1
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
2
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
D'Agostino M, Scerra G, Cannata Serio M, Caporaso MG, Bonatti S, Renna M. Unconventional secretion of α-Crystallin B requires the Autophagic pathway and is controlled by phosphorylation of its serine 59 residue. Sci Rep 2019; 9:16892. [PMID: 31729431 PMCID: PMC6858465 DOI: 10.1038/s41598-019-53226-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
α-Crystallin B (CRYAB or HspB5) is a chaperone member of the small heat-shock protein family that prevents aggregation of many cytosolic client proteins by means of its ATP-independent holdase activity. Surprisingly, several reports show that CRYAB exerts a protective role also extracellularly, and it has been recently demonstrated that CRYAB is secreted from human retinal pigment epithelial cells by an unconventional secretion pathway that involves multi-vesicular bodies. Here we show that autophagy is crucial for this unconventional secretion pathway and that phosphorylation at serine 59 residue regulates CRYAB secretion by inhibiting its recruitment to the autophagosomes. In addition, we found that autophagosomes containing CRYAB are not able to fuse with lysosomes. Therefore, CRYAB is capable to highjack and divert autophagosomes toward the exocytic pathway, inhibiting their canonical route leading to the lysosomal compartment. Potential implications of these findings in the context of disease-associated mutant proteins turn-over are discussed.
Collapse
Affiliation(s)
- M D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | - G Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Cannata Serio
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - S Bonatti
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 2017; 545:108-111. [PMID: 28445460 PMCID: PMC5420314 DOI: 10.1038/nature22078] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022]
Abstract
Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, like huntingtin in Huntington’s disease (HD) and ataxin-3 in spinocerebellar ataxia type 3 (SCA3)1, 2. Age-at-onset decreases with increasing polyglutamine length in these proteins and the normal length is also polymorphic3. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo due to alternative splicing4, causes toxicity. While such mutant proteins are aggregate-prone5, toxicity is also associated with soluble forms of the proteins6. The function of the polyQ tracts in many normal/wild-type cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 37, 8, which is widely expressed in the brain9, 10. Here we show that the polyQ domain in wild-type ataxin-3 enables its interaction with beclin 1, a key autophagy initiator11. This interaction allows the deubiquitinase activity of ataxin-3 to protect beclin 1 from proteasome-mediated degradation and thus enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell-lines, primary neurons and in-vivo. This activity of ataxin-3 and its interaction with beclin 1 mediated by its polyQ domain was competed by other soluble proteins with polyQ tracts in a length-dependent fashion. This resulted in impaired starvation-induced autophagy in cells expressing mutant huntingtin exon 1, which was also recapitulated in the brain of HD mouse model and in patient cells. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin-3 itself. Our data thus describe a specific function for a wild-type polyQ tract which is abrogated by a competing longer polyQ mutation in a disease protein. This also reveals a deleterious function of such mutations distinct from their aggregation propensity.
Collapse
|
6
|
Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response. PLoS Genet 2016; 12:e1006362. [PMID: 27736876 PMCID: PMC5065118 DOI: 10.1371/journal.pgen.1006362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK. To meet various developmental or environmental needs, the communication between pre- and postsynapse can be modulated in different aspects. The release of presynaptic vesicles can be regulated at the steps of docking, membrane fusion and endocytosis. Upon receiving neurotransmitter stimuli from presynaptic terminals, postsynaptic cells tune their responses by controlling the abundance of different neurotransmitter receptors at the synaptic membrane. The Drosophila NMJ is a well-defined genetic system to study the function and physiology of synapses. Two types of glutamate receptors (GluRs), IIA and IIB, present at the NMJ, exhibit distinct desensitization kinetics: GluRIIA desensitizes much slower than GluRIIB does, resulting in more ionic influx and larger postsynaptic responses. By altering the ratio of GluRIIA to GluRIIB, muscle cells modulate their responses to presynaptic release efficiently. However, how to regulate this intricate GluRIIA/GluRIIB ratio requires further study. Here, we describe a negative regulation for dPAK, a crucial regulator of GluRIIA localization at the PSD. Henji specifically binds to dPAK near the postsynaptic region and hinders dPAK localization from the PSD. By negatively controlling dPAK levels, synaptic GluRIIA abundance can be restrained within an appropriate range, protecting the synapse from unwanted fluctuations in synaptic strengths or the detriment of excitotoxicity.
Collapse
|
7
|
Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN, Chestkov IV, Semashko TA, Kiseleva E, Suldina LA, Bobrovsky PA, Zimina OA, Ryazantseva MA, Skopin AY, Illarioshkin SN, Kaznacheyeva EV, Lagarkova MA, Kiselev SL. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener 2016; 11:27. [PMID: 27080129 PMCID: PMC4832474 DOI: 10.1186/s13024-016-0092-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. RESULTS Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro, as evidenced by mutant huntingtin protein aggregation, increased number of lysosomes/autophagosomes, nuclear indentations, and enhanced neuronal death during cell aging. Moreover, store-operated channel (SOC) currents were detected in the differentiated neurons, and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally, the quinazoline derivative, EVP4593, reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging. CONCLUSIONS Our data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug.
Collapse
Affiliation(s)
- Evgeny D. Nekrasov
- />Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333 Russia
| | - Vladimir A. Vigont
- />Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | | | - Olga S. Lebedeva
- />Scientific-Research Institute of Physical-Chemical Medicine, Moscow, 119435 Russia
| | - Ekaterina M. Vassina
- />Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333 Russia
| | | | - Ilya V. Chestkov
- />Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333 Russia
| | - Tatiana A. Semashko
- />Scientific-Research Institute of Physical-Chemical Medicine, Moscow, 119435 Russia
| | - Elena Kiseleva
- />Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090 Russia
| | - Lyubov A. Suldina
- />Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090 Russia
| | - Pavel A. Bobrovsky
- />Scientific-Research Institute of Physical-Chemical Medicine, Moscow, 119435 Russia
| | - Olga A. Zimina
- />Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Maria A. Ryazantseva
- />Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Anton Yu. Skopin
- />Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | | | | | - Maria A. Lagarkova
- />Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333 Russia
- />Scientific-Research Institute of Physical-Chemical Medicine, Moscow, 119435 Russia
| | - Sergey L. Kiselev
- />Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333 Russia
- />Kazan State University, Kazan, 420008 Russia
| |
Collapse
|
8
|
Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. CELLULAR LOGISTICS 2014; 2:117-125. [PMID: 23162743 PMCID: PMC3490962 DOI: 10.4161/cl.21602] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology; University of California Los Angeles; Los Angeles, CA USA ; Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare System; West Los Angeles Medical Center; Los Angeles, CA USA
| | | | | | | |
Collapse
|
9
|
Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8:314. [PMID: 25339865 PMCID: PMC4187614 DOI: 10.3389/fncel.2014.00314] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA ; Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
10
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
11
|
Polling S, Hill AF, Hatters DM. Polyglutamine aggregation in Huntington and related diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:125-40. [PMID: 23560308 DOI: 10.1007/978-1-4614-5434-2_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.
Collapse
Affiliation(s)
- Saskia Polling
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
12
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets 2010; 14:703-25. [PMID: 20507214 DOI: 10.1517/14728222.2010.492779] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|