1
|
Tarui Disease Caused by a Novel PFKM Genetic Variant in a Sub-Saharan African Patient. J Clin Neuromuscul Dis 2022; 23:162-164. [PMID: 35188917 DOI: 10.1097/cnd.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Laforêt P, Oldfors A, Malfatti E, Vissing J. 251st ENMC international workshop: Polyglucosan storage myopathies 13-15 December 2019, Hoofddorp, the Netherlands. Neuromuscul Disord 2021; 31:466-477. [PMID: 33602551 DOI: 10.1016/j.nmd.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Pascal Laforêt
- Neurology Unit, Raymond Poincaré Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Anders Oldfors
- Department of Laboratory Medicine, Sahlgrenska University Hospital, Institute of Biomedicine, University of Gothenburg, Sweden.
| | - Edoardo Malfatti
- Neuromuscular Reference Center, Henri Mondor University Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | | |
Collapse
|
3
|
Cenacchi G, Papa V, Costa R, Pegoraro V, Marozzo R, Fanin M, Angelini C. Update on polyglucosan storage diseases. Virchows Arch 2019; 475:671-686. [DOI: 10.1007/s00428-019-02633-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
|
4
|
Park HJ, Hong JM, Lee JH, Shin HY, Kim SM, Park KD, Lee JH, Choi YC. Comparative transcriptome analysis of skeletal muscle in ADSSL1 myopathy. Neuromuscul Disord 2018; 29:274-281. [PMID: 30853170 DOI: 10.1016/j.nmd.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
ADSSL1 myopathy was recently identified as the cause of muscular disorders in Korean patients with distal myopathy. We generated transcriptome profiles of muscles from control subjects and patients with ADSSL1 myopathy. In the present study, RNA sequencing was conducted with seven vastus lateralis muscle samples from four patients with ADSSL1 myopathy and three control subjects. The hierarchical clustering result revealed a separation between myopathy and control groups. A total of 1,260 transcripts were significantly differentially expressed (|fold change| ≥ 2, p < 0.05), with 740 upregulated transcripts and 520 downregulated transcripts in myopathy group. Eighteen transcripts that mapped to purine metabolism pathway were significantly differentially expressed between the two groups, with ten downregulated transcripts and eight upregulated transcripts in myopathy group. In particular, three genes involved in purine nucleotide cycle (ADSSL1, ADSL, and AMPD1) were significantly downregulated in myopathy group. Ten transcripts in glycolysis/gluconeogenesis pathway were also significantly differentially expressed. This is the first study on the altered expression of transcripts in muscle tissues from patients with ADSSL1 myopathy. Our results provide new insights into the pathogenesis of ADSSL1 myopathy.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Ji-Man Hong
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jung Hwan Lee
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Seung Min Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Kee Duk Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Dongdaemun-gu, Kyung Hee daero 26, Seoul, Republic of Korea; Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Hedberg-Oldfors C, Glamuzina E, Ruygrok P, Anderson LJ, Elliott P, Watkinson O, Occleshaw C, Abernathy M, Turner C, Kingston N, Murphy E, Oldfors A. Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature. J Inherit Metab Dis 2017; 40:139-149. [PMID: 27718144 PMCID: PMC5203857 DOI: 10.1007/s10545-016-9978-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
Abstract
We describe a new type of cardiomyopathy caused by a mutation in the glycogenin-1 gene (GYG1). Three unrelated male patients aged 34 to 52 years with cardiomyopathy and abnormal glycogen storage on endomyocardial biopsy were homozygous for the missense mutation p.Asp102His in GYG1. The mutated glycogenin-1 protein was expressed in cardiac tissue but had lost its ability to autoglucosylate as demonstrated by an in vitro assay and western blot analysis. It was therefore unable to form the primer for normal glycogen synthesis. Two of the patients showed similar patterns of heart dilatation, reduced ejection fraction and extensive late gadolinium enhancement on cardiac magnetic resonance imaging. These two patients were severely affected, necessitating cardiac transplantation. The cardiomyocyte storage material was characterized by large inclusions of periodic acid and Schiff positive material that was partly resistant to alpha-amylase treatment consistent with polyglucosan. The storage material had, unlike normal glycogen, a partly fibrillar structure by electron microscopy. None of the patients showed signs or symptoms of muscle weakness but a skeletal muscle biopsy in one case revealed muscle fibres with abnormal glycogen storage. Glycogenin-1 deficiency is known as a rare cause of skeletal muscle glycogen storage disease, usually without cardiomyopathy. We demonstrate that it may also be the cause of severe cardiomyopathy and cardiac failure without skeletal muscle weakness. GYG1 should be included in cardiomyopathy gene panels.
Collapse
Affiliation(s)
| | - Emma Glamuzina
- National Metabolic Service, Starship Children’s Hospital, Auckland, New Zealand
| | - Peter Ruygrok
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | | | | | | | - Chris Occleshaw
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | | | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Nicola Kingston
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Anders Oldfors
- Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Abstract
After the advances created by the use of cryostat sections and histochemistry 60 years ago, muscle histopathology is now living a real renaissance. In the field of genetic neuromuscular disorders, muscle biopsy analysis is fundamental to address questions about pathogenicity and protein expression when new genes are discovered through next-generation sequencing approaches. Moreover, the identification of the same gene mutated in previously considered distinct histopathologic entities imposes a constant reassessment of morphologic boundaries in several groups of disorders. In other fields like the acquired inflammatory myopathies, histologic analysis nowadays helps to affirm a diagnosis, set up therapeutic strategies, and verify the success of immunosuppressive treatment. In this exciting scenario morphologists are definitely key figures in the neuromuscular field. The objective of this chapter is to give an overview on morphology of the most frequent and recently identified muscle conditions, stressing the importance that only a combined analysis of clinical findings, muscle histology, and specific ancillary investigations is effective in reaching a precise diagnosis and orienting therapy.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France.
| | - Norma Beatriz Romero
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Malfatti E, Barnerias C, Hedberg-Oldfors C, Gitiaux C, Benezit A, Oldfors A, Carlier RY, Quijano-Roy S, Romero NB. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord 2016; 26:681-687. [PMID: 27546458 DOI: 10.1016/j.nmd.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an autosomal recessive disorder causing polyglucosan storage in various tissues. Neuromuscular forms present with fetal akinesia deformation sequence, lethal myopathy, or mild hypotonia and weakness. A 3-year-old boy presented with arthrogryposis, motor developmental delay, weakness, and rigid spine. Whole body MRI revealed fibroadipose muscle replacement but sparing of the sartorius, gracilis, adductor longus and vastus intermedialis muscles. Polyglucosan bodies were identified in muscle, and GBE1 gene analysis revealed two pathogenic variants. We describe a novel neuromuscular GSD IV phenotype and confirm the importance of muscle morphological studies in early onset neuromuscular disorders.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France
| | - Christine Barnerias
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cyril Gitiaux
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP Service des Explorations Foctionnelles Neurologiques, Höpital Universitaire Necker-Enfants Malades, Paris, France
| | - Audrey Benezit
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert-Yves Carlier
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; U1179 INSERM-UVSQ, Université Versailles Saint-Quentin en Yvelines, Montigny, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Susana Quijano-Roy
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Norma B Romero
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France.
| |
Collapse
|
8
|
Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA CLINICAL 2016; 5:85-100. [PMID: 27051594 PMCID: PMC4802397 DOI: 10.1016/j.bbacli.2016.02.001] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases.
Collapse
Affiliation(s)
- María M. Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | | | | | |
Collapse
|
9
|
Piirilä P, Similä ME, Palmio J, Wuorimaa T, Ylikallio E, Sandell S, Haapalahti P, Uotila L, Tyynismaa H, Udd B, Auranen M. Unique Exercise Lactate Profile in Muscle Phosphofructokinase Deficiency (Tarui Disease); Difference Compared with McArdle Disease. Front Neurol 2016; 7:82. [PMID: 27303362 PMCID: PMC4885106 DOI: 10.3389/fneur.2016.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Glycogen storage disease V (GSDV, McArdle disease) and GSDVII (Tarui disease) are the most common of the rare disorders of glycogen metabolism. Both are associated with low lactate levels on exercise. Our aim was to find out whether lactate response associated with exercise testing could distinguish between these disorders. METHODS Two siblings with Tarui disease, two patients with McArdle disease and eight healthy controls were tested on spiroergometric exercise tests with follow-up of venous lactate and ammonia. RESULTS A late increase of lactate about three times the basal level was seen 10-30 min after exercise in patients with Tarui disease being higher than in McArdle disease and lower than in the controls. Ammonia was increased in Tarui disease. DISCUSSION Our results suggest that follow-up of lactate associated with exercise testing can be utilized in diagnostics to distinguish between different GSD diseases.
Collapse
Affiliation(s)
- Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Minna E. Similä
- Department of Clinical Nutrition Therapy, Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Tomi Wuorimaa
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Sandell
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
- Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland
- Department of Neurology, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Petri Haapalahti
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lasse Uotila
- Laboratory of Clinical Chemistry, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
|
11
|
Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1. Neuromuscul Disord 2015; 26:16-20. [PMID: 26652229 DOI: 10.1016/j.nmd.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023]
Abstract
Five Sardinian patients presented in their 5th or 6th decade with progressive limb girdle muscle weakness but their muscle biopsies showed vacuolar myopathy. The more or less abundant subsarcolemmal and intermyofibrillar vacuoles showed intense, partially α-amylase resistant, PAS-positive deposits consistent with polyglucosan. The recent description of late-onset polyglucosan myopathy has prompted us to find new genetic defects in the gene (GYG1) encoding glycogenin-1, the crucial primer enzyme of glycogen synthesis in muscle. We found a single homozygous intronic mutation harbored by five patients, who, except for two siblings, appear to be unrelated but all five live in central or south Sardinian villages.
Collapse
|
12
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
13
|
Malfatti E, Nilsson J, Hedberg-Oldfors C, Hernandez-Lain A, Michel F, Dominguez-Gonzalez C, Viennet G, Akman HO, Kornblum C, Van den Bergh P, Romero NB, Engel AG, DiMauro S, Oldfors A. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 2014; 76:891-8. [PMID: 25272951 PMCID: PMC4348070 DOI: 10.1002/ana.24284] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
We describe a slowly progressive myopathy in 7 unrelated adult patients with storage of polyglucosan in muscle fibers. Genetic investigation revealed homozygous or compound heterozygous deleterious variants in the glycogenin-1 gene (GYG1). Most patients showed depletion of glycogenin-1 in skeletal muscle, whereas 1 showed presence of glycogenin-1 lacking the C-terminal that normally binds glycogen synthase. Our results indicate that either depletion of glycogenin-1 or impaired interaction with glycogen synthase underlies this new form of glycogen storage disease that differs from a previously reported patient with GYG1 mutations who showed profound glycogen depletion in skeletal muscle and accumulation of glycogenin-1.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Myology Institute, Neuromuscular Morphology Unit, Pierre and Marie Curie University, Pitié-Salpêtrière University Hospital Group, Sorbonne Universities, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|