas the latter two (assigned as peptides 8 and 11), the higher specificity. Longitudinal follow up of 5 patients revealed changes in the epitope-specificities during the course of NMO. T-cell lines specific for the AQP4 peptides, produced from NMO patients (but not healthy donors) secreted mainly IL-17 and IL-10 and less IFNγ. CONCLUSIONS Our findings indicate that T-cells bearing characteristics of both Th1 and Th17 T-cells and targeting specific immunodominant epitopes of the AQP4 protein might be involved in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Ibrahim Kassis
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Panayiota Petrou
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Haim Ovadia
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Oded Abramsky
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Dimitrios Karussis
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| |
Collapse
|
6
|
Sato S, Yamamoto K, Matsushita T, Isobe N, Kawano Y, Iinuma K, Niino M, Fukazawa T, Nakamura Y, Watanabe M, Yonekawa T, Masaki K, Yoshimura S, Murai H, Yamasaki R, Kira JI. Copy number variations in multiple sclerosis and neuromyelitis optica. Ann Neurol 2015; 78:762-74. [PMID: 26296936 DOI: 10.1002/ana.24511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To clarify the potential association of copy number variations (CNVs) with multiple sclerosis (MS) and neuromyelitis optica (NMO) in Japanese cases. METHODS Genome-wide association analyses of CNVs among 277 MS patients, 135 NMO/NMO spectrum disorder (NMOSD) patients, and 288 healthy individuals as a discovery cohort, and among 296 MS patients, 76 NMO/NMOSD patients, and 790 healthy individuals as a replication cohort were performed using high-density single nucleotide polymorphism microarrays. RESULTS A series of discovery and replication studies revealed that most identified CNVs were 5 to 50kb deletions at particular T cell receptor (TCR) gamma and alpha loci regions. Among these CNVs, a TCR gamma locus deletion was found in 16.40% of MS patients (p = 2.44E-40, odds ratio [OR] = 52.6), and deletion at the TCR alpha locus was found in 17.28% of MS patients (p = 1.70E-31, OR = 13.0) and 13.27% of NMO/NMOSD patients (p = 5.79E-20, OR = 54.6). These CNVs were observed in peripheral blood T-cell subsets only, suggesting the CNVs were somatically acquired. NMO/NMOSD patients carrying the CNV tended to be seronegative for anti-aquaporin-4 antibody or had significantly lower titers than those without CNV. INTERPRETATION Deletion-type CNVs at specific TCR loci regions contribute to MS and NMO susceptibility.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume
| | - Takuya Matsushita
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Yuji Kawano
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Kyoko Iinuma
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Masaaki Niino
- Department of Clinical Research, Hokkaido Medical Center, Hokkaido
| | | | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Tomomi Yonekawa
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Satoshi Yoshimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Hiroyuki Murai
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Ryo Yamasaki
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | | |
Collapse
|
7
|
Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176:149-64. [PMID: 24666204 DOI: 10.1111/cei.12271] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
The term 'neuromyelitis optica' ('Devic's syndrome', NMO) refers to a syndrome characterized by optic neuritis and myelitis. In recent years, the condition has raised enormous interest among scientists and clinical neurologists, fuelled by the detection of a specific serum immunoglobulin (Ig)G reactivity (NMO-IgG) in up to 80% of patients with NMO. These autoantibodies were later shown to target aquaporin-4 (AQP4), the most abundant water channel in the central nervous system (CNS). Here we give an up-to-date overview of the clinical and paraclinical features, immunopathogenesis and treatment of NMO. We discuss the widening clinical spectrum of AQP4-related autoimmunity, the role of magnetic resonance imaging (MRI) and new diagnostic means such as optical coherence tomography in the diagnosis of NMO, the role of NMO-IgG, T cells and granulocytes in the pathophysiology of NMO, and outline prospects for new and emerging therapies for this rare, but often devastating condition.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
8
|
Rommer PS, Dudesek A, Stüve O, Zettl UK. Monoclonal antibodies in treatment of multiple sclerosis. Clin Exp Immunol 2014; 175:373-84. [PMID: 24001305 DOI: 10.1111/cei.12197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 01/14/2023] Open
Abstract
Monoclonal antibodies (mAbs) are used as therapeutics in a number of disciplines in medicine, such as oncology, rheumatology, gastroenterology, dermatology and transplant rejection prevention. Since the introduction and reintroduction of the anti-alpha4-integrin mAb natalizumab in 2004 and 2006, mAbs have gained relevance in the treatment of multiple sclerosis (MS). At present, numerous mAbs have been tested in clinical trials in relapsing-remitting MS, and in progressive forms of MS. One of the agents that might soon be approved for very active forms of relapsing-remitting MS is alemtuzumab, a humanized mAb against CD52. This review provides insights into clinical studies with the mAbs natalizumab, alemtuzumab, daclizumab, rituximab, ocrelizumab and ofatumumab.
Collapse
Affiliation(s)
- P S Rommer
- Clinic and Policlinic of Neurology, University of Rostock, Rostock, Germany; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
9
|
Warabi Y, Yamazaki M, Shimizu T, Nagao M. Abnormal nerve conduction study findings indicating the existence of peripheral neuropathy in multiple sclerosis and neuromyelitis optica. BIOMED RESEARCH INTERNATIONAL 2013; 2013:847670. [PMID: 24308009 PMCID: PMC3838817 DOI: 10.1155/2013/847670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/21/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Chronic inflammatory demyelinating polyneuropathy (CIDP) has been reported in patients with multiple sclerosis (MS). However, there have been limited reports of peripheral neuropathy as a complication of neuromyelitis optica (NMO). In this paper, we showed the characteristics and differences between peripheral neuropathy as a complication of MS and NMO. METHOD We analyzed a series of 58 MS and 28 NMO patients and evaluated nerve conduction studies (NCS) in 21 MS and 5 NMO patients. RESULTS Six of the 58 MS and 3 of the 28 NMO patients revealed abnormal NCS findings. Three (5.2%) of the 58 MS patients fulfilled the criteria for CIDP. One (3.6%) of the 28 NMO patients showed peripheral neuropathy at the same time of NMO relapse, although CIDP was not seen in NMO. The other 5 (3 MS and 2 NMO) patients were complicated with neuropathy caused by concomitant diabetes mellitus and Sjögren's syndrome. CONCLUSION Frequency of abnormal NCS findings might exhibit no significant difference between MS and NMO, although the cause and pathophysiology of peripheral neuropathy were different in MS and in NMO. There might be a group of NMO who were affected simultaneously in the central and peripheral nervous tissues.
Collapse
Affiliation(s)
- Yoko Warabi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai Fuchu, Tokyo 183-0042, Japan
| | - Mikihiro Yamazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai Fuchu, Tokyo 183-0042, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai Fuchu, Tokyo 183-0042, Japan
| | - Masahiro Nagao
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai Fuchu, Tokyo 183-0042, Japan
| |
Collapse
|
10
|
Mitsdoerffer M, Kuchroo V, Korn T. Immunology of neuromyelitis optica: a T cell-B cell collaboration. Ann N Y Acad Sci 2013; 1283:57-66. [PMID: 23617588 DOI: 10.1111/nyas.12118] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuromyelitis optica (NMO) is a debilitating autoimmune inflammatory disease of the central nervous system (CNS) that is distinct from multiple sclerosis (MS). The discovery of NMO-immunoglobulin G (IgG) in the serum of NMO-but not MS-patients was a breakthrough in defining diagnostic criteria for NMO. NMO-IgG is an antibody directed against the astrocytic water channel protein aquaporin-4 (AQP4). While there is evidence that NMO-IgG is also involved in mediating tissue damage in the CNS, many aspects of the pathogenic cascade in NMO remain to be determined. It is clear that antigen-specific T cells contribute to the generation of NMO-IgG in the peripheral immune compartment, as well as to the development of NMO lesions in the CNS. T helper 17 (Th17) cells, equipped both in providing B cell help and inducing tissue inflammation, may be involved in NMO development and pathogenesis. Here, we review immunologic aspects of NMO, placing recent findings in the biology of T-B cell cooperation into perspective with autoimmunity of the CNS.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Ren Z, Wang Y, Duan T, Patel J, Liggett T, Loda E, Brahma S, Goswami R, Grouse C, Byrne R, Stefoski D, Javed A, Miller SD, Balabanov R. Cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4: potential relevance to neuromyelitis optica. THE JOURNAL OF IMMUNOLOGY 2012; 189:4602-11. [PMID: 23008451 DOI: 10.4049/jimmunol.1200486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory disease of the CNS that is mediated, in part, by a self-reactive Ab against the astrocyte aquaporin-4 protein. In the current study, we examined the possibility and the biological significance of cross-immunoreactivity between bacterial aquaporin-Z and human aquaporin-4 proteins. Sequence-alignment analysis of these proteins revealed several regions of significant structural homology. Some of the homologous regions were also found to overlap with important immune and disease-relevant epitopes. Cross-immunoreactivity between aquaporin-Z and aquaporin-4 was investigated and ascertained in multiple immune-based assays using sera from patients with neuromyelitis optica, immune mouse serum, and Abs raised against aquaporin-Z. The biological significance of this phenomenon was established in series of experiments demonstrating that induction of an immune response against aquaporin-Z or its homologous regions can also trigger an autoimmune reaction against aquaporin-4 and inflammation of the CNS. Our study indicates that the autoimmune response against aquaporin-4 in neuromyelitis optica may be triggered by infection-induced cross-immunoreactivity and presents a new perspective on the pathogenesis of this disease.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Neurological Sciences, Multiple Sclerosis Center, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BAC, Zamvil SS. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 2012; 72:53-64. [PMID: 22807325 PMCID: PMC3405197 DOI: 10.1002/ana.23651] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aquaporin 4 (AQP4)-specific autoantibodies in neuromyelitis optica (NMO) are immunoglobulin (Ig)G1, a T cell-dependent Ig subclass, indicating that AQP4-specific T cells participate in NMO pathogenesis. Our goal was to identify and characterize AQP4-specific T cells in NMO patients and healthy controls (HC). METHODS Peripheral blood T cells from NMO patients and HC were examined for recognition of AQP4 and production of proinflammatory cytokines. Monocytes were evaluated for production of T cell-polarizing cytokines and expression of costimulatory molecules. RESULTS T cells from NMO patients and HC proliferated to intact AQP4 or AQP4 peptides (p11-30, p21-40, p61-80, p131-150, p156-170, p211-230, and p261-280). T cells from NMO patients demonstrated greater proliferation to AQP4 than those from HC, and responded most vigorously to p61-80, a naturally processed immunodominant determinant of intact AQP4. T cells were CD4(+), and corresponding to association of NMO with human leukocyte antigen (HLA)-DRB1*0301 and DRB3, AQP4 p61-80-specific T cells were HLA-DR restricted. The T-cell epitope within AQP4 p61-80 was mapped to 63-76, which contains 10 residues with 90% homology to a sequence within Clostridium perfringens adenosine triphosphate-binding cassette (ABC) transporter permease. T cells from NMO patients proliferated to this homologous bacterial sequence, and cross-reactivity between it and self-AQP4 was observed, supporting molecular mimicry. In NMO, AQP4 p61-80-specific T cells exhibited Th17 polarization, and furthermore, monocytes produced more interleukin 6, a Th17-polarizing cytokine, and expressed elevated CD40 and CD80 costimulatory molecules, suggesting innate immunologic dysfunction. INTERPRETATION AQP4-specific T-cell responses are amplified in NMO, exhibit a Th17 bias, and display cross-reactivity to a protein of an indigenous intestinal bacterium, providing new perspectives for investigating NMO pathogenesis.
Collapse
|
15
|
Pohl M, Fischer MT, Mader S, Schanda K, Kitic M, Sharma R, Wimmer I, Misu T, Fujihara K, Reindl M, Lassmann H, Bradl M. Pathogenic T cell responses against aquaporin 4. Acta Neuropathol 2011; 122:21-34. [PMID: 21468722 PMCID: PMC3120973 DOI: 10.1007/s00401-011-0824-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 02/01/2023]
Abstract
Inflammatory lesions in the central nervous system of patients with neuromyelitis optica are characterized by infiltration of T cells and deposition of aquaporin-4-specific antibodies and complement on astrocytes at the glia limitans. Although the contribution of aquaporin-4-specific autoantibodies to the disease process has been recently elucidated, a potential role of aquaporin-4-specific T cells in lesion formation is unresolved. To address this issue, we raised aquaporin-4-specific T cell lines in Lewis rats and characterized their pathogenic potential in the presence and absence of aquaporin-4-specific autoantibodies of neuromyelitis optica patients. We show that aquaporin-4-specific T cells induce brain inflammation with particular targeting of the astrocytic glia limitans and permit the entry of pathogenic anti-aquaporin-4-specific antibodies to induce NMO-like lesions in spinal cord and brain. In addition, transfer of aquaporin-4-specific T cells provoked mild (subclinical) myositis and interstitial nephritis. We further show that the expression of the conformational epitope, recognized by NMO patient-derived aquaporin-4-specific antibodies is induced in kidney cells by the pro-inflammatory cytokine gamma-interferon. Our data provide further support for the view that NMO lesions may be induced by a complex interplay of T cell mediated and humoral immune responses against aquaporin-4.
Collapse
Affiliation(s)
- Maria Pohl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Marie-Therese Fischer
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Simone Mader
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Maja Kitic
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Rakhi Sharma
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Isabella Wimmer
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Tatsuro Misu
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, 980-8574 Japan
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
16
|
Nelson PA, Khodadoust M, Prodhomme T, Spencer C, Patarroyo JC, Varrin-Doyer M, Ho JD, Stroud RM, Zamvil SS. Immunodominant T cell determinants of aquaporin-4, the autoantigen associated with neuromyelitis optica. PLoS One 2010; 5:e15050. [PMID: 21151500 PMCID: PMC2994828 DOI: 10.1371/journal.pone.0015050] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/14/2010] [Indexed: 01/02/2023] Open
Abstract
Autoantibodies that target the water channel aquaporin-4 (AQP4) in neuromyelitis optica (NMO) are IgG1, a T cell-dependent Ig subclass. However, a role for AQP4-specific T cells in this CNS inflammatory disease is not known. To evaluate their potential role in CNS autoimmunity, we have identified and characterized T cells that respond to AQP4 in C57BL/6 and SJL/J mice, two strains that are commonly studied in models of CNS inflammatory diseases. Mice were immunized with either overlapping peptides or intact hAQP4 protein encompassing the entire 323 amino acid sequence. T cell determinants identified from examination of the AQP4 peptide (p) library were located within AQP4 p21-40, p91-110, p101-120, p166-180, p231-250 and p261-280 in C57BL/6 mice, and within p11-30, p21-40, p101-120, p126-140 and p261-280 in SJL/J mice. AQP4-specific T cells were CD4+ and MHC II-restricted. In recall responses to immunization with intact AQP4, T cells responded primarily to p21-40, indicating this region contains the immunodominant T cell epitope(s) for both strains. AQP4 p21-40-primed T cells secreted both IFN-γ and IL-17. The core immunodominant AQP4 21-40 T cell determinant was mapped to residues 24-35 in C57BL/6 mice and 23-35 in SJL/J mice. Our identification of the AQP4 T cell determinants and characterization of its immunodominant determinant should permit investigators to evaluate the role of AQP4-specific T cells in vivo and to develop AQP4-targeted murine NMO models.
Collapse
Affiliation(s)
- Patricia A. Nelson
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Mojgan Khodadoust
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas Prodhomme
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Collin Spencer
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Juan Carlos Patarroyo
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Michel Varrin-Doyer
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph D. Ho
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Scott S. Zamvil
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Illes Z. Pathogenesis, diagnosis and treatment of neuromyelitis optica: Changing concept of an old disease. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1759-1961.2010.00011.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Sahraian MA, Moinfar Z, Khorramnia S, Ebrahim MM. Relapsing neuromyelitis optica: demographic and clinical features in Iranian patients. Eur J Neurol 2010; 17:794-9. [PMID: 20100229 DOI: 10.1111/j.1468-1331.2009.02928.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuromyelitis Optica (NMO) is a severe inflammatory demyelinating disease of the central nervous system with distinguishing features from multiple sclerosis (MS). NMO has an unknown etiology with poor prognosis in which anti-aquaporin-4 receptor IgG seems to play a major role. The purpose of this study is to represent a clinical and demographic data of NMO in Iranian population. METHODS Of 1800 patients attending our MS clinic, 44 patients with NMO were recruited from 2006 to 2009. RESULTS Female to male ratio was 3:1 and the disease affected women in younger ages than men (P = 0.04). The median expanded disability status scale score was 3 and the mean duration of symptoms was 4.53 +/- 3.41 (median = 4) years with annual relapse rate of 1.13 year/patient. The most frequent symptoms at presentation were optic neuritis 22 (50%) and transverse myelitis 14 (31.8%). Out of 12 patients whose titer of NMO-IgG was measured, four (30.7%) patients were seropositive. Twenty-eight patients (63%) received azathioprine for a mean duration of 16.84 +/- 27.91 months with significantly lower annual relapse rate (0.4 year/patient). CONCLUSIONS Iranian patients as a Caucasian population living in Asia seem to have the same clinical features in comparison with the reported studies from Western countries. Although the duration of follow-up was not too long, but they may possibly have a more benign course.
Collapse
Affiliation(s)
- M A Sahraian
- Department of Neurology, Sina Hospital, Tehran University of Medical Sciences, Tehran.
| | | | | | | |
Collapse
|
19
|
Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, Adzemovic M, Bauer J, Berger T, Fujihara K, Itoyama Y, Lassmann H. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009; 66:630-43. [PMID: 19937948 DOI: 10.1002/ana.21837] [Citation(s) in RCA: 430] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Severe inflammation and astrocyte loss with profound demyelination in spinal cord and optic nerves are typical pathological features of neuromyelitis optica (NMO). A diagnostic hallmark of this disease is the presence of serum autoantibodies against the water channel aquaporin-4 (AQP-4) on astrocytes. METHODS We induced acute T-cell-mediated experimental autoimmune encephalomyelitis in Lewis rats and confronted the animals with an additional application of immunoglobulins from AQP-4 antibody-positive and -negative NMO patients, multiple sclerosis patients, and control subjects. RESULTS The immunoglobulins from AQP-4 antibody-positive NMO patients are pathogenic. When they reach serum titers in experimental animals comparable with those seen in NMO patients, they augment clinical disease and induce lesions in the central nervous system that are similar in structure and distribution to those seen in NMO patients, consisting of AQP-4 and astrocyte loss, granulocytic infiltrates, T cells and activated macrophages/microglia cells, and an extensive immunoglobulin and complement deposition on astrocyte processes of the perivascular and superficial glia limitans. AQP-4 antibody containing NMO immunoglobulin injected into naïve rats, young rats with leaky blood-brain barrier, or after transfer of a nonencephalitogenic T-cell line did not induce disease or neuropathological alterations in the central nervous system. Absorption of NMO immunoglobulins with AQP-4-transfected cells, but not with mock-transfected control cells, reduced the AQP-4 antibody titers and was associated with a reduction of astrocyte pathology after transfer. INTERPRETATION Human anti-AQP-4 antibodies are not only important in the diagnosis of NMO but also augment disease and induce NMO-like lesions in animals with T-cell-mediated brain inflammation.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Graber DJ, Levy M, Kerr D, Wade WF. Neuromyelitis optica pathogenesis and aquaporin 4. J Neuroinflammation 2008; 5:22. [PMID: 18510734 PMCID: PMC2427020 DOI: 10.1186/1742-2094-5-22] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/29/2008] [Indexed: 12/25/2022] Open
Abstract
Neuromyelitis optica (NMO) is a severe, debilitating human disease that predominantly features immunopathology in the optic nerves and the spinal cord. An IgG1 autoantibody (NMO-IgG) that binds aquaporin 4 (AQP4) has been identified in the sera of a significant number of NMO patients, as well as in patients with two related neurologic conditions, bilateral optic neuritis (ON), and longitudinal extensive transverse myelitis (LETM), that are generally considered to lie within the NMO spectrum of diseases. NMO-IgG is not the only autoantibody found in NMO patient sera, but the correlation of pathology in central nervous system (CNS) with tissues that normally express high levels of AQP4 suggests NMO-IgG might be pathogenic. If this is the case, it is important to identify and understand the mechanism(s) whereby an immune response is induced against AQP4. This review focuses on open questions about the "events" that need to be understood to determine if AQP4 and NMO-IgG are involved in the pathogenesis of NMO. These questions include: 1) How might AQP4-specific T and B cells be primed by either CNS AQP4 or peripheral pools of AQP4? 2) Do the different AQP4-expressing tissues and perhaps the membrane structural organization of AQP4 influence NMO-IgG binding efficacy and thus pathogenesis? 3) Does prior infection, genetic predisposition, or underlying immune dysregulation contribute to a confluence of events which lead to NMO in select individuals? A small animal model of NMO is essential to demonstrate whether AQP4 is indeed the incipient autoantigen capable of inducing NMO-IgG formation and NMO. If the NMO model is consistent with the human disease, it can be used to examine how changes in AQP4 expression and blood-brain barrier (BBB) integrity, both of which can be regulated by CNS inflammation, contribute to inductive events for anti-AQP4-specific immune response. In this review, we identify reagents and experimental questions that need to be developed and addressed to enhance our understanding of the pathogenesis of NMO. Finally, dysregulation of tolerance associated with autoimmune disease appears to have a role in NMO. Animal models would allow manipulation of hormone levels, B cell growth factors, and other elements known to increase the penetrance of autoimmune disease. Thus an AQP4 animal model would provide a means to manipulate events which are now associated with NMO and thus demonstrate what set of events or multiplicity of events can push the anti-AQP4 response to be pathogenic.
Collapse
Affiliation(s)
- David J Graber
- Department of Pathology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | | | | | |
Collapse
|
21
|
Bibliography. Current world literature. Neuro-ophthalmology. Curr Opin Ophthalmol 2007; 18:515-17. [PMID: 18163005 DOI: 10.1097/icu.0b013e3282f292cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|