1
|
Rahmatkar SN, Singh D. Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04776-x. [PMID: 40014269 DOI: 10.1007/s12035-025-04776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.
Collapse
Affiliation(s)
- Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
3
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Gatto A, Capossela L, Conti G, Eftimiadi G, Ferretti S, Manni L, Curatola A, Graglia B, Di Sarno L, Calcagni ML, Di Giuda D, Cecere S, Romeo DM, Soligo M, Picconi E, Piastra M, Della Marca G, Staccioli S, Ruggiero A, Cocciolillo F, Pulitanò S, Chiaretti A. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome. Biol Direct 2023; 18:61. [PMID: 37789391 PMCID: PMC10546699 DOI: 10.1186/s13062-023-00418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is one of the most dramatic events in pediatric age and, despite advanced neuro-intensive care, the survival rate of these patients remains low. Children suffering from severe TBI show long-term sequelae, more pronounced in behavioral, neurological and neuropsychological functions leading to, in the most severe cases, an unresponsive wakefulness syndrome (UWS). Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. In experimental animal models, human- recombinant Nerve Growth Factor (hr-NGF) promotes neural recovery supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated processes. Only a few studies reported the efficacy of intranasal hr-NGF administration in children with post- traumatic UWS. METHODS Children with the diagnosis of post-traumatic UWS were enrolled. These patients underwent a treatment with intranasal hr-NGF administration, at a total dose of 50 gamma/kg, three times a day for 7 consecutive days. The treatment schedule was performed for 4 cycles, at one month distance each. Neuroradiogical evaluation by Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG), and Power Spectral Density (PSD) was determined before the treatment and one month after the end. Neurological assessment was also deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with post-traumatic UWS were treated. hr-NGF administration improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary movements, facial mimicry, attention and verbal comprehension, ability to cry, cough reflex, oral motility, and feeding capacity, with a significant improvement of their neurological scores. No side effects were reported. CONCLUSION These promising results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from severe TBI and in patients with better baseline neurological conditions, to explore more thoroughly the benefits of this new approach on neuronal function recovery after traumatic brain damage.
Collapse
Affiliation(s)
- Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Conti
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gemma Eftimiadi
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Di Sarno
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Cecere
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enzo Picconi
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marco Piastra
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A.Gemelli IRCCS - Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Pulitanò
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Women's Health Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
5
|
Curatola A, Graglia B, Granata G, Conti G, Capossela L, Manni L, Ferretti S, Di Giuda D, Romeo DM, Calcagni ML, Soligo M, Castelli E, Piastra M, Mantelli F, Marca GD, Staccioli S, Romeo T, Pani M, Cocciolillo F, Mancino A, Gatto A, Chiaretti A. Combined treatment of nerve growth factor and transcranical direct current stimulations to improve outcome in children with vegetative state after out-of-hospital cardiac arrest. Biol Direct 2023; 18:24. [PMID: 37165387 PMCID: PMC10170696 DOI: 10.1186/s13062-023-00379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) is one of the most dramatic events in pediatric age and, despite advanced neurointensive care, the survival rate remains low. Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. Nerve Growth Factor (NGF) is a neurotrophin potentially able to counteract many of the deleterious effects triggered by OHCA. Transcranial Direct Current Stimulation (tDCS) has been reported to be neuroprotective in many neurological diseases, such as motor deficit and cognitive impairment. Children with the diagnosis of chronic vegetative state after OHCA were enrolled. These patients underwent a combined treatment of intranasal administration of human recombinant NGF (hr-NGF), at a total dose of 50 gamma/kg, and tDCS, in which current intensity was increased from zero to 2 mA from the first 5 s of stimulation and maintained constant for 20 min. The treatment schedule was performed twice, at one month distance each. Neuroradiogical evaluation with Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG) and Power Spectral Density of the brain (PSD) was determined before the treatment and one month after the end. Neurological assessment was deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with a chronic vegetative state secondary to OHCA were treated. The combined treatment with hr-NGF and tDCS improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary finger movements, improved facial mimicry and reaction to painful stimuli. No side effects were reported. CONCLUSIONS These promising preliminary results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from OHCA and in patients with better baseline neurological conditions, in order to explore more thoroughly the benefits of this new approach on neuronal function recovery after OHCA.
Collapse
Affiliation(s)
- Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Granata
- Istituto di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giorgio Conti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enrico Castelli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Marco Piastra
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Flavio Mantelli
- Dompé Farmaceutici Spa, Via Campo di Pile, snc, L'Aquila, 67100, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Tiziana Romeo
- Dompé Farmaceutici Spa, Via Campo di Pile, snc, L'Aquila, 67100, Italy
| | - Marcello Pani
- Direttore Farmacia Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Aldo Mancino
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
6
|
Barker S, Paul BD, Pieper AA. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023; 11:1154. [PMID: 37189772 PMCID: PMC10135798 DOI: 10.3390/biomedicines11041154] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from chronically progressive complications, including significantly increased risk of developing aging-related neurodegenerative disease. As advances in neurocritical care increase the number of TBI survivors, the impact and awareness of this problem are growing. The mechanisms by which TBI increases the risk of developing aging-related neurodegenerative disease, however, are not completely understood. As a result, there are no protective treatments for patients. Here, we review the current literature surrounding the epidemiology and potential mechanistic relationships between brain injury and aging-related neurodegenerative disease. In addition to increasing the risk for developing all forms of dementia, the most prominent aging-related neurodegenerative conditions that are accelerated by TBI are amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson's disease (PD), and Alzheimer's disease (AD), with ALS and FTD being the least well-established. Mechanistic links between TBI and all forms of dementia that are reviewed include oxidative stress, dysregulated proteostasis, and neuroinflammation. Disease-specific mechanistic links with TBI that are reviewed include TAR DNA binding protein 43 and motor cortex lesions in ALS and FTD; alpha-synuclein, dopaminergic cell death, and synergistic toxin exposure in PD; and brain insulin resistance, amyloid beta pathology, and tau pathology in AD. While compelling mechanistic links have been identified, significantly expanded investigation in the field is needed to develop therapies to protect TBI survivors from the increased risk of aging-related neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah Barker
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Soligo M, Manni L, Conti G, Chiaretti A. Intranasal nerve growth factor for prevention and recovery of the outcomes of traumatic brain injury. Neural Regen Res 2023; 18:773-778. [DOI: 10.4103/1673-5374.354513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Humpel C. Intranasal neprilysin rapidly eliminates amyloid-beta plaques, but causes plaque compensations: the explanation why the amyloid-beta cascade may fail? Neural Regen Res 2022; 17:1881-1884. [PMID: 35142662 PMCID: PMC8848595 DOI: 10.4103/1673-5374.335138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative brain disorders are a major burden in our society, such as Alzheimer´s disease. In order to repair or prevent such diseases, drugs are designed which enter the brain, but the blood-brain barrier limits their entry and the search for alternative pathways is important. Recently, we reported that intranasal delivery of the amyloid-beta degrading enzyme neprilysin eliminated amyloid-beta plaques in transgenic Alzheimer´s disease mice. This review describes the anatomical structure of the intranasal pathway, explains the intranasal delivery of pure neprilysin, cell-loaded neprilysin (platelets) and collagen-embedded neprilysin to destruct amyloid-beta plaques in Alzheimer´s disease in transgenic APP_SweDI mice and hypothesizes why this may cause compensation and why the amyloid-beta cascade hypothesis may fail.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Korneva EA, Dmitrienko EV, Miyamura S, Noda M, Akimoto N. Protective effects of Derinat, a nucleotide-based drug, on experimental traumatic brain injury, and its cellular mechanisms. MEDICAL IMMUNOLOGY (RUSSIA) 2021; 23:1367-1382. [DOI: 10.15789/1563-0625-peo-2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury is the most common cause of death and disability in young people including sport athletes and soldiers, people under 45 years of age in the industrialized countries, representing a growing health problem in developing countries, as well as in aging communities. Treatment of the latter is a serious challenge for modern medicine. This type of injury leads to many kinds of disorders and, quite often, to disability. These issue require development of new methods for brain trauma treatment. The new approach to brain trauma treatment was studied in murine experiments. In particular, sodium salt of deoxyribonucleic acid (DNA) was used. This preparation is a drug known as a mixture of peptides with immunomodulatory effect which is widely used for different kinds of therapy. Derinat, a sodium salt of DNA, isolated from the caviar of Russian sturgeon, is a proven immunomodulator for treatment of diseases associatd with reactive oxygen species (ROS), including brain ischemia-reperfusion (IR) injury. Here we show that treatment with Derinat exert neuroprotective, anti-oxidative, and anti-inflammatory effects in experimental model of traumatic brain injury (TBI) in rats. Intraperitoneal injection of Derinat several times over 3 days after TBI showed less pronounced damage of the injured brain area. Immunohistochemical study showed that the Derinat-induced morphological changes of microglia in cerebral cortex and hippocampus 7 days after TBI. TBI-induced accumulation of 8-oxoguanine (8-oxoG), the marker of oxidative damage, was significantly attenuated by Derinat administration, both on 7th and 14th day after TBI. To investigate cellular mechanism of anti-inflammatory effects, the primary cultures of murine microglia supplied with ATP (50 M and 1 mM), as a substance released at injured site, were used to mimic the in vitro inflammatory response. Derinate treatment caused an increase of glial levels of mRNAs encoding neurotrophic factor (GDNF) and nerve growth factor (NGF) in the presence of ATP, whereas tissue plasminogen activator (tPA) mRNA was inhibited by ATP with or without Derinat. Interleukin-6 (IL-6) mRNA expression was not affected by ATP but was increased by Derinat. Both mRNA and protein levels of ATP-induced TNFα production were significantly inhibited by Derinat. These results partially contribute to understanding mechanisms of immunomodulatory effects of DNA preparations in traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - M. Noda
- Graduate School of Pharmaceutical Sciences
| | - N. Akimoto
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|
10
|
Manni L, Conti G, Chiaretti A, Soligo M. Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma. Front Pharmacol 2021; 12:754502. [PMID: 34867367 PMCID: PMC8635100 DOI: 10.3389/fphar.2021.754502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Giorgio Conti
- Department of Emergency, Intensive Pediatric Therapy and Pediatric Trauma Center, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
11
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
12
|
Humpel C. Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model. Front Aging Neurosci 2021; 13:649646. [PMID: 33967739 PMCID: PMC8100061 DOI: 10.3389/fnagi.2021.649646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|
14
|
Nakhjiri E, Vafaee MS, Hojjati SMM, Shahabi P, Shahpasand K. Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Mol Neurobiol 2020; 57:4845-4855. [PMID: 32808121 DOI: 10.1007/s12035-020-02061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Traumatic spinal cord injury (SCI) can result in substantial neurological impairment along with significant emotional and psychological distress. It is clear that there is profound neurodegeneration upon SCI, gradually spread to other spinal cord regions and brain areas. Despite extensive considerations, it remains uncertain how pathogenicity diffuses in the cord. It has been reported that tau protein abnormal hyperphosphorylation plays a central role in neurodegeneration triggered by traumatic brain injury (TBI). Tau is a microtubule-associated protein, heavily implicated in neurodegenerative diseases. Importantly, tau pathology spreads in a traumatic brain in a timely manner. In particular, we have recently demonstrated that phosphorylated tau at Thr231 exists in two distinct cis and trans conformations, in which that cis P-tau is extremely neurotoxic, has a prion nature, and spreads to various brain areas and cerebrospinal fluid (CSF) upon trauma. On the other hand, tau pathology, in particular hyperphosphorylation at Thr231, has been observed upon SCI. Taken these together, we conclude that cis pT231-tau may accumulate and spread in the spinal cord as well as CSF and diffuse tau pathology in the central nervous system (CNS). Moreover, antibody against cis P-tau can target intracellular cis P-tau and protect pathology spreading. Thus, considering cis P-tau as a driver of tau pathology and neurodegeneration upon SCI would open new windows toward understanding the disease development and early biomarkers. Furthermore, it would help us develop effective therapies for SCI patients.
Collapse
Affiliation(s)
- Elnaz Nakhjiri
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manuchehr S Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Wilson B, Geetha KM. Neurotherapeutic applications of nanomedicine for treating Alzheimer's disease. J Control Release 2020; 325:25-37. [PMID: 32473177 DOI: 10.1016/j.jconrel.2020.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive, irreversible, fatal brain disease which disturbs cognitive functions. It affects 35 million people worldwide and the number of people suffering may increase to 100 million by 2050 if no effective treatments are available. The present treatment improves cognitive functions and provide temporary symptomatic relief, but do not stop or delay the disease progression. Moreover, they are mainly available as conventional oral dosage forms and these conventional oral medications lack brain specificity and also produce side effects which leads to poor patient compliance. Brain drug targeting by nanomedicines is a promising approach to improve brain targeting specificity, brain bioavailability and patient compliance. The present review discuses about the currently available pharmacotherapy for AD and the neurotherapeutic applications as well as the advancements of nanomedicine for treating AD. It also highlights the recent advancements of various nanomedicines containing phytopharmaceuticals for treating AD. It is believed that nanomedicines containing approved drugs can be transformed into the clinics hence improve the life style of AD patients.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
16
|
Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I. Traumatic Brain Injury Induces Tau Aggregation and Spreading. J Neurotrauma 2019; 37:80-92. [PMID: 31317824 PMCID: PMC6921297 DOI: 10.1089/neu.2018.6348] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The misfolding and aggregation of tau protein into neurofibrillary tangles is the main underlying hallmark of tauopathies. Most tauopathies have a sporadic origin and can be associated with multiple risk factors. Traumatic brain injury (TBI) has been suggested as a risk factor for tauopathies by triggering disease onset and facilitating its progression. Several studies indicate that TBI seems to be a risk factor to development of Alzheimer disease and chronic traumatic encephalopathy, because there is a relationship of TBI severity and propensity to development of these illnesses. In this study, we evaluated whether moderate to severe TBI can trigger the initial formation of pathological tau that would induce the development of the pathology throughout the brain. To this end, we subjected tau transgenic mice to TBI and assessed tau phosphorylation and aggregation pattern to create a spatial heat map of tau deposition and spreading in the brain. Our results suggest that brain injured tau transgenic mice have an accelerated tau pathology in different brain regions that increases over time compared with sham mice. The appearance of pathological tau occurs in regions distant to the injury area that are connected synaptically, suggesting dissemination of tau aggregates. Overall, this work posits TBI as a risk factor for tauopathies through the induction of tau hyperphosphorylation and aggregation.
Collapse
Affiliation(s)
- George Edwards
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Cell Biology, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
17
|
Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 2019; 41:349-360. [PMID: 31056982 DOI: 10.1080/08923973.2019.1608560] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a common neurotrosis disorder of the central nervous system (CNS), which has dramatic consequences on the integrity of damaged tissue. In this study, we investigated the neuroprotective effect and anti-inflammatory actions of osthole, a natural coumarin derivative, in both in vivo and in vitro TBI models. We first prepared a mouse model of cortical stab wound brain injury, investigated the capacity for osthole to prevent secondary brain injury and further examined the underlying mechanism. We revealed that osthole significantly improved the neurological function, increased the number of neurons beside injured site. Additionally, osthole treatment reduced the expression of microglia and glial scar, lowered the level of the proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and blocked the activation of nuclear factor kappa B (NF-κB). Furthermore, the protective effect of osthole was also examined in SH-SY5Y cells subjected to scratch injury. Treatment of osthole prominently suppressed cell apoptosis and inflammatory factors release by blocking injury-induced IκB-α phosphorylation and NF-κB translocation, and upregulated the IκB-α which functions in the NF-κB signaling pathway of SH-SY5Y cells. However, NF-κB signaling pathway was inhibited by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, the anti-inflammatory effect of osthole was abolished. In conclusion, our findings demonstrated that osthole attenuated inflammatory response by inhibiting the NF-κB pathway in TBI.
Collapse
Affiliation(s)
- Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingjia Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yang Xia
- b Department of Engineering , University of Oxford , Oxford , UK
| | - Xicai Liang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingnan Ni
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jingxian Yang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
18
|
Arulsamy A, Corrigan F, Collins-Praino LE. Age, but not severity of injury, mediates decline in executive function: Validation of the rodent touchscreen paradigm for preclinical models of traumatic brain injury. Behav Brain Res 2019; 368:111912. [PMID: 30998995 DOI: 10.1016/j.bbr.2019.111912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Increasingly, it is being recognised that traumatic brain injury (TBI) is not just an acute event but instead results in ongoing neuronal injury that may lead to chronic impairments in multiple cognitive domains. Of these, deficits in executive function are one of the more common changes reported following TBI, and are a major predictor of well-being, social function and quality of life in individuals with a history of TBI. In order to fully understand the relationship between TBI and executive dysfunction, including brain mechanisms that may account for this, experimental models are clearly needed. However, to date, there have been a lack of preclinical studies systematically comparing the effect of injury severity on executive function, particularly at long-term timepoints post-injury. Furthermore, many previous studies have not used behavioural measures that are sensitive to the full range of executive function impairments that may manifest after injury, particularly in models of diffuse axonal injury (Lv et al.). The current study aimed to investigate the temporal profile, up to 12 months post-injury, of the evolution of executive dysfunction following different severities of injury in an experimental model of DAI. In order to do so, we utilised a rodent touchscreen paradigm to administer the 5 Choice- Continuous Performance Task (5C-CPT), an extension of the 5-choice serial reaction time task (5CSRT). Interestingly, there were no differences in learning, motivation, attention, response time or impulsivity at 1 month, 6 months or 12 months post-injury in any of the TBI groups compared to sham, regardless of the initial severity of the injury. Instead, most of the effects on executive function seen at the 12 month timepoint appeared to be a result of ageing, not injury. As even the 12-month timepoint represents middle age in the rat, future studies will be needed to further probe these effects, in order to determine whether DAI may influence the presentation of executive dysfunction in older age.
Collapse
Affiliation(s)
- Alina Arulsamy
- Cognition, Ageing and Neurodegenerative Disease Lab, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Lyndsey E Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Lab, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005 Australia.
| |
Collapse
|
19
|
Farr SA, Niehoff ML, Kumar VB, Roby DA, Morley JE. Inhibition of Glycogen Synthase Kinase 3β as a Treatment for the Prevention of Cognitive Deficits after a Traumatic Brain Injury. J Neurotrauma 2019; 36:1869-1875. [PMID: 30704365 DOI: 10.1089/neu.2018.5999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) has many long-term consequences, including impairment in memory and changes in mood. Glycogen synthase kinase 3β (GSK-3β) in its phosphorylated form (p-GSK-3β) is considered to be a major contributor to memory problems that occur post-TBI. We have developed an antisense that targets the GSK-3β (GAO) gene. Using a model of closed-head concussive TBI, we subjected mice to TBI and injected GAO or a random antisense (RAO) 15 min post-injury. One week post-injury, mice were tested in object recognition with 24 h delay. At 4 weeks post- injury, mice were tested with a T-maze foot shock avoidance memory test and a second object recognition test with 24 h delay using different objects. Mice that received GAO show improved memory in both object recognition and T-maze compared with RAO- treated mice that were subjected to TBI. Next, we verified that GAO blocked the surge in phosphorylated GSK-3β post-TBI. Mice were subjected to TBI and injected with antisense 15 min post-TBI with GAO or RAO. Mice were euthanized at 4 and 72 h post-TBI. Analysis of p-ser9GSK-3β, p-tyr216GSK-3β, and phospho-tau (p-tau)404 showed that mice that received a TBI+RAO had significantly higher p-ser9GSK-3β, p-tyr216GSK-3β, and p-tau404 levels than the mice that received TBI+GAO and the Sham+RAO mice. The current finding suggests that inhibiting GSK-3β increase after TBI with an antisense directed at GSK-3β prevents learning and memory impairments.
Collapse
Affiliation(s)
- Susan A Farr
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michael L Niehoff
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Vijaya B Kumar
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Deborah A Roby
- 2 Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John E Morley
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Dwivedi N, Shah J, Mishra V, Tambuwala M, Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lin TW, Tsai SF, Kuo YM. Physical Exercise Enhances Neuroplasticity and Delays Alzheimer's Disease. Brain Plast 2018; 4:95-110. [PMID: 30564549 PMCID: PMC6296269 DOI: 10.3233/bpl-180073] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that exercise can improve learning and memory as well as attenuate neurodegeneration, including Alzheimer's disease (AD). In addition to improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates systems like angiogenesis and glial activation that are known to support neuroplasticity. Moreover, exercise helps to maintain a cerebral microenvironment that facilitates synaptic plasticity by enhancing the clearance of Aβ, one of the main culprits of AD pathogenesis. The purpose of this review is to highlight the positive impacts of exercise on promoting neuroplasticity. Possible mechanisms involved in exercise-modulated neuroplasticity are also discussed. Undoubtedly, more studies are needed to design an optimal personalized exercise protocol for enhancing brain function.
Collapse
Affiliation(s)
- Tzu-Wei Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Caprelli MT, Mothe AJ, Tator CH. Hyperphosphorylated Tau as a Novel Biomarker for Traumatic Axonal Injury in the Spinal Cord. J Neurotrauma 2018; 35:1929-1941. [DOI: 10.1089/neu.2017.5495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Mitchell T. Caprelli
- University of Toronto, Institute of Medical Science, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Andrea J. Mothe
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Charles H. Tator
- University of Toronto, Institute of Medical Science, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
24
|
Deng QJ, Xu XF, Ren J. Effects of SDF-1/CXCR4 on the Repair of Traumatic Brain Injury in Rats by Mediating Bone Marrow Derived Mesenchymal Stem Cells. Cell Mol Neurobiol 2018; 38:467-477. [PMID: 28484859 PMCID: PMC11481861 DOI: 10.1007/s10571-017-0490-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
Our study aims to investigate the effects of the SDF-1/CXCR4 axis on the repair of traumatic brain injury (TBI) in rats by mediating bone marrow derived from mesenchymal stem cells (BMSCs). Healthy male SD rats were collected, their tibiofibulars were removed, cultured, and BMSCs were collected. The expression of cell-surface molecular proteins was examined using flow cytometry. The mRNA and protein expression of CXCR4 in cells were tested using qRT-PCR and western blotting analysis. An electronic brain injury instrument was utilized to build TBI rat models and each rat was assigned into the experiment, positive control and control groups (10 rats in each group). The morris water maze was used to calculate the escape latency and number of times rats in each group crossed the platform. Neurological severity scores (NSS) was calculated to evaluate the recovery of neurological functioning. The distribution of neuronal nuclear antigens was detected using double-labeling immunohistochemistry. The morphological changes in the hippocampal neuronal and the number of BrdU-positive cells were observed through Nissl's staining and high magnification. The mRNA and protein expressions of CXCR4 were gradually increased as SDF-1 concentration increased. NGF and BDNF positive cells were expressed in each group. The distribution of neuronal nuclear antigens in the experiment group was elevated compared to the control and positive control groups. Among the three groups, the experimental group had the shortest escape latency and the highest number platform crossings. The difference in NSS among the three groups was significant. The experimental group had better cell morphology and a higher number of BrdU-positive cells than the other groups. The present study demonstrates that transplanting BMSCs with SDF-1-induced CXCR4 expression can promote the repair of TBI. This is expected to become a new treatment regimen for TBI.
Collapse
Affiliation(s)
- Quan-Jun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Xiao-Feng Xu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, 200032, People's Republic of China
| | - Jing Ren
- Department of Medical Laboratory, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
25
|
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16:1455-1465. [PMID: 29651949 PMCID: PMC6295934 DOI: 10.2174/1570159x16666180412092859] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF.
Collapse
Affiliation(s)
| | | | | | - Luigi Aloe
- Address correspondence to this author at the Fondazione IRET ONLUS, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia (BO), Italy; Tel: +39-051-798776; Fax: +39-051-799673; E-mail:
| |
Collapse
|
26
|
Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj 2017; 32:257-268. [PMID: 29227174 DOI: 10.1080/02699052.2017.1394492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Collapse
Affiliation(s)
- Maddison R Johnstone
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Mujun Sun
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Caroline J Taylor
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Rhys D Brady
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia.,b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Brian L Grills
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Jarrod E Church
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Sandy R Shultz
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia.,c Department of Neuroscience , Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Stuart J McDonald
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| |
Collapse
|
27
|
Caprelli MT, Mothe AJ, Tator CH. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker. Neuroscientist 2017; 25:8-21. [PMID: 29283022 DOI: 10.1177/1073858417742125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.
Collapse
Affiliation(s)
- Mitchell T Caprelli
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Andrea J Mothe
- 2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Charles H Tator
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada.,3 Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Chiaretti A, Conti G, Falsini B, Buonsenso D, Crasti M, Manni L, Soligo M, Fantacci C, Genovese O, Calcagni ML, Di Giuda D, Mattoli MV, Cocciolillo F, Ferrara P, Ruggiero A, Staccioli S, Colafati GS, Riccardi R. Intranasal Nerve Growth Factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj 2017; 31:1538-1547. [PMID: 28972396 DOI: 10.1080/02699052.2017.1376760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) promotes neural recovery after experimental traumatic brain injury (TBI) supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated protein Doublecortin (DCX). Only a few studies reported NGF administration in paediatric patients with severe TBI. METHODS A four-year-old boy in a persistent unresponsive wakefulness syndrome (UWS) was treated with intranasal murine NGF administration 6 months after severe TBI. The patient received four cycles of intranasal NGF (0.1 mg/kg, twice a day for 10 consecutive days). RESULTS NGF administration improved functional [Positron Emission Tomography/Computed Tomography (PET/CT); Single photon emission/Computed Tomography (SPECT/CT) and Magnetic Resonance Imaging (MRI)] assessment, electrophysiological [Electroencephalogram (EEG) and Visual Evoked Potential (VEP)] studies and clinical conditions. He showed improvements in voluntary movements, facial mimicry, phonation, attention and verbal comprehension, ability to cry, cough reflex, oral motility, feeding capacity, and bowel and urinary functions. After NGF administration, raised levels of both NGF and DCX were found in the cerebrospinal fluid of the patient. No side effects were reported. CONCLUSIONS Although further studies are needed for better understanding the neuroprotective role of this neurotrophin, intranasal NGF administration appears to be a promising and safe rescuing strategy treatment in children with neurological impairment after TBI.
Collapse
Affiliation(s)
- Antonio Chiaretti
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giorgio Conti
- b Pediatric Intensive Care Unit , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Benedetto Falsini
- c Institute of Ophthalmology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Danilo Buonsenso
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Matteo Crasti
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luigi Manni
- d Institute of Translational Pharmacology , CNR , Rome , Italy
| | - Marzia Soligo
- d Institute of Translational Pharmacology , CNR , Rome , Italy
| | - Claudia Fantacci
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Orazio Genovese
- b Pediatric Intensive Care Unit , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Maria Lucia Calcagni
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Daniela Di Giuda
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | | | - Fabrizio Cocciolillo
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Pietro Ferrara
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Antonio Ruggiero
- f Pediatric Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Susanna Staccioli
- g Department of Neuroscience and Neurorehabilitation , Bambino Gesù Children's Hospital , Rome , Italy
| | | | - Riccardo Riccardi
- f Pediatric Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
29
|
Lei J, Feng F, Duan Y, Xu F, Liu Z, Lian L, Liang Q, Zhang N, Wang F. Intranasal nerve growth factor attenuating the seizure onset via p75R/Caspase pathway in the experimental epilepsy. Brain Res Bull 2017; 134:79-84. [DOI: 10.1016/j.brainresbull.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
30
|
He ML, Lv ZY, Shi X, Yang T, Zhang Y, Li TY, Chen J. Interleukin-10 release from astrocytes suppresses neuronal apoptosis via the TLR2/NFκB pathway in a neonatal rat model of hypoxic-ischemic brain damage. J Neurochem 2017; 142:920-933. [PMID: 28700093 DOI: 10.1111/jnc.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
The biological function of interleukin-10 (IL-10) and the relationship between IL-10 secretion and the Toll-like receptor 2 (TLR2) expression levels in the central nervous system following hypoxic-ischemic brain damage (HIBD) are poorly understood. Here, we intend to elucidate the biological function and mechanism of IL-10 secretion following HIBD. In this study, we used a neonatal rat model of HIBD and found that rats injected with adeno-associated virus-IL-10-shRNA (short hairpin RNA) exhibited partially impaired learning and memory function compared to rats administered adeno-associated virus-control-shRNA. In vitro oxygen-glucose deprivation (OGD) induced IL-10 release from astrocytes but not from neurons. Pretreatment with exogenous recombinant IL-10 alleviated OGD-mediated apoptosis of neurons but not astrocytes. In addition, we also observed that hypoxic injury induced a marked increase in IL-10 expression in astrocytes as a result of activation of the TLR2/phosphorylated nuclear factor kappa B (p-NFκB) p65 signaling cascade; furthermore, this effect disappeared upon small interfering RNA targeting rat TLR2 gene (siTLR2) treatment. Pyrrolidinedithiocarbamate, an inhibitor of NFκB activation, reduced the IL-10 expression levels in both OGD-injured astrocytes in vitro and the hippocampi of HIBD rats in vivo but did not significantly affect TLR2 expression. Furthermore, a luciferase assay revealed that p-NFκB p65 could bind the -1700/-1000 bp proximal region of the IL-10 gene promoter to regulate IL-10 secretion from astrocytes and that this interaction could be controlled by OGD treatment. These data suggest that HIBD induces IL-10 secretion from astrocytes to exert a paracrine-induced anti-apoptotic effect on injured neurons via the TLR2/NFκB signaling pathway, which may improve learning and memory dysfunction after ischemic injury.
Collapse
Affiliation(s)
- Mu Lan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ze Yu Lv
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Shi
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Yu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of Nerve Growth Factor in Plasticity of Forebrain Cholinergic Neurons. BIOCHEMISTRY (MOSCOW) 2017; 82:291-300. [PMID: 28320270 DOI: 10.1134/s0006297917030075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neuronal plastic rearrangements during the development and functioning of neurons are largely regulated by trophic factors, including nerve growth factor (NGF). NGF is also involved in the pathogenesis of Alzheimer's disease. In the brain, NGF is produced in structures innervated by basal forebrain cholinergic neurons and retrogradely transported along the axons to the bodies of cholinergic neurons. NGF is essential for normal development and functioning of the basal forebrain; it affects formation of the dendritic tree and modulates the activities of choline acetyltransferase and acetylcholinesterase in basal forebrain neurons. The trophic effect of NGF is mediated through its interactions with TrkA and p75 receptors. Experimental and clinical studies have shown that brain levels of NGF are altered in various pathologies. However, the therapeutic use of NGF is limited by its poor ability to penetrate the blood-brain barrier, adverse side effects that are due to the pleiotropic action of this factor, and the possibility of immune response to NGF. For this reason, the development of gene therapy methods for treating NGF deficit-associated pathologies is of particular interest. Another approach is creation of low molecular weight NGF mimetics that would interact with the corresponding receptors and display high biological activity but be free of the unfavorable effects of NGF.
Collapse
Affiliation(s)
- N K Isaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
32
|
Sinha SP, Avcu P, Spiegler KM, Komaravolu S, Kim K, Cominski T, Servatius RJ, Pang KCH. Startle suppression after mild traumatic brain injury is associated with an increase in pro-inflammatory cytokines, reactive gliosis and neuronal loss in the caudal pontine reticular nucleus. Brain Behav Immun 2017; 61:353-364. [PMID: 28089558 DOI: 10.1016/j.bbi.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/12/2016] [Accepted: 01/08/2017] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can produce somatic symptoms such as headache, dizziness, fatigue, sleep disturbances and sensorimotor dysfunction. Sensorimotor function can be measured by tests such as the acoustic startle reflex (ASR), an evolutionarily conserved defensive response to a brief yet sharp acoustic stimulus. mTBI produces a long-lasting suppression of ASR in rodents and humans; however, the mechanism of this suppression is unknown. The present study examined whether inflammatory processes in the brainstem (particularly the caudal pontine reticular nucleus, PnC) could account for the suppression of ASR after mTBI, because the PnC is an essential nucleus of the ASR circuit. Furthermore, while inflammation after mTBI is commonly observed in brain regions proximal to the site of impact (cortex and hippocampus), the effects of mTBI in brainstem structures remains largely understudied. The present study demonstrated a suppression of ASR one day after injury and lasting at least three weeks after an mTBI, replicating previous findings. Within the PnC, transient elevations of IL-1β and TNF-α mRNA were observed at one day after injury, while IL-1α mRNA exhibited a delayed increase at three weeks after injury. Reactive gliosis (via IBA-1-ir for microglia and GFAP-ir for astrocytes) were also observed in the PnC, at one day and seven days after injury, respectively. Finally, the number of giant neurons (the major functional cell population in the PnC) was decreased three weeks after injury. The results indicate that glial activation precedes neuronal loss in the PnC, and correlates with the behavioral suppression of the ASR. The results also raise implications for brainstem involvement in the development of post-traumatic symptoms.
Collapse
Affiliation(s)
- Swamini P Sinha
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Kevin M Spiegler
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Kevin Kim
- B.S./M.D. Program, The College of New Jersey, Ewing, NJ, USA
| | - Tara Cominski
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Syracuse Veterans Affairs Medical Center, Syracuse, NY, USA
| | - Kevin C H Pang
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
33
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
34
|
Zhao YL, Song JN, Ma XD, Zhang BF, Li DD, Pang HG. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res 2016; 11:944-50. [PMID: 27482223 PMCID: PMC4962592 DOI: 10.4103/1673-5374.184493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury.
Collapse
Affiliation(s)
- Yong-Lin Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu-Dong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bin-Fei Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan-Dong Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
35
|
Kumral A, Iscan B, Engur D, Tuzun F, Ozbal S, Ergur BU, Kaynak Turkmen M, Duman N, Ozkan H. Intranasal surfactant protein D as neuroprotective rescue in a neonatal rat model of periventricular leukomalacia. J Matern Fetal Neonatal Med 2016; 30:446-451. [PMID: 27109442 DOI: 10.1080/14767058.2016.1174996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Periventricular leukomalacia (PVL) is the leading cause of neurocognitive deficits in children with prematurity. We previously hypothesized that surfactant protein D (SPD) with its ability to bind toll-like receptors may have a possible ameliorating effect in PVL. METHODS Three groups were defined as: LPS-administered and postnatal intranasal saline administered group, LPS-administered and postnatal intranasal SPD-treated group, and control group. Twenty-eight offspring rats were reared with their dams until their sacrifice for histological evaluation on day 7. RESULTS A significant loss of brain weight occurred in the LPS group compared with controls. The postnatal intranasal SPD treatment significantly reduced the number of TUNEL-positive cells in the periventricular white matter as compared with the LPS-treated group. Compared with the control group, LPS injection in the rat brain significantly reduced the MBP-positive staining. Postnatal SPD treatment greatly prevented LPS-stimulated loss of MBP staining. CONCLUSIONS Present study demonstrated a neuroprotective effect of SPD in a rat model of PVL. Our results offer future implications towards increasing our understanding about multifactorial mechanisms underlying periventricular leukomalacia and developing plausible therapeutic strategies in order to prevent neurocognitive deficits in preterm infants.
Collapse
Affiliation(s)
- Abdullah Kumral
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Burcin Iscan
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Defne Engur
- b Department of Pediatrics , Division of Neonatology, School of Medicine, Adnan Menderes University , Aydin , Turkey , and
| | - Funda Tuzun
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Seda Ozbal
- c Department of Histology , School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Bekir Ugur Ergur
- c Department of Histology , School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Munevver Kaynak Turkmen
- b Department of Pediatrics , Division of Neonatology, School of Medicine, Adnan Menderes University , Aydin , Turkey , and
| | - Nuray Duman
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Hasan Ozkan
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
36
|
Lu C, Xia J, Bin W, Wu Y, Liu X, Zhang Y. Advances in diagnosis, treatments, and molecular mechanistic studies of traumatic brain injury. Biosci Trends 2016; 9:138-48. [PMID: 26166367 DOI: 10.5582/bst.2015.01066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) is a main cause of death and disability around the world especially in soldiers, children, and young men. Since its clinical diagnosis and treatment cannot predict its prognosis, novel diagnostic techniques need to be developed, insight into its molecular mechanisms needs to be gleaned, and alternative and complementary medicine (ACM) approaches to its treatment need to be developed. This review summarizes the new diagnostic methods used in clinical practice, such as imaging of structural abnormalities after TBI and measurement of prognosis-related biomarkers. This review also describes the cellular mechanisms of traditional Chinese medicine in terms of intracellular signaling pathways, the extracellular microenvironment, and stem cells. This review concludes by describing experimental and clinical studies of the use of traditional Chinese medicine as a form of ACM to treat TBI. This review helps to understand advances in the field of TBI diagnosis and treatment.
Collapse
Affiliation(s)
- Chunyu Lu
- Department of Neurosurgery, The People's Hospital of Huaibei
| | | | | | | | | | | |
Collapse
|
37
|
Aly AEE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015; 12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. AREAS COVERED This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. EXPERT OPINION A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.
Collapse
Affiliation(s)
- Amirah E-E Aly
- a 1 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA
| | - Barbara L Waszczak
- b 2 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA +1 617 373 3312 ; +1 617 373 8886 ;
| |
Collapse
|
38
|
Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015; 24:743-60. [PMID: 25727893 PMCID: PMC4433440 DOI: 10.1517/13543784.2015.1021919] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. AREAS COVERED The following article provides an overview of select cell-based and pharmacological therapies under early development for the treatment of TBI. These therapies seek to enhance cognitive and neurological functional recovery through neuroprotective and neurorestorative strategies. EXPERT OPINION TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Hospital, Department of Neurosurgery , Education and Research Building, Room 3096, 2799 West Grand Boulevard, Detroit, MI 48202 , USA +1 313 916 4743 ; +1 313 916 9855 ;
| | | | | | | |
Collapse
|
39
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
40
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|