1
|
Zhang B, Hou S, Tang J. Riboflavin Deficiency and Apoptosis: A Review. J Nutr 2025; 155:27-36. [PMID: 39510506 DOI: 10.1016/j.tjnut.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Riboflavin, commonly known as vitamin B2, is an essential micronutrient critical for the function of flavoproteins, which utilize flavin mononucleotide and flavin adenine dinucleotide as cofactors in energy metabolism, lipid metabolism, redox regulation, and protein folding. Nutritional riboflavin deficiency (RD) has previously been observed in humans and animals, leading to adverse outcomes such as growth retardation, increased mortality, and liver damage, which may be attributed to apoptosis. Although such deficiencies are now uncommon because of improved living standards, certain high-risk groups (e.g. those with chronic diseases, the elderly, and pregnant) have increased riboflavin demands, making them vulnerable to physiological RD associated with apoptosis. Understanding the pathways through which RD induces apoptosis, including mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species, is essential for grasping its broader health impacts. Additionally, this deficiency disrupts fatty acid metabolism, potentially resulting in lipotoxic apoptosis. Despite its significance, RD-induced apoptosis remains underexplored in the literature. Therefore, this review will discuss the roles of redox imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, and lipotoxicity in apoptosis regulation because of RD, aiming to highlight its importance for improving riboflavin nutrition and overall health.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
3
|
Seyedtaghia MR, Jafarzadeh‐Esfehani R, Hosseini S, Kobravi S, Hakkaki M, Nilipour Y. A compound heterozygote case of glutaric aciduria type II in a patient carrying a novel candidate variant in ETFDH gene: A case report and literature review on compound heterozygote cases. Mol Genet Genomic Med 2024; 12:e2489. [PMID: 38967380 PMCID: PMC11225075 DOI: 10.1002/mgg3.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Reza Jafarzadeh‐Esfehani
- Blood Borne Infection Research Center, Academic Center for EducationCulcture and Research (ACECR)‐ Khorasan RazaviMashhadIran
| | - Seyedmojtaba Hosseini
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Medical Laboratory Sciences, 22 Bahman HospitalNeyshabur University of Medical SciencesNeyshaburIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryTehran Azad UniversityTehranIran
| | - Mahdis Hakkaki
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for children's HealthShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Leading to Severe Metabolic Acidosis in a Young Adult. AACE Clin Case Rep 2022; 9:13-16. [PMID: 36654993 PMCID: PMC9837082 DOI: 10.1016/j.aace.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder affecting fatty acid oxidation. Incidence at birth is estimated at 1:250 000, but type III presents in adults. It is characterized by nonspecific symptoms but if undiagnosed may cause ketoacidosis and rhabdomyolysis. A review of 350 patients found less than one third presented with metabolic crises. Our objective is to describe an adult with weakness after carbohydrate restriction that developed a pulmonary embolism and ketoacidosis, and was diagnosed with MADD type III. Case Report A 27-year-old woman with obesity presented to the hospital with fatigue and weakness worsening over months causing falls and decreased intake. She presented earlier to clinic with milder symptoms starting months after initiating a low carbohydrate diet. Testing revealed mild hypothyroidism and she started Levothyroxine for presumed hypothyroid myopathy but progressed. Muscle biopsy suggested a lipid storage myopathy. Genetic testing revealed a mutation in the ETFDH (electron transfer flavoprotein dehydrogenase) gene likely pathogenic for MADD; however, before this was available she developed severe ketoacidosis and rhabdomyolysis. She empirically started a low-fat diet, carnitine, cyanocobalamin, and coenzyme Q10 supplementation with improvement. Over months her energy and strength normalized. Discussion MADD may cause ketoacidosis and rhabdomyolysis but this is rare in adults. Diagnosis requires clinical suspicion followed by biochemical and genetic testing. It should be considered when patients present with weakness or fasting intolerance. Treatment includes high carbohydrate, low-fat diets, supplementation, and avoiding fasting. Conclusion There should be greater awareness to consider MADD in adults presenting with neuromuscular symptoms, if untreated it may cause severe metabolic derangements.
Collapse
|
5
|
Wen B, Tang S, Lv X, Li D, Xu J, Olsen RKJ, Zhao Y, Li W, Wang T, Shao K, Zhao D, Yan C. Clinical, pathological and genetic features and follow-up of 110 patients with late-onset MADD: A single-center retrospective study. Hum Mol Genet 2021; 31:1115-1129. [PMID: 34718578 DOI: 10.1093/hmg/ddab308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency(MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner. METHODS We studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up were performed. RESULTS Fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers(aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. CONCLUSION Fibers with cracks, aRRFs and diffuse decreased SDH activity distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Duoling Li
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Yuying Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wei Li
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tan Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Brain Science Research Institute, Qilu Hospital, Shandong University, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
6
|
Effects of riboflavin deficiency on the lipid metabolism of duck breeders and duck embryos. Poult Sci 2021; 100:101342. [PMID: 34438327 PMCID: PMC8383102 DOI: 10.1016/j.psj.2021.101342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of dietary riboflavin deficiency (RD) on the lipid metabolism of duck breeders and duck embryos. A total of 40 female 40-wk-old white Pekin duck breeders were randomly divided into 2 groups, received either RD diet (1.48 mg riboflavin/kg) or control diet (16.48 mg riboflavin/kg, CON) for 14 wk. Each group consisted of 20 duck breeders (10 replicates per group, 2 birds per replicate), and all experiment birds were single-caged. At the end of the experiment, reproductive performance, hepatic riboflavin, hepatic flavin mononucleotide (FMN), hepatic flavin adenine dinucleotide (FAD), hepatic morphology, hepatic lipid contents, and hepatic protein expression of duck breeders and duck embryos were measured. The results showed that the RD had no effect on egg production and egg fertility but reduced egg hatchability, duck embryo weight, hepatic riboflavin, FMN, and FAD status compared to results obtained in the CON group (all P < 0.05). Livers from RD ducks presented enlarged lipid droplets, excessive accumulation of total lipids, triglycerides, and free fatty acids (all P < 0.05). In addition to excessive lipids accumulation, medium-chain specific acyl-CoA dehydrogenase expression was downregulated (P < 0.05), and short-chain specific acyl-CoA dehydrogenase expression was upregulated in maternal and embryonic livers (P < 0.05). RD did not affect maternal hepatic acyl-CoA dehydrogenase family member 9 (ACAD9) expression, but duck embryonic hepatic ACAD9 expression was reduced in the RD group (P < 0.05). Collectively, dietary RD conditioned lower egg hatchability and inhibited the development of duck embryos. Increased accumulation of lipids, both maternal and embryo, was impaired due to the reduced flavin protein expression, which caused inhibition of hepatic lipids utilization. These findings suggest that abnormal duck embryonic growth and low hatchability caused by RD might be associated with disorders of lipid metabolism in maternal as well as embryos.
Collapse
|
7
|
Siano MA, Mandato C, Nazzaro L, Iannicelli G, Ciccarelli GP, Barretta F, Mazzaccara C, Ruoppolo M, Frisso G, Baldi C, Tartaglione S, Di Salle F, Melis D, Vajro P. Hepatic Presentation of Late-Onset Multiple Acyl-CoA Dehydrogenase Deficiency (MADD): Case Report and Systematic Review. Front Pediatr 2021; 9:672004. [PMID: 34041209 PMCID: PMC8143529 DOI: 10.3389/fped.2021.672004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diagnosis of pediatric steatohepatitis is a challenging issue due to a vast number of established and novel causes. Here, we report a child with Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) presenting with an underrated muscle weakness, exercise intolerance and an atypically severe steatotic liver involvement. A systematic literature review of liver involvement in MADD was performed as well. Our patient is a 11-year-old otherwise healthy, non-obese, male child admitted for some weakness/asthenia, vomiting and recurrent severe hypertransaminasemia (aspartate and alanine aminotransferases up to ×20 times upper limit of normal). Hepatic ultrasound showed a bright liver. MRI detected mild lipid storage of thighs muscles. A liver biopsy showed a micro-macrovacuolar steatohepatitis with minimal fibrosis. Main causes of hypertransaminasemia were ruled out. Serum aminoacids (increased proline), acylcarnitines (increased C4-C18) and a large excretion of urinary glutaric acid, ethylmalonic, butyric, isobutyric, 2-methyl-butyric and isovaleric acids suggested a diagnosis of MADD. Serum acylcarnitines and urinary organic acids fluctuated overtime paralleling serum transaminases during periods of illness/catabolic stress, confirming their recurrent nature. Genetic testing confirmed the diagnosis [homozygous c.1658A > G (p.Tyr553Cys) in exon 12 of the ETFDH gene]. Lipid-restricted diet and riboflavin treatment rapidly ameliorated symptoms, hepatic ultrasonography/enzymes, and metabolic profiles. Literature review (37 retrieved eligible studies, 283 patients) showed that liver is an extramuscular organ rarely involved in late-onset MADD (70 patients), and that amongst 45 patients who had fatty liver only nine had severe presentation. Conclusion: MADD is a disorder with a clinically heterogeneous phenotype. Our study suggests that MADD warrants consideration in the work-up of obesity-unrelated severe steatohepatitis.
Collapse
Affiliation(s)
- Maria Anna Siano
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Claudia Mandato
- Unit of Pediatrics 1, AORN Santobono-Pausilipon, Naples, Italy
| | - Lucia Nazzaro
- Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Gennaro Iannicelli
- Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Gian Paolo Ciccarelli
- Postgraduate School of Pediatrics, Faculty of Medicine University of Naples Federico II, Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Carlo Baldi
- Pathology Unit, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | | | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Daniela Melis
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Pietro Vajro
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy.,Postgraduate School of Pediatrics, Faculty of Medicine University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Wu Y, Han J, Wang Y, Zhang J, Song X, Ji G. A family with riboflavin-reactive lipid deposition myopathy caused by a novel compound heterozygous mutation in the electron transfer flavoprotein dehydrogenase gene. J Int Med Res 2020; 48:300060520966499. [PMID: 33131365 PMCID: PMC7653293 DOI: 10.1177/0300060520966499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a family with riboflavin-reactive multiple acyl-CoA dehydrogenase
deficiency (RR-MADD) partially caused by a novel mutation in the electron
transfer flavoprotein dehydrogenase gene (ETFDH). The RR-MADD
family was identified by physical examination, electromyography, and muscle
biopsy of the proband. Laboratory examination and electromyography suggested a
muscle disease of the lipid storage myopathies. This was confirmed by a muscle
biopsy that revealed lipid deposition in the muscle fibers. The proband’s sister
previously had a similar disease, so the family underwent genetic testing. This
revealed complex heterozygous ETFDH mutations c.389A > T (p.
D130V) and c.1123C > A (p. P375T) in the proband and her sister, of which
c.1123C > A (p. P375T) is a novel pathogenic mutation. The proband was
treated with riboflavin and changes in physical symptoms and laboratory tests
were evaluated before and after treatment. The discovery of a novel locus
further expands the ETFDH mutation spectrum and suggests that
genotyping is vital for early detection of RR-MADD as it can greatly improve the
prognosis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Jingzhe Han
- Department of Neurology, Harrison International Peace Hospital, Hebei, Hengshui, P. R. China
| | - Yaye Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Jinru Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
9
|
Huang K, Duan HQ, Li QX, Luo YB, Yang H. Investigation of adult-onset multiple acyl-CoA dehydrogenase deficiency associated with peripheral neuropathy. Neuropathology 2020; 40:531-539. [PMID: 32608139 DOI: 10.1111/neup.12667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/03/2023]
Abstract
Multiple Acyl-CoA dehydrogenase deficiency (MADD), one of the most common lipid storage myopathies (LSMs), is a heterogeneous inherited muscular disorder that is pathologically characterized by numerous lipid droplets in muscle fibers due to lipid metabolism disturbance. MADD exhibits a wide range of clinical features, including skeletal muscle weakness and multisystem dysfunctions. However, MADD, as well as other types of LSM, associated with peripheral neuropathy has rarely been reported during the past four decades. Here, we present four Chinese patients affected by MADD with peripheral neuropathy in our neuromuscular center. Clinically, these four patients showed skeletal muscle weakness and prominent paresthesia. Muscle biopsy detected characteristic myopathological patterns of LSM, such as obvious lipid droplets in muscle fibers. Sural nerve biopsy revealed a severe reduction in number of myelinated nerve fibers, which is a typical neuropathological pattern of peripheral neuropathy. Causative ETFDH mutations were found in all four cases. The skeletal muscle weakness was rapidly improved after some treatments while paresthesia showed unsatisfactory improvement. The features of previously reported patients of this specific type are also summarized in this paper. We propose that MADD with peripheral neuropathy may be a new phenotypic subtype because the pathology and reaction to riboflavin treatment are different from those of traditional MADD, although further research on the precise pathogenesis and mechanisms is needed.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Ou M, Zhu L, Zhang Y, Zhang Y, Zhou J, Zhang Y, Chen X, Yang L, Li T, Su X, Hu Q, Wang W. A novel electron transfer flavoprotein dehydrogenase (ETFDH) gene mutation identified in a newborn with glutaric acidemia type II: a case report of a Chinese family. BMC MEDICAL GENETICS 2020; 21:98. [PMID: 32393189 PMCID: PMC7212588 DOI: 10.1186/s12881-020-00995-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/10/2020] [Indexed: 12/04/2022]
Abstract
Background Glutaric acidemia type II (GA II) or multiple acyl-CoA dehydrogenase deficiency (MADD, OMIM 231680) is an inherited autosomal recessive disease affecting fatty acid, amino acid and choline metabolism, due to mutations in one of three genes namely, electron transfer flavoprotein alpha-subunit, ETFA, electron transfer flavoprotein β-subunit, ETFB and electron transfer flavoprotein dehydrogenase, ETFDH. Currently, few studies have reported genetic profiling of neonatal-onset GA II. This study aimed to identify the genetic mutations in a Chinese family with GA II. Case presentation We reported a case of GA II with purulent meningitis and septicemia and identified a novel ETFDH gene mutation in a female infant. The patient developed an episode of hypoglycemia and hypotonicity on the postnatal first day. Laboratory investigations revealed elevations of multiple acylcarnitines indicating glutaric acidemia type II in newborn screening analysis. Urinary organic acids were evaluated for the confirmation and revealed a high glutaric acid excretion. Genetic analysis revealed two mutations in the ETFDH gene (c.623_626 del / c. 1399G > C), which were considered to be the etiology for the disease. The novel mutation c.623_626 del was identified in the proband infant and her father, her mother was carriers of the mutation c.1399G > C. Conclusions A novel variant (c.623_626 del) and a previously reported missense (c.1399G > C) in the ETFDH gene have been identified in the family. The two variants of ETFDH gene identified probably underlie the pathogenesis of Glutaric acidemia type II in this family, and also enlarge ETFDH genotype-phenotype correlations spectrum.
Collapse
Affiliation(s)
- Mingcai Ou
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Lin Zhu
- Hangzhou Genuine Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China
| | - Yong Zhang
- Neonatal unit, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Yaguo Zhang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Jingyao Zhou
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Yu Zhang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Xuelian Chen
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Lijuan Yang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Ting Li
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Xingyue Su
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Qi Hu
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China.
| | - Wenjun Wang
- Hangzhou Genuine Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China.
| |
Collapse
|
11
|
Xu H, Chen X, Lian Y, Wang S, Ji T, Zhang L, Li S. Skin damage in a patient with lipid storage myopathy with a novel ETFDH mutation responsive to riboflavin. Int J Neurosci 2020; 130:1192-1198. [PMID: 32064983 DOI: 10.1080/00207454.2020.1730831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Recessive mutations in ETFDH gene have been associated with Multiple Acyl-CoA dehydrogenase deficiency (MADD). The late-onset MADD is often muscle involved, presenting with lipid storage myopathy (LSM). The symptoms of LSM were heterogeneous and definite diagnosis of this disease depends on the pathology and gene test.Methods: Neurological examination, muscle biopsy, and MRI examinations were performed in a patient with a novel missense ETFDH mutation.Results: We describe a patient with lipid storage myopathy complicated with skin damage. In addition, the next generation revealed a novel missense mutation (c.970G > T, p.Val324Leu) in exon 8, which was predicted to be a disease-causing mutation by Mutation-taster, and destroy the function of the protein by Sift.Conclusion: These findings expand the known mutational spectrum of ETFDH and phenotype of MADD.
Collapse
Affiliation(s)
- Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tuo Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Lu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shuang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
12
|
Nilipour Y, Fatehi F, Sanatinia S, Bradshaw A, Duff J, Lochmüller H, Horvath R, Nafissi S. Multiple acyl-coenzyme A dehydrogenase deficiency shows a possible founder effect and is the most frequent cause of lipid storage myopathy in Iran. J Neurol Sci 2020; 411:116707. [PMID: 32007756 DOI: 10.1016/j.jns.2020.116707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Multiple acyl-coenzyme A dehydrogenase deficiency disorder (MADD) is a relatively rare disorders of lipid metabolism. This study aimed to investigate the demographic, clinical, and genetic features of MADD in Iran. METHODS Twenty-nine patients with a definite diagnosis of lipid storage myopathy were recruited. All patients were tested for mutation in the ETFDH gene, and 19 had a biallelic mutation in this gene. RESULTS Of 19 patients with definite mutations, 11 (57.9%) were female, and the median age was 31 years. Twelve patients had c.1130 T > C (p.L377P) mutation in exon 10. Two patients had two novel heterozygote pathogenic variants (c.679C > T (p.P227S) in exon 6 and c.814G > A (p.G272R) in exon 7) and two patients had c.1699G > A (p.E567K) in exon 13. Before treatment, the median muscle power was 4.6 (IQR: 4-4.7) that increased to 5 (IQR: 5-5) after treatment (Z = -3.71, p = .000). The median CK was 1848 U/l (IQR: 1014-3473) before treatment, which declined to 188 U/l (IQR: 117-397) after treatment (Z = -3.41, p = .001). Sixteen patients (84.2%) had full recovery after the treatment. The disease onset was earlier (12 years of age; IQR: 6-18) in patients with homozygous c.1130 T > C; p.(L377P) mutation compared to other ETFDH mutations (30 years of age; IQR: 20-35) (p = .00). DISCUSSION MADD has different clinical presentations. As the patients respond favorably to treatment, early diagnosis and treatment may prevent the irreversible complications of the disease.
Collapse
Affiliation(s)
- Yalda Nilipour
- Pediatric pathology research center, Research institute for children's health, AND Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Aix Marseille University, CNRS (UMR 7339), Centre de Resonance Magnétique Biologique et Medicale, Faculte de Medecine, 27 bd. J. Moulin, 13005 Marseille, France
| | - Saleheh Sanatinia
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna Bradshaw
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer Duff
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - the University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Rhabdomyolysis and respiratory insufficiency due to the common ETFDH mutation of c.250G>A in two patients with late-onset multiple acyl-CoA dehydrogenase deficiency. Chin Med J (Engl) 2020; 132:1615-1618. [PMID: 31058673 PMCID: PMC6616237 DOI: 10.1097/cm9.0000000000000288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Supplemental Digital Content is available in the text
Collapse
|
14
|
Chen W, Zhang Y, Ni Y, Cai S, Zheng X, Mastaglia FL, Wu J. Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD): case reports and epidemiology of ETFDH gene mutations. BMC Neurol 2019; 19:330. [PMID: 31852447 PMCID: PMC6921586 DOI: 10.1186/s12883-019-1562-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is a riboflavin-responsive lipid-storage myopathy caused by mutations in the EFTA, EFTB or ETFDH genes. We report a Chinese family of Southern Min origin with two affected siblings with late-onset riboflavin-responsive MADD due to a homozygous c.250G > A EFTDH mutation and review the genetic epidemiology of the c.250G > A mutation. CASE PRESENTATION Both siblings presented with exercise-induced myalgia, progressive proximal muscle weakness and high levels of serum muscle enzymes and were initially diagnosed as polymyositis after a muscle biopsy. A repeat biopsy in one sibling subsequently showed features of lipid storage myopathy and genetic analysis identified a homozygous mutation (c.250G > A) in the ETFDH gene in both siblings and carriage of the same mutation by both parents. Glucocorticoid therapy led to improvement in muscle enzyme levels, but little change in muscle symptoms, and only after treatment with riboflavin was there marked improvement in exercise tolerance and muscle strength. The frequency and geographic distribution of the c.250G > A mutation were determined from a literature search for all previously reported cases of MADD with documented mutations. Our study found the c.250G > A mutation is the most common EFTDH mutation in riboflavin-responsive MADD (RR-MADD) and is most prevalent in China and South-East Asia where its epidemiology correlates with the distribution and migration patterns of the southern Min population in Southern China and neighbouring countries. CONCLUSIONS Mutations in ETFDH should be screened for in individuals with lipid-storage myopathy to identify patients who are responsive to riboflavin. The c.250G > A mutation should be suspected particularly in individuals of southern Min Chinese background.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Youqiao Zhang
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yifeng Ni
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaoyu Cai
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zheng
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, QE II Medical Centre, 8 Verdun Street, Nedlands, Western Australia, Australia
| | - Jingshan Wu
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Faculty of Health and Medical Sciences, The University of Western Australia, (M503), 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
15
|
Wu Y, Zhang X, Shen R, Huang J, Lu X, Zheng G, Chen X. Expression and significance of ETFDH in hepatocellular carcinoma. Pathol Res Pract 2019; 215:152702. [PMID: 31704152 DOI: 10.1016/j.prp.2019.152702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/06/2019] [Accepted: 10/19/2019] [Indexed: 12/25/2022]
Abstract
The ETFDH (electron transfer flavoprotein dehydrogenase) gene mutations are reported to be a major cause of riboflavin-responsive multiple acyl-coenzyme A dehydrogenation deficiency (MADD). However, the role of ETFDH in the prognosis of hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the expression of ETFDH in HCC. Immunohistochemical staining of the 207 HCC tissue microarray showed that expression of ETFDH was significantly decreased in HCC compared with the matching noncancerous hepatic tissues (P < 0.001). Moreover, ETFDH expression levels were found to be correlated with AFP levels (P = 0.011). Intriguingly, ETFDH expression levels were significantly lower in poorly differentiated or undifferentiated HCCs as compared to the well or moderately differentiated cases (P = 0.001). Kaplan-Meier analysis revealed that low tumor expression of ETFDH was associated with a poorer overall survival in patients with HCC (P = 0.024). Furthermore, multivariate analysis showed that ETFDH (P = 0.047) was an independent predictor of overall survival. Our findings may shed new light on the identification of new prognostic marker for HCC.
Collapse
Affiliation(s)
- Yaxun Wu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Jieyu Huang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Guihua Zheng
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| | - Xudong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| |
Collapse
|
16
|
Chokchaiwong S, Kuo YT, Lin SH, Hsu YC, Hsu SP, Liu YT, Chou AJ, Kao SH. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic Res 2018; 52:1445-1455. [PMID: 30003820 DOI: 10.1080/10715762.2018.1500695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In β-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient β-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1β release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with β-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.
Collapse
Affiliation(s)
- Suphannee Chokchaiwong
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yung-Ting Kuo
- b Department of Pediatrics, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan.,c Department of Pediatrics , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan
| | - Shih-Hsiang Lin
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yi-Ching Hsu
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Sung-Po Hsu
- e Department of Physiology, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Yu-Ting Liu
- f Taipei First Girls' High School , Taipei , Taiwan
| | - An-Je Chou
- f Taipei First Girls' High School , Taipei , Taiwan
| | - Shu-Huei Kao
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
17
|
Vasiljevski ER, Summers MA, Little DG, Schindeler A. Lipid storage myopathies: Current treatments and future directions. Prog Lipid Res 2018; 72:1-17. [PMID: 30099045 DOI: 10.1016/j.plipres.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Lipid storage myopathies (LSMs) are a heterogeneous group of genetic disorders that present with abnormal lipid storage in multiple body organs, typically muscle. Patients can clinically present with cardiomyopathy, skeletal muscle weakness, myalgia, and extreme fatigue. An early diagnosis is crucial, as some LSMs can be managed by simple nutraceutical supplementation. For example, high dosage l-carnitine is an effective intervention for patients with Primary Carnitine Deficiency (PCD). This review discusses the clinical features and management practices of PCD as well as Neutral Lipid Storage Disease (NLSD) and Multiple Acyl-CoA Dehydrogenase Deficiency (MADD). We provide a detailed summary of current clinical management strategies, highlighting issues of high-risk contraindicated treatments with case study examples not previously reviewed. Additionally, we outline current preclinical studies providing disease mechanistic insight. Lastly, we propose that a number of other conditions involving lipid metabolic dysfunction that are not classified as LSMs may share common features. These include Neurofibromatosis Type 1 (NF1) and autoimmune myopathies, including Polymyositis (PM), Dermatomyositis (DM), and Inclusion Body Myositis (IBM).
Collapse
Affiliation(s)
- Emily R Vasiljevski
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Matthew A Summers
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
18
|
Fan X, Xie B, Zou J, Luo J, Qin Z, D'Gama AM, Shi J, Yi S, Yang Q, Wang J, Luo S, Chen S, Agrawal PB, Li Q, Shen Y. Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2018; 16:15-19. [PMID: 29988809 PMCID: PMC6031868 DOI: 10.1016/j.ymgmr.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism caused by mutations in EFTA, EFTB, or ETFDH. Many MADD patients are responsive to treatment with riboflavin, termed riboflavin-responsive MADD (RR-MADD). Here, we report three novel mutations and one previously reported mutation in ETFDH in four RR-MADD patients who presented at various ages, and characterize the corresponding changes in ETF-QO protein structure. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD, and may not only prevent patients from invasive testing, but also allow timely initiation of riboflavin treatment. The novel variants in ETFDH and the corresponding clinical features reported here enrich the allelic heterogeneity of RR-MADD and provide insight into genotype-phenotype relationships.
Collapse
Affiliation(s)
- Xin Fan
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Bobo Xie
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jun Zou
- Department of Gastroenterology, The Second Affiliated Hospital, Guangxi Medical University, Nanning 530000, People's Republic of China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Alissa M D'Gama
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shiyu Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Chen M, Peng J, Wei W, Wang R, Xu H, Liu H. A novel ETFDH mutation in an adult patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Int J Neurosci 2017; 128:291-294. [PMID: 28914566 DOI: 10.1080/00207454.2017.1380641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM OF THE STUDY To report a novel mutation in the electron transfer flavoprotein dehydrogenase (ETFDH) gene in an adult patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. MATERIALS AND METHODS The genomic DNAs from a patient whose main clinical presentations are muscles weakness and hypoglycemia was analysed. RESULTS The patient was identified to carry compound heterozygous mutations in ETFDH gene. Two missense mutations c.814 G > A and c.389 A > T were found. CONCLUSION This is the first report of c.814G > A mutation in ETFDH in adult patient with MADD.
Collapse
Affiliation(s)
- Min Chen
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Jing Peng
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Wei Wei
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Rui Wang
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongliang Xu
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongbo Liu
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
20
|
Liu XY, Wang ZQ, Wang DN, Lin MT, Wang N. A Historical Cohort Study on the Efficacy of Glucocorticoids and Riboflavin Among Patients with Late-onset Multiple Acyl-CoA Dehydrogenase Deficiency. Chin Med J (Engl) 2017; 129:142-6. [PMID: 26830983 PMCID: PMC4799539 DOI: 10.4103/0366-6999.173438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common type of lipid storage myopathies in China. Most patients with late-onset MADD are well responsive to riboflavin. Up to now, these patients are often treated with glucocorticoids as the first-line drug because they are misdiagnosed as polymyositis without muscle biopsy or gene analysis. Although glucocorticoids seem to improve the fatty acid metabolism of late-onset MADD, the objective evaluation of their rationalization on this disorder and comparison with riboflavin treatment are unknown. Methods: We performed a historical cohort study on the efficacy of the two drugs among 45 patients with late-onset MADD, who were divided into glucocorticoids group and riboflavin group. Detailed clinical information of baseline and 1-month follow-up were collected. Results: After 1-month treatment, a dramatic improvement of muscle strength was found in riboflavin group (P < 0.05). There was no significant difference in muscle enzymes between the two groups. Significantly, the number of patients with full recovery in glucocorticoids group was less than the number in riboflavin group (P < 0.05). On the other hand, almost half of the patients in riboflavin group still presented high-level muscle enzymes and weak muscle strength after 1-month riboflavin treatment, meaning that 1-month treatment duration maybe insufficient and patients should keep on riboflavin supplement for a longer time. Conclusions: Our results provide credible evidences that the overall efficacy of riboflavin is superior to glucocorticoids, and a longer duration of riboflavin treatment is necessary for patients with late-onset MADD.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China
| |
Collapse
|